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Human m6A writers: Two subunits, 2 roles
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ABSTRACT
Cellular RNAs with diverse chemical modifications have been observed, and N6-methyladenosine (m6A) is
one of the most abundant internal modifications found on mRNA and non-coding RNAs, playing a vital
role in diverse biologic processes. In humans, m6A modification is catalyzed by the METTL3-METTL14
methyltransferase complex, which is regulated by WTAP and another factor. Three groups have recently
and independently reported the structure of this complex with or without cofactors. Here, we focus on the
detailed mechanism of the m6A methyltransferase complex and the properties of each subunit. METTL3 is
predominantly catalytic, with a function reminiscent of N6-adenine DNA methyltransferase systems,
whereas METTL14 appears to be a pseudomethyltransferase that stabilizes METTL3 and contributes to
target RNA recognition. The structural and biochemical characterization of the METTL3-METTL14 complex
is a major step toward understanding the function of m6A modification and developing m6A-related
therapies.
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To date, approximately 140 types of chemical modification
have been identified in RNA.1 Most modifications have been
observed on rRNA and tRNA, whereas mRNA modification
was considered rare. Nevertheless, several modifications have
recently been identified on mRNA including N6-methyladeno-
sine (m6A),2,3 N1-methyladenosine (m1A),4 inosine (I),5 5-
methylcytosine (m5C),6 and pseudouridine (c).7,8 Among
these, m6A is the most prevalent modification on mRNA and
long noncoding RNA. In 2012, 2 groups independently identi-
fied thousands of m6A sites on mammalian RNAs,2,3 driving
research examining the epitranscriptome. Several studies have
characterized the m6A RNA landscape in organisms, including
viruses,9,10 bacteria,11 yeast,12 and plants,13 and these studies
have identified the consensus sequence RRACH (R represents
purine, A is m6A and H is a non-guanine base), implying the
functional importance of this modification. In fact, m6A affects
multiple cellular functions,14,15 including developmental regu-
lation, the cell cycle, fate determination,16,17 and the heat-shock
stress response18 by affecting different stages of RNA metabo-
lism such as RNA processing,19,20 stability,21 and translation
efficiency.18,22,23

Analogous to dynamic chemical modifications of DNA and
protein, the m6A RNA modification can be reversibly appended
and removed by a methyltransferase and a demethylase (or
“writer” and “eraser”), respectively (Fig. 1a). One m6A writer,
the METTL3 methyltransferase (formerly called MT-A70), was
first identified as part of a »200 kDa complex isolated from
enzymatic mammalian cell nuclear extracts in 1997.24 METTL3
was grouped into the DNA m6A methyltransferase subfamily
due to the conserved motif [D/N/S/H]PP[Y/F/W] (Fig. 1b) and

exhibits high sequence conservation among eukaryotes includ-
ing yeasts, plants, Drosophila and mammals.25 Importantly, dis-
ruption of METTL3 homologs causes severe developmental
defects in yeasts and Drosophila and has a lethal phenotype in
Arabidopsis and mice.16,26-28

Recently, a second methyltransferase, METTL14, was identi-
fied as the other writer complex component.29-32 Knockdown
of METTL14 leads to decreased m6A levels in human cell
lines,30,32 and the METTL14 methyltransferase domain is phy-
logenetically close to that of METTL3.33 Interestingly, METTL3
and METTL14 were found to be associated in a global proteo-
mic profiling and co-immunoprecipitation experiment.31,34

Consistent with in vivo observations, recombinant METTL3
and METTL14 form a stable heterodimer in vitro.29,32 Individu-
ally, METTL3 and METTL14 exhibit nearly undetectable
methyltransferase activity, but the METTL3-METTL14 com-
plex displays synergistic function. Why does the m6A methyl-
transferase complex contain 2 conserved methyltransferase
components, and what are the roles of each subunit in the
complex? We recently reported crystal structures of the
METTL3-METTL14 methyltransferase domains complex alone
and bound to S-adenosylmethionine (AdoMet) or S-adenosyl-
homocysteine (AdoHcy).35 Two other groups independently
published nearly identical structures of the complex.36,37 On
the basis of these structures, we suggest that METTL3 plays a
catalytic role in the complex, whereas METTL14 is a pseudo-
methyltransferase that stabilizes METTL3 and contributes to
RNA binding. Here, we focus on the detailed mechanism of the
m6A methyltransferase complex and the properties of each
component.
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METTL3 primarily serves a catalytic role

The overall structures of both the METTL3 and METTL14
methyltransferase domains resemble dozens of class I DNA N6

methyltransferase via DALI analysis.38 Most of these contain
one catalytic motif [D/N/S/H]PP[Y/F/W] located centrally in
the methyltransferase domain.33 Interestingly, in the AdoMet-
bound METTL3-METTL14 complex structure, a single Ado-
Met molecule was positioned in the catalytic pocket of
METTL3 but was not observed in METTL14. The AdoMet
molecule is adjacent to the most conserved DPPW motif and
coordinated by Asp in this motif via a hydrogen-bonding inter-
action. The mutation that substitutes Asp with Ala completely
abolished AdoMet binding and enzyme activity in vitro, rein-
forcing in vivo mutagenesis studies, in which a mutated
METTL3 (DPPW replaced by APPA) altered circadian clock
speed in mammalian cells.39 Additionally, an IME4 (METTL3
homolog in Saccharomyces cerevisiae) mutant encoding a
D384A mutation displayed meiotic defects.28 Together with
these data, we speculate that METTL3 primarily plays a cata-
lytic role in the complex using a similar mechanism to DNA
N6-methyladenine transfer of a methyl group to a target adeno-
sine: the aromatic residue [Y/F/W] stacks with the target base
via p–p interactions, and the side chain of the polar residue
[D/N/S/H] and the carbonyl oxygen of the proline donate 2
hydrogen bonds to the 6-amino group of adenine, priming the
SN2 chemical reaction by increasing its negative charge.

Sequence analysis indicated that the N-terminus of METTL3
contains 2 Cys-Cys-Cys-His (CCCH)-type zinc finger (ZnF)motifs
common in RNA-binding proteins (Fig. 1b).33 The crystal struc-
tures of the METTL3-METTL14 complex contain only methyl-
transferase domains without the ZnF motifs, highlighting the
flexibility of these regions. However, the crystallized truncation
showed no detectable methyltransferase activity, whereas trunca-
tions containing ZnF motifs exhibited comparable activity to the
full-length complex, suggesting a critical role for ZnF motifs
(Fig. 1c). In contrast, deleting the N-terminal and C-terminal

motifs ofMETTL14 had negligible effects. Several CCCH-type ZnF
protein structures in complex with target RNAs have exhibited
direct interactions between the ZnF motif and RNA.40,41 Accord-
ingly, we hypothesized that the METTL3 ZnF motifs are necessary
for methylation because they enhance interaction with substrate
RNA. In the future, the appearance of these motifs and how they
precisely recognize RNA sequences await to be investigated.

Is METTL14 a pseudomethyltransferase?

Although the methyltransferase domains of METTL3 and
METTL14 share approximately 22% sequence identity and an
almost identical topological structure, 3 pieces of data suggested
that METTL14 is a pseudomethyltransferase in the complex.
First, in the crystal structures, neither AdoMet nor AdoHcy is
present in the METTL14 pocket. Second, the METTL3-
METTL14 complex binds to the ligand in a 1:1 stoichiometric
ratio as measured by isothermal titration calorimetry (ITC).
Finally, there are moderately conserved EPPL sequences in
METTL14 corresponding to the catalytic motif of METTL3,
but the substitution of Glu to Ala had little effect on ligand
binding and enzymatic activity.35-37 The structure of METTL14
offers a possible explanation. METTL14 superimposes well
onto METTL3 except for 3 loops with distinct conformations,
which are referred to as gate loop1 (residues 192–211 in
METTL14), interface loop (residues 265–284 in METTL14) and
gateloop2 (residues 318–328 in METTL14).(Fig. 2a) Gate loop1
and gateloop2 of METTL3 contribute to coordination with
AdoMet, constituting part of the catalytic center. Interestingly,
both METT14 gate loops are longer than those of METTL3.
For METTL14, 7 residues of gate loop1 adopt a short helical
conformation, resulting in a possible obstacle to ligand entry.
(Fig. 2a) Gate loop 2 shows significant inward movement,
which likely leads to closure of the ligand-binding pocket.

What is the function of METTL14 in the complex? We
observed a positively charged groove between METTL3 and

Figure 1. (A) Proposed model for reversible m6A methylation. m6A on RRACH is mainly appended by the METTL3-METTL14 complex, and oxidative demethylation is per-
formed by m6A demethylase. CCCH: Cys-Cys-Cys-His type zinc finger motif (ZnF). (B) Schematic illustration of METTL3 and METTL14 domain structures. The METTL3 ZnF
and METTL3 methyltransferase (abbreviation as MTase) domains are colored in magenta, and the METTL14 methyltransferase domain is colored in cyan. Detailed domain
boundaries are labeled beneath the structures. (C) Comparison of the methyltransferase activity of full-length (abbreviation as FL) and truncated methyltransferase com-
plexes. The c.p.m. of the extracted RNA was measured in a scintillation counter and averaged ( § s.e.m.); the c.p.m. was determined from 3 replicates.
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METTL14 adjacent to AdoMet using surface electrostatic
potential analysis. At least 6 positively charged residues from
METTL14—R245, R249, R254, R255, K297 and R298—are
located in this groove. A complex with double mutations
(K297E and R298E) showed moderately reduced RNA binding
affinity and methyltransferase activity.35 Consistent with this
observation, other groups have biochemically shown that
R298P in METTL14 alters the sequence specificity for the RNA
substrate.37 We further modeled the RNA-binding state of the
complex using SAXS data. In the model, the RNA substrate
appeared in the positively charged groove, indicating that
METTL14 might contribute to RNA interaction.

Moreover, METTL3 and METTL14 are closely associated
through an extensive buried interface, which explains the high sta-
bility of the complex. Indeed, without METTL14, METTL3 binds
to AdoMet alone with a dissociation constant of approximately
47mM, 20-fold weaker than the wild-type complex (Fig. 2b). A
crystallized truncation of the METTL3-METTL14 complex had a
slight effect on AdoMet binding activity, suggesting that METTL14
stabilizes METTL3 to enhance AdoMet binding activity. We
hypothesize that METTL14 is a pseudomethyltransferase in the
complex that primarily plays a stabilization role and provides a
platform with METTL3 for RNA recognition. However, we cannot
exclude the possibility that METTL14 exhibits methyltransferase
activity after binding additional factors. METTL14 is not well con-
served; in plants, METTL14 homologues contain the DPPWmotif

instead of the EPPL motif.33 To date, METTL14 in plants is not
known to associate withMETTL3, leading us to speculate that there
is a different m6Awriter system in plants.

WTAP and other regulators

Wilms’ tumor 1-associating protein (WTAP) was identified as
another component of the human m6A methyltransferase com-
plex. WTAP plays an important role in METTL3-METTL14
complex localization to the nuclear speckle.31 WTAP knock-
down significantly decreased global m6A levels in human cell
lines, indicating its importance in generating the distinct land-
scape of mRNA methylation at 50 and internal sites.30 In zebra-
fish, depletion of the WTAP homolog caused apoptosis and
tissue differentiation defects.31 Similar results were observed in
Arabidopsis. The 37 kDa FKBP12-intereaction protein (FIP37),
a homolog of WTAP, mediates m6A modification to control
shoot stem cell fate.42However, WTAP has no effect on enzy-
matic activity in vitro other than to change the preferred RNA
substrate of the METTL3-METTL14 complex. Because domain
information is not available, how WTAP regulates m6A modifi-
cation cannot be easily elucidated. Furthermore, additional reg-
ulators such as KIAA1429 involved in mRNA methylation
have been identified by proteomic screening.30 Further investi-
gation into their regulation of the m6A writer complex will
shed light on RNA epigenetics.

Figure 2. (A) Superposition of AdoMet-bound METTL3 and METTL14. AdoMet is shown in space-filling view. Gate loop 1 in METTL3 and METTL14 is colored in magenta
and cyan, respectively. (B) Measurement of binding affinity between AdoMet and the METTL3–METTL14 complex using ITC. The first data point was removed from the
analysis. The dissociation constant (Kd) of the wild type was approximately 2.0 mM. The AdoMet binding affinity of the methyltransferase domain complex was compara-
ble to wild type. METTL3 alone exhibited significantly reduced AdoMet binding activity.
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Future perspectives

These structures and biochemical data provide new insights
into the m6A mechanism in which METTL3 primarily serves
as a catalytic subunit and METTL14 functions as a stabilizer.
Together, the subunits provide an RNA binding platform.
However, the absence of an RNA-bound structure precludes
our understanding of how the writer complex specifically tar-
gets the RRACH sequence and of why only a small portion of
RRACH motifs contain an m6A modification.43 Therefore,
determination of the METTL3-METTL14 complex structure in
the presence of RNA substrate and/or including ZnF motifs is a
major goal. Some m6A modifications are relevant to cancer and
infectious diseases: METTL3 deletion leads to significantly
reduced cell invasion in cancer cells and HIV-1 virus infectivity
in T cells.10,44-46 Thus, on the basis of these structures, the
development of an inhibitor-specific target for m6A writers is
one of the next important tasks.
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