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Histone availability as a strategy to control gene expression

F�elix Prado, Silvia Jimeno-Gonz�alez, and Jos�e C. Reyes

Centro Andaluz de Biolog�ıa Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Cient�ıficas (CSIC), Seville, Spain

ARTICLE HISTORY
Received 8 April 2016
Revised 4 May 2016
Accepted 9 May 2016

ABSTRACT
Histone proteins are main structural components of the chromatin and major determinants of gene
regulation. Expression of canonical histone genes is strictly controlled during the cell cycle in order to
couple DNA replication with histone deposition. Indeed, reductions in the levels of canonical histones
or defects in chromatin assembly cause genetic instability. Early data from yeast demonstrated that
severe histone depletion also causes strong gene expression changes. We have recently reported that
a moderated depletion of canonical histones in human cells leads to an open chromatin
configuration, which in turn increases RNA polymerase II elongation rates and causes pre-mRNA
splicing defects. Interestingly, some of the observed defects accompany the scheduled histone
depletion that is associated with several senescence and aging processes. Thus, our comparison of
induced and naturally-occurring histone depletion processes suggests that a programmed reduction
of the level of canonical histones might be a strategy to control gene expression during specific
physiological processes.
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The dynamics of DNA during the cell cycle have long been
known to be tightly linked to its packaging into chromatin.
This association is manifested in two 2 ways: first, the pro-
cesses that deal with DNA, such as transcription, RNA proc-
essing, replication, DNA repair, and chromosome
segregation, have to overcome the physical restrains that his-
tones pose for proteins to bind DNA; and second, chromatin
dynamics per se provide an additional level of regulation for
those processes. Chromatin organization occurs first during
DNA replication and involves genetic and physical interac-
tions between chromatin assembly factors and replisome
components, to ensure a rapid and correct deposition of his-
tones behind the replication fork.1 Accordingly, canonical
histone synthesis is coupled to DNA replication and cell
cycle.2 Notably, an evolutionarily conserved feature from
yeast to humans is the synthesis of huge amounts of histo-
nes, which avoids a deficit in the histone supply during chro-
mosome duplication. Thirty years ago, Michael Grunstein
and colleagues provided the first explanation for this obser-
vation, showing with an elegant genetic approach in yeast
that histone depletion causes transcriptional defects and cell
cycle arrest.3,4 Since then, many different studies have
highlighted how deleterious a deficit in histone supply can
be for cell fitness. Interestingly, scheduled histone depletion
mechanisms seem to have also evolved to regulate replicative
senescence and aging, providing further support for the
importance of a strict regulation of histone synthesis. Here
we briefly discuss recent data that suggest that histone avail-
ability is a regulatory variable in the intersection between
DNA replication, transcription, pre-mRNA processing, and
genome integrity.

Histone depletion and genome integrity

Cell cycle arrest by histone depletion in yeast occurs in mitosis
and is associated with alterations in the structure of the centro-
meric chromatin.5 Recently, this arrest was shown to be medi-
ated by activation of the Aurora kinase–dependent branch of
the spindle assembly checkpoint (SAC), which detects prob-
lems of tension at the kinetochore. Indeed, histone depletion
also impairs chromatid decatenation. Interestingly, both phe-
notypes can be suppressed by a reduction in the activity of
topoisomerase II, condensin, or cohesin. These results establish
a not yet understood connection between histone deposition
and chromosome architecture.6

In vertebrates, studying the effects of histone depletion was
initially hampered by having to deal with the large number of
genes that encode for each histone subunit. This has now been
resolved by knocking down key regulators of histone mRNA
expression, such as the histone-specific mRNA 30-end process-
ing factors SLBP and FLASH or the transcription factor
HINFP. These studies revealed mitotic aberrations, including
aneuploidy and multipolar spindles, in response to histone
depletion.7 However, the major cell cycle arrest following these
knockdowns occurs in S phase,8-11 a phenotype also observed
in human cells defective for the chromatin assembly factor
CAF1.12 This S-phase delay is a consequence of the direct
effects that defective chromatin integrity—caused either by his-
tone depletion or the lack of chromatin assembly factors—have
on the stability of the advancing replication forks, with a conse-
quent accumulation of DNA damage, hyper-recombination,
and checkpoint activation.7,13-16 This genetic instability is
observed from yeast to humans and underscores the
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evolutionarily relevance of a rapid and correct deposition of
nucleosomes at the newly synthesized DNA for genome integ-
rity. Indeed, accumulation of DNA damage in human cells
depleted for the chromatin assembly factor ASF1 induces the
alternative lengthening of telomeres (ALT) pathway, which
accounts for telomere maintenance in approximately 10% of
human cancers.17 Moreover, certain types of malignant cancers
can result from uncoupling DNA synthesis and histone deposi-
tion. For example, histone reduction is induced by the human
T-cell leukemia/lymphotropic virus type 1 (HTLV-1) Tax pro-
tein in adult T-cell leukemia/lymphoma (ATLL).18

Histone depletion, transcription, and pre-mRNA
processing

Packaging DNA into nucleosomes hinders its accessibility for
the RNA polymerase II (RNAPII) at promoters and regulatory
elements,19,20 and nucleosomes act as barriers for elongating
RNAPII at gene bodies.21-25 Consistently, histone depletion
studies in yeast result in a genome-wide transcriptional de-
repression of hundreds of genes.26 More sensitive RNA-seq
analyses have recently reinforced the notion that nucleosomes
are major transcription repressors. Interestingly, mapping
nucleosome positioning in histone H3–depleted cells showed
that not all nucleosomes present similar reductions of occu-
pancy, with the most labile nucleosomes associated with pro-
moters.27 Nevertheless, nucleosomes should not only be seen as
passive repressors, as they also play active roles in transcription
activation, as reflected by the huge number of genes that are
repressed in response to histone depletion.26,27 Nucleosomes
act as dynamic scaffolds that determine the timing and order of
entry for structural and regulatory transcription factors.28 One
way in which nucleosomes perform this function is by their
position relative to the DNA sequence, which can determine
the ability of activators to synergise;29 consistently, histone
depletion causes the loss of nucleosome positioning and tran-
scriptional synergism.30 It has been also suggested that nucleo-
some-mediated RNAPII pausing and/or recruitment of splicing
factors can influence splicing, based in the fact that exons dis-
play higher nucleosome occupancy than surrounding
introns.31-35

Despite the huge number of studies that have addressed
the importance of chromatin integrity in different organ-
isms, a genome-wide analysis of the effects of histone deple-
tion on gene expression in human cells was missing until
now. We have recently addressed this by generating a stable
cell line that expresses an inducible shRNA against SLBP.36

Histone genes in vertebrates are the only genes whose
mRNAs are not polyadenylated; instead, their mRNAs form
a loop at the 30-end that binds SLBP, to promote proper
RNA termination, stability, and translation.2 While other
histone-depletion approaches relied on a dramatic block in
DNA synthesis and cell-cycle progression,7,10,13 we per-
formed a moderated silencing of SLBP that led to a subtle
reduction in the pool of available histones, so that the cell
cycle was only mildly affected. This was particularly impor-
tant for avoiding cell cycle– and DNA damage–mediated
transcriptional changes to the greatest extent possible.
Depletion of canonical histones results in a more open

chromatin conformation, characterized by a reduced his-
tone:DNA ratio and an increased level of the SLBP-inde-
pendent variant histone H3.3. This increase is probably due
to the fact that H3.3 can partially replace the canonical
H3.1 and H3.2 histones. H3.3 is normally enriched in tran-
scriptionally active genes and impairs higher-ordered chro-
matin folding, contributing to an open chromatin
configuration.37,38 Under these chromatin conditions, we
found that RNAPII transcription elongation rate increases,
consistent with the idea that histone depletion lowers the
nucleosomal barrier effect. We also observed that an
increased RNAPII elongation rate does not increase the
kinetics of co-transcriptional splicing, suggesting that splic-
ing is a rate-limiting step for gene expression. A similar
conclusion was recently reported from a study using a sin-
gle-molecule nascent RNA-seq strategy.39

Consistent with the subtle alterations in chromatin struc-
ture induced in our SLBP-depleted cell line, genome-wide
analysis showed a low number of misregulated transcripts;
however, widespread alterations in pre-mRNA splicing were
observed. The kinetic model for co-transcriptional splicing
proposes that a slow elongation rate facilitates the recogni-
tion of weak splice sites, promoting the inclusion of alterna-
tive exons. In contrast, a fast elongation rate would promote
skipping of variable exons.40,41 In line with this, we observed
that an increased elongation rate is associated with skipping
of the variable exons of the CD44 gene. Importantly, a slow
elongation mutant of RNAPII is able to rescue this defect,
indicating that the splicing defect induced by histone deple-
tion in CD44 is a direct consequence of the increased elonga-
tion rate. Higher inclusion of some cassette exons were also
found under conditions of histone depletion, in agreement
with the recent data suggesting that the classical kinetic
model can explain only part of the elongation-dependent
splicing defects.41,42 We also observed that highly expressed
genes display increased intron retention under conditions of
defective histone supply. We hypothesize that the chromatin
structure of highly expressed genes may be more severely
altered by histone depletion than that of lowly expressed
genes, due to a higher rate of histone exchange. As a conse-
quence, the RNAPII elongation rate might be further acceler-
ated, impairing recognition of splicing sites and hence
promoting intron retention.

Strikingly, intron retention was often observed for genes
encoding RNA processing and RNA-binding factors (36 and
our unpublished observations). Indeed, the expression of a sig-
nificant number of RNA processing genes was decreased in this
case, probably due to mRNA degradation by the nonsense-
mediated decay (NMD) pathway induced by the retained
intron.36 Intriguingly, work from the group of Benjamin J.
Blencowe has shown that RNA processing and RNA-binding
factors are often regulated by alternative splicing through
NMD.43,44 Taken together, these results suggest the existence of
a fine-tuned regulatory mechanism that impairs expression of
the RNA processing machinery under conditions of histone
stress.

Interestingly, inclusion of non-coding second exons that
contain a polyadenylation site in some histone mRNAs was
observed upon SLBP depletion, suggesting that cells contain a
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set of histone genes that can respond to SLBP depletion to
maintain a certain level of histones.11,36

Histone depletion, senescence, and aging

Despite the wide range of deleterious consequences of a defec-
tive histone supply, scheduled histone depletion can also be a
regulatory mechanism to control processes such as DNA repair,
transcription, senescence, and aging. For instance, eukaryotic
cells have evolved multiple mechanisms to reduce the accumu-
lation of free histones that result from fork stalling by replica-
tive stress, which could interfere with DNA metabolism.45

Likewise, histone depletion is actively promoted in response to
DNA breaks in human fibroblasts.46 The biological meaning of
this reduction is unknown; however, physical interactions
between the recombination proteins Rad52 and Rad51 with
histones seem to modulate their accessibility to DNA double-
strand breaks in yeast, suggesting that DNA repair by homolo-
gous recombination might be regulated by the histone levels.47

Histone depletion is associated with the process of cellular
senescence that is triggered in response to telomere shortening.
In yeast, the study of this mechanism has revealed for the first
time a transcriptional regulatory circuit triggered by histone
depletion.48 Telomere shortening causes the loss of the telo-
mere binding sites and the subsequent relocation of the protein
Rap1 (repressor activator protein 1) from telomeres to the pro-
moters of hundreds of senescence-specific genes, which con-
tributes to their activation. Notably, Rap1 also binds to and
represses histone genes, and this facilitates the activation of the
senescence program by reducing nucleosome occupancy at the
Rap1-targeted promoters. Consistently, overexpression of core
histones delays senescence. More importantly, this process
depends on the checkpoint protein Mec1, demonstrating that
histone depletion is a regulated mechanism to control the tran-
scriptional program of senescence.48 A decreased level of
canonical histones has also been observed during replicative
senescence46 and oncogene-induced senescence in mammals.49

In late passage human fibroblasts, telomere shortening leads to
reduced SLBP levels, a phenotype that might explain the reduc-
tion in the amount of canonical histones. Interestingly, genes
encoding the replication-associated chromatin assembly factors
CAF1 and ASF1 are also downregulated.46 Depletion of histo-
nes and chromatin assembly factors lead to a loss of nucleo-
some occupancy and a redistribution of epigenetic marks at the
telomeric chromatin. These structural changes accompany and
seem to reinforce the activation of the DNA damage response
that eventually causes senescence. Importantly, expression of
the wild-type telomerase in late passage fibroblasts restores not
only telomere lengthening but also the levels of SLBP, CAF1,
ASF1, and histones.46

Consistent with a connection between senescence and his-
tone depletion, senescent cells display some of the transcrip-
tional features observed after inducing histone depletion in our
SLBP-depleted cells.36 Thus, a characteristic of senescent chro-
matin is the accumulation of the histone variant H3.3 by the
deposition activity of the replication-independent chaperone
HIRA.50,51 In addition, replicative and oncogene-induced
senescent fibroblasts present increased inclusion of cryptic non-
coding second exons with polyadenylation signals in some

mature histone mRNAs.50 Although its function is not yet clear,
this mechanism might contribute to maintaining a certain level
of expression of canonical histones in senescent cells.

Histone reduction is also a hallmark of replicative aging in
yeast. This type of aging, which reproduces some of the aging
features in mammals, is independent of telomere shortening
and determines the number of times a mother cell can divide
before dying.52 Replicative aging in yeast is associated with a
significant decrease in the amount of histones, and importantly,
life span can be shortened and extended by decreasing or
increasing, respectively, histone expression.53 In addition,
nucleosome loss during yeast aging causes transcriptional upre-
gulation and genetic instability,54 as observed after inducing
histone depletion in growing cells.14,26 A relationship between
histones levels and aging has been also observed in mammals.
In quiescent stem cells, chronological aging can be studied in
the absence of replicative aging due to the extremely low turn-
over of these cells. Interestingly, quiescent skeletal muscle stem
cells isolated from old mice also show low histone levels as
compared to those isolated from younger animals.55

Recent studies have shown strong alterations in alternative
splicing linked to aging56,57 and age-related disorders, such as
Alzheimer’s.58 Notably, these aging-related splicing defects
affect a group of genes that are significantly enriched in RNA
processing functions,56,57 as we have also observed after induc-
ing histone depletion.36 Moreover, large-scale, human popula-
tion-based studies have reported a robust negative correlation
between aging and levels of expression of mRNA processing
factors.59,60 Finally, accumulation of intron retention in
response to histone depletion in human cell lines36 phenocopies
the most abundant age-associated splicing changes detected in
human brain.57 Therefore, our data suggest that cells depleted
of histones by SLBP knockdown recapitulate, at least partially,
the splicing defects observed in aged cells and uncover an addi-
tional connection between histone depletion, RNA processing,
and aging.

Concluding remarks and future perspectives

Altogether, these studies suggest that replicative and chrono-
logic aging, as well as senescence processes in eukaryotes, are
associated with a reduction in the supply of histones, which
likely causes a deterioration of chromatin structures and signal-
ing that in turn leads to transcriptional changes and DNA dam-
age accumulation.61 Our data indicate that human cells
depleted of canonical histones show transcription and splicing
changes that are often observed in aged tissues. Therefore, our
results suggest that changes in gene expression associated to
aging and senescence might be caused by histone depletion. It
is tempting to speculate that histone availability can be also
used in other cellular physiological or pathological processes as
a regulatory mechanism (Fig. 1). For example, it was reported
that histone mRNA levels increase gradually through early
zygotic cell divisions,62 and in differentiating embryonic stem
cells63 and decrease in certain type of cancer.18 Whether control
of the general level of histones is a regulatory system for regu-
lating gene expression during development, differentiation or
dedifferentiation processes is an open question that requires
further investigation.
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