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Abstract

Apnea of prematurity (AOP) is an important and common clinical problem, and is often the rate-

limiting process in NICU discharge. Accurate detection of episodes of clinically important 

neonatal apnea using existing chest impedance monitoring is a clinical imperative. The technique 

relies on changes in impedance as the lungs fill with air, a high impedance substance. A potential 

confounder, however, is blood coursing through the heart. Thus the cardiac signal during apnea 

might be mistaken for breathing. We report here a new filter to remove the cardiac signal from the 

chest impedance that employs a novel resampling technique optimally suited to remove the heart 

rate signal, allowing improved apnea detection. We also develop an apnea detection method that 

employs the chest impedance after cardiac filtering. The method has been applied to a large 

database of physiological signals, and we prove that, compared to the presently-used monitors, the 

new method gives substantial improvement in apnea detection.
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1. Introduction

Apnea is very common in premature infants(1). The breathing of all infants is irregular, and 

they all stop breathing for a few seconds at a time. Apnea is considered to be a clinical event 

if (1) (A) cessation of breathing lasts for more than 20 seconds, or (B) cessation of breathing 

lasts for more than 10 seconds, and is accompanied by either bradycardia (slowing of the 
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heart below 100 beats per minute) or oxygen desaturation (SpO2 < 80%). In any such case, 

apnea is a serious clinical event that needs medical attention within seconds.

Clinical apneas occur in more than half of babies whose birth weight is less than 1500 g, and 

in almost all infants whose birth weight is less than 1000 g. Apnea may be a cause or an 

effect of many other clinical problems, such as hypoxemia, hypoglycemia, neurological 

injury, or sepsis. Apnea is also a common manifestation of an immature neurological system 

in babies who were born very preterm, but otherwise have no clinical pathology. Three types 

of apnea are common in premature infants: obstructive apnea, central apnea and mixed 

apnea. Obstructive apnea is a blockage of the airway, typically accompanied by struggling or 

thrashing movements of the infant. Central apnea is cessation of respiratory drive, and the 

infant makes no effort to breathe. Mixed apneas typically begin with an obstructive event, 

and then change to central apnea. On the other hand, there is evidence that central apnea can 

also become obstructive apnea, so Poets(2) suggests that the distinction between the two 

types should not be held too rigidly. When accompanied by bradycardia and/or oxygen 

desaturation, these apneas are serious clinical events that need immediate medical attention 

and investigation for associated pathology. Moreover, central apnea is taken to indicate 

immaturity of control of respiration, and discharge from our NICU is delayed until apneas 

have been absent for 8 days(3).

Bedside monitors employ algorithms to detect apnea based on continuous monitoring of 

chest impedance (CI). Using electrodes that are also used to monitor the electrocardiogram 

(EKG), a small high-frequency (e.g. 52.6 KHz) voltage is applied to the chest, and the 

resulting high-frequency current is measured. The measured impedance is the applied 

voltage divided by observed current. The basic impedance is of the order of a few hundred 

ohms; it is related to the conductivity of muscle, skin, other tissues, and the contacts between 

electrodes and skin. When the infant is breathing, the impedance fluctuates by a few ohms in 

each breath. Air has low electrical conductivity, and more air in the lungs gives higher chest 

impedance(4). The beating of the heart also gives fluctuations of impedance, usually on the 

order of half an ohm. Blood has a high conductivity; as the heart empties and fills, the 

impedance rises and falls.

The heart rate slows during severe apnea, and there is increased time for diastolic filling and 

thus increased intracardiac volumes. As a result, chest impedance changes due to cardiac 

activity are increased, and stand out all the more because the respiratory changes are absent. 

These increasingly large impedance fluctuations due to cardiac filling can reach thresholds 

for detection as breaths, foiling the monitor’s apnea alarm. As a result, some episodes of 

central neonatal apnea are missed altogether, and some of those episodes are severe. (figure 

1).

We have systematically investigated this phenomenon of missed apneas in a large data set of 

waveforms and vital signs from the University of Virginia NICU. Finding it a common 

problem, we devised a new filtering strategy to remove the cardiac signal from the chest 

impedance, allowing more accurate apnea detection. The purpose of this paper is to report a 

new algorithm for detection and characterization of central apneas.
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2. Methods

2.1. Patient population

We studied all admissions to the 45-bed University of Virginia NICU, a tertiary care referral 

center with more than 500 admissions yearly, almost one-fourth of them of very low birth 

weight (<1500g, VLBW). For development of methods to filter the cardiac component of the 

CI signal, we focused first on 5 VLBW infants with frequent apneas noted on the nursing 

apnea and bradycardia bedside flow sheets.

2.2. Data acquisition, storage, and analysis

Our NICU uses GE monitors (models Solar 8000M and I, and Dash 3000, GE Healthcare, 

Milwaukee) to record 3 EKG leads (sampled at 240 Hz), CI (60 Hz), and oxygen saturation 

waveform (120 Hz), and average heart rate, respiration rate and O2 saturation (0.5 Hz), as 

well as monitor alarms. We have collected these data since January 2009 using the 

BedMaster (Excel Medical, Jupiter, FL) system and our parallel storage and computing 

cluster.

Data files are distributed equally among 10 desktop personal computers having a total of 80 

processing cores, 100 TB of hard disk storage and 30 gigabytes of memory. We developed a 

Matlab-based graphical interface for inspecting data, and for developing and testing 

numerical data analysis algorithms. Clinical data, such as respiratory support, demographics, 

and apnea-bradycardia documentation, are collected from electronic medical records and the 

bedside flowsheets. We enter these data into a relational clinical database through a custom 

web interface.

2.3. Cardiac Artifact Filter

A number of methods have been proposed for eliminating the cardiac artifact from the CI 

signal based on the different frequencies of breaths and heartbeats(5, 6). However, extended 

apneas often lead to bradycardia, so the heart rate drops below 100 bpm, and may be well 

into the respiration frequency band. Therefore a Fourier spectrum of the chest impedance 

signal can be broad band and fail to distinguish cardiac and respiratory events (figure 2(a)).

To more effectively filter the cardiac component of CI, we use the heart itself as the 

clock(5); i.e. we digitally stretch or contract the time scale such that RR intervals are equally 

spaced, and the unit of time is thus one RR interval instead of 1 second. The CI is resampled 

with an equal number of steps in each RR interval, so all peaks in the CI that are caused by 

heartbeats have equal spacing of one unit. Now the Fourier transform of the resampled CI 

has sharp narrow peaks at integer frequencies (figure 2(b)). The very low frequency content, 

moreover, is due to movement of the infant, or other unwanted baseline fluctuations; in any 

case, it does not represent regular neonatal respiration. The inverse transform after excluding 

heartbeat frequency and irrelevant very low frequencies is influenced neither by phasic 

blood flow through the heart nor by low frequency drift, and can be considered a more 

accurate measure of air flow in and out of the chest.
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Details of the filter are given in the appendix. As discussed below, the method was validated 

through examination of hundreds of apnea episodes by three clinical experts.

3. Results

3.1. An example of the analysis

Figure 1(a) shows 3 minutes of bedside monitoring data during a prolonged episode of 

central neonatal apnea during which the apnea alarm did not sound. Initially the infant was 

breathing regularly at a rate of about 50 breaths per minute. Near t = − 45 s, the CI signal 

(blue) falls in amplitude and rises in rate. Figure 1(b) is an expanded view, showing that the 

oscillations in CI synchronize with the EKG, establishing the source of the 180 per minute 

fluctuations as the beating of the heart. Over the next 60 to 80 seconds, the oscillations in CI 

continue to be accurately synchronized with the EKG as the heart slows, and the detected 

heart and breathing rates fall together. Since the reported respiratory rate was always high, 

apnea was never detected by the monitor.

Figure 2 shows frequency-domain approaches to filtering the cardiac component of the CI 

signal. Figure 2(a) shows the Fourier spectrum of the CI signal. The bands around 1 Hz and 

3 Hz represent respiration and heart beats, respectively. The slowing heart rate, though, 

makes its peak broad and not suitable for filtering. Figure 2(b) shows the effect of 

resampling the CI in equally spaced increments of RR intervals. The periodic cardiac signal 

is now captured in narrow, sharp peaks at integer frequencies.

Figure 3 shows the filtered CI signal on compressed and expanded scales. Removal of the 

impedance changes caused by heartbeats reveals the nearly complete absence of chest 

movement due to breathing, and confirms the presence of central neonatal apnea. Figure 3(b) 

also shows the final step of the analysis, assignment of a probability of apnea using methods 

detailed in the Appendix. The red bar (between t=−43 and t=42) in figure 3(b) indicates the 

detected “ABD” event – Apnea associated with Bradycardia and oxygen Desaturation. The 

cessation of breathing lasted 90 s, with one or at most two gasps; it was followed by two 

shorter apnea events.

3.2. Additional Examples

We show three other examples of detected apnea events. The event in figure 4(a) lasted 

about 60 s, with one apparent gasp or movement artifact in the middle. In this case, the 

NICU monitor worked properly. The measured respiration rate (blue circle-line) began to 

decrease a few seconds after the cessation of breathing, and dropped to 0 at t = −2 s; at that 

time the monitor signalled an apnea alarm. The large fluctuations in CI starting at t ~ 40 s 

are most likely the result of NICU personnel stimulating the baby.

In figure 4(b), the apnea started at t = −37 s and lasted for 74 s. However, the monitor failed 

to detect this event. The reported respiration rate fell somewhat, but did not reach the 

threshold, then it increased to 105 breaths per minute at t = −9 s. Then the measured 

respiration rate tracked the heart rate until t = 40 s (blue circles overlap black circles in the 

figure 4(b)).
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Figure 4(c) shows a periodic breathing event, or periodic apnea, in which the baby had a 

cycle with period about 15–18 s. In this case the CI signal is weak, and the cardiac artifact is 

large, so it takes a careful eye to see the periodic apneas in the original CI signal. On the 

other hand, it is very plain in the filtered signal. Further processing, such as computing a 

spectrogram of the probability of apnea curve, could provide a detector for periodic 

breathing.

3.3. Validation of the new method for detection of central neonatal apnea

The new algorithm was meticulously validated by comparing its output with analysis of 

signals by three expert clinicians, and parameters in the algorithm were adjusted to optimize 

agreement. Validation involved three separate analyses.

1. From the records of 5 infants selected for frequent episodes of apnea, we selected 

at random 237 episodes of coexisting bradycardia and O2 desaturation (HR<100 

bpm, SPO2 <80%). For each episode, we calculated the probability of apnea 

from analysis of the filtered CI signal, and 3 expert clinicians gave opinions on 

whether the episode was one of neonatal apnea. The clinicians reached consensus 

agreement on 234 of the 237 events. The new analysis of the filtered CI agreed 

with the clinicians in 212 cases out of those 234 (91% accuracy). Validation data 

is shown in Table 1.

2. We used the entire data set to evaluate the rates of false-positive and false-

negative episodes of apnea detected by the new algorithms. To determine the 

false positive rate, we selected at random 100 episodes detected as apnea that 

lasted 30 seconds or more and were accompanied by bradycardia and O2 

desaturation (“ABD-30” events). Three clinicians found that 95 of these 

represented episodes of central neonatal apnea, and the other five were false 

positives (5% false-positive rate). (In addition, for six of the 95 events, the 

clinicians concluded that the events were real apneas, but that they had lasted 

somewhat less than 30 seconds; i.e. the algorithm overestimated the duration of 

the apnea, typically by just a few seconds. If we include such cases in the “false 

positive” category, then the total false positive rate is 11%.)

3. To determine the false-negative rate, we randomly selected 114 apnea alarm 

episodes generated by the current monitoring system. After inspection of the 

monitor data, three expert clinicians concluded that 74 were false alarms and 40 

were true alarms. Therefore 65% of the monitors’ apnea alarms were false.

The new algorithms detected apnea in 39 of the 40 true alarm events, giving a false-negative 

rate of 2.5 %. The new algorithms also detected apnea in 43 of the 74 false alarm episodes, 

thereby giving a false-alarm rate of 37%, a substantial improvement over the monitors. In 

every such case, the CI signal had very low amplitude. Since this is a common cause of 

apnea alarms from conventional monitors, this validation is biased toward unusually low 

amplitude CI signals. All apnea detection schemes are of limited value when the CI signal is 

flawed in this way.
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3.4. Application in the UVa database

The availability of a quantitative measure of neonatal apnea allows examination of important 

research questions in the area. We have detected apneas using this method for our large 

database of monitor data for 1100 UVa NICU admissions since 1/2009.

3.4.1. Incidence of anomalous detection of respiratory rate = heart rate and 
missed apnea alarms—Inspection of the monitor data in figure 1 suggests that a 

histogram of respiratory rate as a function of heart rate would show accentuation along the 

line of identity. Figure 5 shows this histogram for the entire data set (figure 5(a)) and for the 

episodes of apnea of 30 seconds or longer duration that were accompanied by bradycardia 

and O2 desaturation (ABD-30 events, panel B). The arrows indicate the line of identity, on 

which lie episodes of apnea in which the respiratory rate was erroneously detected to be the 

heart rate. In both panels, rates from 60 per minute to 160 per minute are represented. This is 

consistent with figure 1, where the heartbeat was interpreted by the monitor as breathing 

from the beginning of apnea, at which time the heart rate was still normal.

We provide two measures of the incicdence of such events: (1) In what fraction of the total 

time that babies are monitored does the monitor misinterpret heartbeats as respiraton? (2) In 

what fraction of “extreme” apnea events does the monitor misinterpret heartbeats as 

respiraton?.

To answer the first question, we found that the proportion of data points under the line of 

identity in figure 5(a) (when HR and RR are identical within 5%) was 0.0023, suggesting 

that confusion of heart rate with respiratory rate by the monitors occurs 0.23% of the total 
time that the babies are monitored. That sounds like a small number. It is small because 

(happily) most of the time, the babies are breathing regularly, and the impedance changes 

due to respiration dominate over the impedance changes due to the cardiac artifact. 

However, when we examine apnea events, we see cause for concern.

To address the second question, we define an ABD-30 event as a central apnea with 

accompanying bradycardia and desaturation, in which the weighted apnea duration (see 

appendix) was at least 30 seconds. Such events are called “extreme” by Ramanathan et al. 

(7). In our 45-bed NICU, over 804 days we observed 7118 ABD-30 events (on average 1.6 

events per day in 45 beds). Of those 7118 events, there were 1087 events in which the 

monitor-reported respiratory rate was close to the heart rate during at least part of the apnea. 

Of those cases, there were 1011 events in which the monitor did not give any apnea alarm 

because of confusing the heart rate with the respiratory rate. Thus, in 14% of the ABD-30 

events, the monitor failed to give an apnea alarm because of the cardiac artifact in CI signal.
1

1The observant reader notices that there are stripe patterns in figure 5(b) along the slopes of rational numbers (4/4, 4/5, 4/6, 4/7, 4/8, 
and 4/9). As discussed above, the 4/4 line (HR=RR, upper red dashed-dot line) is due to the cardiac artifact in the CI signal. The 4/8 
line (lower red dashed-dot line) is interesting. Most of those cases are false-positive reports of apnea, and this line shows that the true 
respiration rate and heart rate are sometimes locked in a 1:2 ratio. All other stripes in figure 5(b) are artifacts created by the monitor, 
which erroneously reports integer ratios of RR to HR when the CI signal is very weak.
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3.5. Application to individual patients

Figure 6 shows a NICU event map of an infant who died of necrotizing enterocolitis. The 

horizontal axis is NICU stay in days. The left vertical axis labels various events or 

treatments, and the white areas in the figure show when these treatments occurred. For 

example, the infant was given supplemental O2 in days 18 and 19, and again in the 40th day. 

NCPAP is nasal continuous positive airway pressure; HFNC and LFNC, high- and low-flow 

nasal cannula; ABD>30 and >10, central apneas with bradycardia and O2 desaturations in 

which the apnea lasted more than 30 or more than 10 seconds; A>20, apneas lasting >20 

seconds; Nurse AB, apnea and bradycardia nursing sheet entry.

The green line, referring to the right hand axis, shows the number of ABD-30 events in the 

past 48 hours. For example, at some times in the 25th day, there had been more than five 

ABD-30 events in the past 48 hours. The red curve (also referring to the right-hand axis), is 

the HeRO score(8–15), which is a measure of heart rate variability that was developed to 

give early warning of sepsis. For example, in the 25th day, the HeRO score indicated that this 

infant was more than twice as likely as the average infant to have a sepsis event in the next 

24 hours. A blood culture was drawn for suspicion of sepsis and 7 days of antibiotics were 

given, though the culture was found to be negative.

The primary points made by this figure are: (a) automated detection shows many more 

apneas than nurses’ records show; (b) NICU personnel are responding to apneas by 

increasing the ventilatory support, but automated detection might lead to improved response; 

(c) sometimes the apnea rate is correlated with the HeRO score and sometimes it is not.

4. Discussion

Monitor algorithms sometimes mistake the cyclic impedance changes of cardiac filling and 

emptying as being due to respiration. We developed a novel filter based on resampling the 

CI signal based on the time between heartbeats, and used Fourier techniques to produce a 

filtered CI signal with the cardiac artifact removed. Overall, the incidence of central neonatal 

apnea that is unreported because of this phenomenon is significant (~14% of ABD-30 

events), and the missed episodes tend to be severe, with long duration and marked 

bradycardia.

More generally, an accurate and automated detector of central neonatal apnea should prove a 

useful tool in neonatal apnea studies. In 2006, an expert panel summarized the state of the 

art of neonatal apnea as inadequate in a number of respects (1), beginning with an 

insufficient understanding of how to define apnea, let alone how to diagnose and treat it. 

They went on to review a number of hypotheses that need to be tested, such as the role of 

gastroesophageal reflux, and the effect of apnea on neurodevelopmental outcome, and the 

role of methylxanthine therapy. Such an algorithmic tool as we describe here should be 

useful for the rigorous quantification of the number and character of apnea episodes 

necessary to undertake these studies.

In addition, it will be interesting to see if bedside implementation of automated apnea 

detection alters practice. Our group recently participated in the HeRO trial, which showed 
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that display of an algorithm based on heart rate that gives the fold-increase in risk of sepsis 

in the next 24 hours reduced VLBW mortality by more than 20% (16). It is likely that a 

similar display of the results of an apnea detector algorithm might also change clinical 

management in a beneficial way, or add to the existing sepsis detection algorithms(17). In 

particular, it will be interesting to revisit the practice of waiting 8 days after the last apnea 

episode prior to discharge (3). Such study may lead to better justification of this eight-day-

countdown rule, or may lead to modification of the rule.

4.1. Limitations

The method cannot recognize obstructive apnea, which is often accompanied by struggling 

motions of the infant. As presently used, the method requires that the CI and EKG signals 

must have sufficient quality continuously over a 16-minute period. Motional and other 

artifacts sometimes make either of these signals uninterpretable by human or machine. In 

addition, there are many cases in which the CI signal is of too low amplitude for reliable 

analysis. Also, at present, the detector is set up for retrospective use, not yet real-time use.

One other point should be mentioned. Some clinicians claim that apnea events themselves 

are not clinically important, unless there is an associated bradycardia or desaturation; 

therefore improved apnea detection by itself is not very important. We do not accept this 

claim. (a) The claim that apnea with no bradycardia or desaturation is clinically unimportant 

is an unproved hypothesis, which is not accepted for apneas of 20s or more (1). (b) Even if it 

were true, an improved real-time apnea detection system could be combined with an 

automated system for stimulating the baby, and thereby preventing the subsequent 

bradycardias and desaturations which are more likely to be associated with morbidity. (c) 

Bradycardia and desaturation alarms are set at selected thresholds; we have seen many cases 

of long apneas in which the heart rate and oxygen saturation dropped substantially for long 

periods of time, but did not reach the thresholds to set off the alarms. This new system is 

providing better retrospective information than has previously been available, and we plan to 

adapt it to an accurate real-time early-warning system.

5. Conclusions

We developed a new detection algorithm for apnea of prematurity. We substantially improve 

the apnea detection by removing the cardiac artifact from the chest impedance signal, which 

cause false detection of apnea in the current generation of monitor. The validation with 

clinical experts shows more than 90% accuracy of the method.
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Appendix

A.1. Filtering and Scaling the Signal

The algorithm uses the three-lead EKG signals and the CI signal. From each lead of the 

EKG, QRS complexes are detected and R times are recorded(18). From the three lists of R 
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times, the most reliable one (the one that has the fewest missing beats) is chosen. Then for 

each RR interval, the CI is resampled by interpolation at 30 equally-spaced intervals.

At this point, the Fourier transform looks like that shown in figure 2(b), the bands near 

integer frequencies can be removed, and the inverse transform can be computed, giving a 

signal with cardiac artifact removed. In practice, these three steps are combined into a single 

step using Butterworth bandstop filters. The result is then resampled at 60 points per second 

to obtain a filtered chest impedance signal as a function of time. The name of this signal is 

Chest Impedance-Cardiac Artifact Removed (CI-CAR). An example is shown in figure A1.

This CI-CAR retains low frequency artifacts. Those are removed by a high-pass filter with 

threshold 0.4Hz. It is obvious that when this signal is silent, then the infant is undergoing a 

central apnea event. But how silent is silent? The average amplitude of the original CI signal 

varies over a large range on time scales of minutes. Therefore we adjust the magnitude of the 

filtered signal by dividing by an envelope function which is computed by applying a low-

pass filter with a extremely low thresholding frequency (0.0025 Hz) filter to the original CI 

signal. An example of this envelope function is shown in figure A2. This process can be 

called “renormalization” of the filtered CI signal. The final result of the twice-filtered and 

renormalized CI is called the filtered CI (FCI). All further analysis is done with this signal.

A.2. Apnea Recognition

We transform this filtered CI into a probability of apnea vs time. First we compute a running 

standard deviation (t) of the scaled signal; we compute the standard deviation every quarter 

second for a centered 2-second interval (figure A1, same events as figure 3).

From that running standard deviation, we obtain an estimated probability of apnea using a 

transformation function that was obtained using two steps: (1) a preliminary formula was 

obtained through study of a very apneic infant; (2) parameters in the formula were adjusted 

by a meticulous validation process in which three experts distinguished apnea from regular 

breathing for about 500 recorded events.

A histogram of values of for one very apneic infant is shown in figure A3. We interpret this 

histogram as a statistical mixture of two distributions: DA(σ), which corresponds to apnea, 

and DB(σ), which corresponds to breathing. The total histogram is the sum of these two 

functions. The probability of apnea is given by P = DA(σ)/[DA(σ)+ DB(σ)].

For convenience, the probability of apnea estimated in that way can be fit to a single 

function, Pfit(σ) = 1/[1 + exp[b(σ−a)] (called a Fermi function), with appropriate values for a 
and b Finally, the parameters a and b were adjusted by comparing the output of the formula 

with expert analysis of hundreds of apnea events in the NICU at University of Virginia 

(a=0.44, b=12). There is usually better than 90% agreement between the new apnea 

detection algorithm and the expert analysis. Details and results of the validation were given 

in the text. The strength of this approach is that we assign intermediate probabilities to 

signal values falling near the boundary between breathing and apnea.
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A.3. Apnea Measures

To obtain objective and quantitative measures of the frequency and severity of apnea events 

for each infant, we applied the following procedure. (1) Define the “Weighted Apnea 

Duration” (WAD) as the area under the Probability of Apnea curve P(t), beginning when that 

probability increases through 0.1, and ending when it decreases through 0.1. (2) Ignore all 

events with WAD less than two seconds. (3) Ignore all events having WAD less than five 

seconds unless the event is within five seconds of another event. (4) Combine events if they 

are separated by less than three seconds. For example in figure A1, we identify three events. 

The long apnea event begins at t ~ −40 s. At t ~ −23 s there is an apparent gasp, and possibly 

another at t ~ −3 s. This apnea event ends at t ~ 43 s. We consider it to be a single event 

rather than two events because the single gasp interrupted it for less than three seconds. The 

total duration of the event is 84 seconds. The Weighted Apnea Duration (area under curve) is 

82 seconds. The long event is followed by two short events, one of duration 11 seconds 

starting at t~70 s, and the second having duration about 6 seconds. These two events are hard 

to recognize in the original CI curve, but they are plainly visible in the CI-CAR and FCI 

curves (figure A1). Note that during these latter events, the CI-CAR has some fluctuations, 

but they have no similarity to the regular breathing signals prior to t ~ −50.

A.4. Definition of ABD events

We defined an ABD-n event as an apnea in which the Weighted Apnea Duration is at least n 
seconds, and there is an associated Bradycardia (heart rate < 100 bpm) and Desaturation 

(SPO2 < 80%). Below we give a precise definition of “associated”: how long can the interval 

between these events be so that we will agree that the bradycardia and the desaturation are 

associated with (presumably caused by) the apnea?

First we state our rules, and then we explain how they were obtained. Define

tA,i = time of beginning of apnea [when the (black) probability of apnea curve 

increases through 0.1]

tA,f = time of end of apnea [when the (black) probability of apnea curve decreases 

through 0.1]

tB = time of Bradycardia (when the average heart rate reported by the monitor falls 

through 100 bpm)

tD = time of Desaturation (when SPO2 falls through 80%).

TB = tB − tA,i = time interval from beginning of apnea to bradycardia

TD = tD − tA,i = time interval from beginning of apnea to desaturation

τB = tB − tA,i = time interval from end of apnea to bradycardia

τD = tD − tA,i = time interval from end of apnea to desaturation

The rules we chose are:
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(AB)

then the Apnea and Bradycardia are related. (We call it an AB-n event, with n the Weighted 

Apnea Duration.)

(AD)

then the Apnea and Desaturation are related (it is an AD-n event). If both of the conditions 

AB and AD hold, it is an ABD event.

We obtained these rules by the following process. We began by studying five very apneic 

infants who were not on ventilators. The computer identified 2664 events in which a 

bradycardia and a desaturation occurred within a four minute window. Then for each such 

event, the monitor output was examined by one or more clinicians, and (particularly looking 

at the chest impedance signal and the monitor-derived respiration rate) the clinicians 

identified 1897 apnea events, 932 of which were judged to becentral apneas. They then 

manually recorded the times of the beginning and the end of the apnea. Times of 

bradycardia, tB and desaturation tD were recorded electronically in our database. This 

information was used to generate the joint histograms of time differences shown in figures 

A4 and A5.

The first part of condition AB says that if the crossing of the bradycardia threshold occurred 

before the beginning of apnea, then it was not caused by the apnea. The second part says that 

the bradycardia must occur within a reasonable time after the beginning or within a 

reasonable time after the end of the apnea. The same logic was applied for defining AD 

events. The boundaries we selected are shown on these histograms. Each boundary (50, 55, 

25 or 38 s) is somewhat arbitrary, and could have been chosen to be smaller by a few 

seconds, or larger by at most 20 s. The validity of the rules and the boundaries are supported 

also by the validation process discussed earlier, in which three experienced clinicians 

examined hundreds of events.
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Figure A1. 
Same event as figure 3. Chest impedance (CI, blue), Chest Impedance-Cardiac Artifact 

Removed(CI-CAR, black), filtered chest impedance (FCI, red), and two-second standard 

deviation (gray).

Figure A2. 
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A very-low-pass filter (with threshold 1/400 Hz) provides an envelope function.

Figure A3. 
(a) Histogram of 2 sec variance (σ) of filtered chest impedance for a four hour period in an 

infant with many apneas. The histogram is separated into two distributions. (b) Expanded 

view. The probability of apnea is given by P(σ) = DA(σ)/[DA(σ)+DB(σ)]. (c) (Blue dashed 

line) The inferred probability of apnea vs. for the one very apneic infant. (Red solid line) 

The final choice of P(σ) optimized as a result of the validation process after studying 

hundreds of apnea events in many infants.

Figure A4. 
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Histogram of joint distribution of times from beginning of apnea to bradycardia and to 

desaturation. Colors indicate pentiles of the distribution. Every event falling into box 1 is an 

ABD event. Any event falling into box 2 is an AD event (i.e., the desaturation is associated 

but the bradycardia is not), unless that event lies below the horizontal line in figure A5, in 

which case it is also an ABD event. Any event falling into box 3 is an AB event, unless that 

event lies to the left of the vertical line in figure A5, in which case it is again an ABD. 

Events falling into box 4 are presumed to be apneas with no associated bradycardia or 

desaturation, unless that event lies in the appropriate region of figure A5.

Figure A5. 
Histogram of joint distribution of times from end of apnea to bradycardia and to 

desaturation. Colors indicate pentiles of the distribution. Any event in the lower left region 

of this figure is declared to be an ABD event provided that that event meets the criteria in 

figure 10.

Abbreviations

ABD Apnea associated with Bradycardia and oxygen Desaturation

CI Chest Impedance

CI-CAR Chest Impedance-Cardiac Artifact Removed

FCI Filtered Chest Impedance

NICU Neonatal Intensive Care Unit

VLBW Very Low Birth Weight (<1.5 Kg)
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WAD Weighted Apnea Duration
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Figure 1. 
Apnea not detected by the monitor. (a) Chest impedance (blue, CI), heart rate (red), and 

respiration rate (black) signals from the bedside monitor. At t = − 43s, the CI changes, and 

the detected respiratory rate rises to match the heart rate. (b) EKG and CI expanded. During 

the apnea event starting at t = − 43s, the fluctuations in CI precisely match the EKG, 

indicating that they are due to the heart.
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Figure 2. 
(a) Fourier transform of CI during an apnea event. We see low and broad peaks around 1 Hz 

and around 3 Hz, but we cannot use this to filter the heart signal from the respiratory signal. 

(b) Fourier transform of CI using the heart as the clock. The cardiac artifact is now a set of 

narrow, sharp peaks at integer frequencies.
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Figure 3. 
(a) Thirty seconds of filtered CI (red) signal on an expanded scale, together with original CI, 

EKG and heart rate. (b) Four minutes of filtered CI signal on a compressed scale, and the 

probability of apnea (black). The detected ABD event (apnea accompanied by bradycardia 

and oxygen desaturation) is marked (red bar).
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Figure 4. 
(a) An apnea event detected by the monitor. The respiration rate falls to 0.1 breaths per 

minute, and then jumps to zero. (b) An apnea event not detected by the monitor. The 

measured respiration rate equals the heart rate during the apnea. (b) Periodic breathing. The 

monitor shows cyclic rise and fall of respiration rate, while the new apnea detector shows 

periodic cessation of breathing.
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Figure 5. 
(a) Histograms of respiratory rate and heart rate in the entire data set, and (b) in apnea, 

bradycardia and O2 desaturation episodes lasting 30 seconds or more (ABD-30 events). The 

arrows point to a ridge at which the monitor records a respiration rate equal to the heart rate. 

Most of these are episodes of central apnea that were not detected by the monitor. About 

14% of ABD-30 events are undetected because of the cardiac artifact.
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Figure 6. 
NICU event map for a single infant.
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Table 1

Validation result for data of 5 infants selected for frequent apneas

Experts

Apnea Not Apnea

Computer
Apnea 132 7

Not Apnea 9 86
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