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MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through
PI3K/AKT/mTOR signaling pathway
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ABSTRACT
Skeletal muscle is the dominant executant in locomotion and regulator in energy metabolism. Embryonic
myogenesis and postnatal muscle growth are controlled by a cascade of transcription factors and
epigenetic regulatory mechanisms. MicroRNAs (miRNAs), a family of non-coding RNA of 22 nucleotides in
length, post-transcriptionally regulates expression of mRNA by pairing the seed sequence to 30 UTR of
target mRNA. Increasing evidence has demonstrated that miRNAs are important regulators in diverse
myogenic processes. The profiling of miRNA expression revealed that miR-432 is more enriched in the
longissimus dorsi of 35-day-old piglets than that of adult pigs. Our gain of function study showed that miR-
432 can negatively regulate both myoblast proliferation and differentiation. Mechanically, we found that
miR-432 is able to down-regulate E2F transcription factor 3 (E2F3) to inactivate the expression of cell cycle
and myogenic genes. We also identified that phosphatidylinositol 3-kinase regulatory subunit (P55PIK) is
another target gene of miR-432 in muscle cells. downregulation of P55PIK by miR-432 leads to inhibition
of P55PIK-mediated PI3K/AKT/mTOR signaling pathway during differentiation. The blocking effect of miR-
432 on this pathway can be rescued by insulin treatment. Taken together, our findings identified
microRNA-432 as a potent inhibitor of myogenesis which functions by targeting E2F3 and P55PIK in
muscle cells.
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Introduction

Skeletal muscle is a major organ in maintaining homgeostasis1-3

During the formation of skeletal muscle, muscle progenitors
expand, migrate, and differentiate into myoblasts, which express
muscle lineage-specific genes and eventually fuse to generate
multi-nucleated myotubes, The maturation of myotubes finally
give rise to contractive skeletal myofibers.4 This clearly staged
process is tightly controlled by a group of myogenic regulatory
factors (MRFs), including myogenic factor 5 (Myf5), myoblast
determination protein (MyoD), musclespecific regulatory factor
4 (MRF4; also known as MYF6) and myogenin (MyoG).5-7

Structural and functional normality of skeletal muscles consti-
tute the precondition for a healthy life,8,9 and this accentuates
the importance of a better understanding on skeletal muscle
developmental processes and the related molecular mechanisms.

MiRNAs are a class of non-coding RNAs which regulate the
stability or translational capacity of target genes at post-tran-
scriptional level by targeting to the 30 UTR of mRNAs.10 It’s
previously reported that skeletal muscle-specific knockout of
Dicer, a key enzyme for pre-miRNA maturation, resultes in
reduced muscle mass and abnormal skeletal muscle formation
in mice, which suggests that miRNAs have a critical functions
in the development of skeletal muscle.11 Some miRNAs present
in skeletal muscle are actually muscle-specific, which include

miR-1, miR-133, and miR-206,12-15 and skeletal muscle is also
enriched with many ubiquitously expressed miRNAs, such as
miR-139-5p and miR-2916,17 etc. Both muscle-specific and
ubiquitous miRNAs are identified with critical roles in myogen-
esis. However, the functionally explored miRNAs hitherto only
account for a small group compared to the large number of
miRNAs expressed during myogenesis. Further studies are
required to gain a comprehensive view on how miRNA net-
work regulates myogenesis.

MiR-432 is identified in our previous high-throughput
sequencing. We observed dramatic decrease of miR-432 level in
longissimus dorsi after pigs reach adulthood. Previous studies on
miR-432 have been focused on its role in tumorigenesis (eg.
neuroblastoma and schizophrenia).18-20 Recent, studies showed
that downregulation of miR-432 is also involved in Wnt/b-cate-
nin signaling activation to promote human hepatocellular
carcinoma cell proliferation.19 However, to our knowledge, there
is no reported functions on miR-432 during myogenesis. In this
paper, we demonstrated that miR-432 can inhibit myoblast
proliferation by down-regulating E2F3 and P55PIK expression
levels while it also suppresses myogenic differentiation by
blocking P55PIK-mediated PI3K/Akt/mTOR signaling pathway.

2F3, a family member of E2F transcriptional factors,
plays a crucial role in controlling of cell cycle and act as a
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tumor suppressor proteins.21 Importantly, E2F3 can pro-
mote myogenic differentiation.22 PI3-kinase is one of the
primary signaling pathways leading to skeletal muscle dif-
ferentiation; inhibition of PI3K blocks the differentiation
program of rat and mouse skeletal muscle cell lines.23 PI3K
was divided into four different classes: class I, class II, class
III, and class IV. class I PI3Ks are heterodimers with a reg-
ulatory subunit and a catalytic subunit.24 P55PIK, playing
an important role in PI3K/Akt-mediated biological pro-
cesses,25,26 could interact with cell cycle modulators such as
retinoblastoma protein (Rb)27 to promote cell cycle progres-
sion in leukemia cells28 and other cancer cells.29 During
apoptosis, P55PIK undergoes cleavage by Caspase 6 (C6),
and degenerated P55PIK will be dislocated in cells and
cause cell cycle defects.30 As a downstream effector and reg-
ulator of Akt,31,32 mTOR molecule regulates mRNA transla-
tion, metabolism and autophagy to affect cell growth.
Recently, significant advances have been made in under-
standing mTOR controlling protein synthesis using pharma-
cological and genetic manipulation in cellular and rodent
models.33,34 Moreover, insulin was known as the major hor-
mone controlling critical energy metabolism. Insulin acti-
vated the insulin receptor tyrosine kinase (IR), which
phosphorylated and recruited different substrate adap-
tor.35,36 Tyrosine phosphorylated IRS displayed binding sites
for numerous signaling partners. Among them, PI3Ks
played a major role in insulin functions, mainly via the acti-
vation of Akt/PKB cascade.37 However, regulation of
P55PIK by miRNA and how miR-432 responded to insulin
stimuli to regulate myogenesis are still poorly known.

Here, we provide compelling evidence suggesting a negative
role of miR-432 in both myoblast proliferation and differentia-
tion. The target genes of miR-432 we identified, E3F3 and
P55PIK, have well-established functions in cell proliferation and
myogenesis, which support a model where miR-432 regulates
myogenesis through inhibiting E2F3 and PI3K pathway.

Results

miR-432 acts as a candidate regulator in myogenesis

To identify the novel miRNA regulation myoblasts myogenesis,
we performed miRNA high throughput sequencing using long-
issimus dorsi of Rongchang pigs on 35-day-old and 287-day-
old (Fig. 1A, Table 1). Rongchang pig, one of Chinese indige-
nous pig breeds, is famous at its good meat quality. Interest-
ingly, miR-432 showed 7-fold expression change in 287-day
old adult pig than 35-day old weaned piglet among the highly
conserved miRNAs (Fig. 1B). Indeed, the qPCR result con-
firmed expression of miR-432-5p with a significant difference
between weaned piglet and adult pig (Fig. 1C). Furthermore,
Sequence alignment of mature miR-432-5p among multiple
species, including mice, pig, human, macaca mulatta, pan trog-
lodytes and ovis aries, showed that miR-432 was highly con-
served in seed sequence (Fig. 1D), which indicated that the role
of miR-432 on mice was probably same as that in pig. Hence,
miR-432 was screened as a novel potential regulator in
myogenesis.

Expression profiles of miR-432 during myogenesis

To address the function of mouse miR-432, we firstly examined
the expression pattern of miR-432 by qPCR analysis. MiR-432
was enriched in skeletal muscle compared with heart, liver,
brain, lung and white adipose tissue (Fig. 2A). Further, we
found a higher expression level in 2-week old mice than 2-
month, which shown a same trend with pig (Fig. 2B). In addi-
tion, a significant upregulation was observed in early myoblast
proliferation at 24 h (Fig. 2C). Interestingly, the level of miR-
432 reached the highest level after myogenic differentiation for
4 days (Fig. 2D). These results indicated that miR-432 probably
played a vital role in myogenesis.

miR-432 inhibits myoblast proliferation

To determine the role of miR-432 in cell proliferation,
C2C12 cells were transfected with miR-432 mimics or nega-
tive control (NC) at 50% density. As showed in Fig. 3A, the
overexpression efficiency of miR-432 mimics was high
enough to do subsequent experiment (Fig. 3A). Overexpres-
sion of miR-432 suppressed cell cycle-related genes (cyclin
E, cdk2 and PCNA) expression, both in level of mRNA
(Fig. 3B) and protein (Fig. 3C). Next, cell cycle analysis per-
formed by flow cytometer exhibited that overexpression of
miR-432 reduced the percentage of S-phage cells (P < 0.01;
Fig. 3D), indicating that miR-432 inhibited proliferation
processes by arresting myoblasts at G1-phage (Fig. 3D).
Meanwhile, EdU assay showed that miR-432 mimics-treated
group had less Edu labeled cells than NC (Fig. 3F, G).
Additionally, miR-432 mimics notably decreased absorptiv-
ity at 490nm by cell counting (CCK8) assay, indicating that
cell number was reduced in mimics-treated group compared
with NC (Fig. 3H). Collectively, these data demonstrated
that miR-432 mimics inhibited myoblast proliferation.

miR-432 inhibitor promoted myoblast proliferation

To further confirm the function of miR-432 on myoblast prolif-
eration, we transfected myoblasts with miR-432 inhibitor. The
results showed that miR-432 inhibitor increased the levels of
cell cycle maker genes (cyclin E, PCNA and P27; Fig. 4A–C).
Flow cytometry assay and EdU staining assay revealed that
inhibition of miR-432 promoted S-phage cells markedly
(Fig. 4D, E) and EdU labeled cells were more in miR-432 inhib-
itor treated cells than NC treated cells (Fig. 4F, G). Moreover,
total number of cells increased by CCK8 assay (Fig. 4H). Col-
lectively, myoblast proliferation was induced by downregulat-
ing cell cycle genes expression and decreasing DNA replication
when silenced miR-432 expression.

miR-432 inhibits myoblast differentiation

To explore the function of miR-432 on myogenic differenti-
ation, myoblasts were transfected with NC or miR-432
mimics at 70% density followed by changing culture
medium to induce differentiation when it reached conflu-
ence. The results showed that highly overexpression of
miR-432 (Fig. 5A) dramatically suppressed mRNA
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expression of myogenic genes, including MyoG (Fig. 5B)
and MyHC (Fig. 5C), which was consistent with protein
level (Fig. 5D, E). Furthermore, immunofluorescent assay
revealed that myoblasts treated with miR-432 mimics had

fewer myotube (Fig. 5F) and lower fusion rate relative to
cells that were transfected with Negative Control (Fig. 5G).
Together, overexpression of miR-432 inhibited myoblast dif-
ferentiation by suppressed myogenic genes expression.

Figure 1. MiR-432 is a candidate regulator in myogenesis. (A) The partial microRNA sequencing results of longissimus dorsi from 35-day-old weaned Rongchang piglets
and 287-day-old adult Rongchang pigs, respectively. Different colors represented the relative expression. (B) The fold change of miRNAs in 1A. (C) Relative expression of
miR-432-5p in 35-day-old piglets and 287-day-old pigs by real time quantitative PCR (RT qPCR). Each treatment was carried out in triplicate and repeated 3 times. Data
were representative of means § SD. (D) Comparation of miR-432 seed sequence from mice, pig, human, macaca mulatta, pan troglodytes and ovis aries.
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E2F3 and P55PIK are direct targets of miR-432

To reveal underlying mechanism of miR-432 on proliferation
and myogenic differentiation, we predicted the target genes of
miR-432 by TargetScan,38 miRBase,39 and RNAhybrid40 online
software and found that E2F3 and P55PIK were the candidate
target genes (Fig. 6A). The levels of miR-432 and E2F3, P55PIK
displayed inconsistent trends during proliferating cells
(Figs. 2C, 6B, C), but it showed adverse trends during myogenic
differentiation (Figs. 2D, 6D, E). Also, we observed that mRNA
expression of E2F3 (Fig. 6F) and P55PIK (Fig. 6G) reduced in a
concentration-dependent manner, implying that miR-432 reg-
ulated E2F3 and P55PIK expression. To demonstrate whether
miR-432 directly targets E2F3 and P55PIK, we cloned E2F3
and P55PIK 30 UTRs of wild type (WT) and mutation at bind-
ing site into the Renilla luciferase coding sequence of psi-
CHECK-2 vector (Fig. 6A). As we expected, the relative
luciferase activities of the psiCHECK-2-E2F3-30 UTR reporter
(P < 0.05) and psiCHECK-2-P55PIK-30 UTR reporter (P <

0.05) were significantly inhibited when responded to miR-432
mimics. However, this change was not observed in mutated
reporter vector (Fig. 6H, I). Therefore, E2F3 and P55PIK were
direct target genes of miR-432.

MiR-432 regulates myogenic differentiation through the
PI3K/AKT/mTOR signaling pathway

Given P55PIK being a regulatory subunit of PI3K, we
speculated that miR-432 may control myogenesis through

Table 1. The normalized expression of miRNAs from longissimus dorsi of D35
Rongchang piglets and D287 pigs were listed.

miR-name D35-std D287-std log2 RLA/RLW p-value

ssc-miR-10a-5p 163.5404 80.3723 ¡1.0248768 1.0752E-144
ssc-miR-10b 172.7317 215.3824 0.31836749 8.52574E-25
ssc-miR-125a 103.7969 57.0888 ¡0.86248371 9.54414E-70
ssc-miR-125b 141.2585 73.6534 ¡0.93951365 1.2563E-108
ssc-miR-127 71.488 10.7755 ¡2.72994628 5.1186E-251
ssc-miR-130b 10.6304 2.8735 ¡1.88731493 3.37479E-25
ssc-miR-133a-5p 77.662 64.1879 ¡0.2749075 7.41258E-08
ssc-miR-143-3p 160.848 122.1219 ¡0.39737606 5.83134E-28
ssc-miR-145-5p 65.8711 26.8753 ¡1.29336478 1.70318E-85
ssc-miR-152 437.2838 167.9704 ¡1.38036288 0
ssc-miR-16 69.5383 70.7377 0.02467151 0.631443806
ssc-miR-21 210.1005 161.7164 ¡0.3776136 6.86157E-33
ssc-miR-23a 97.9943 47.074 ¡1.05776739 4.83894E-92
ssc-miR-24-3p 191.7178 131.2916 ¡0.54620967 7.0078E-58
ssc-miR-27b-3p 99.9904 76.1043 ¡0.39381162 1.03171E-17
ssc-miR-296-3p 55.8442 15.804 ¡1.8211177 2.4097E-119
ssc-miR-29c 18.0577 95.3311 2.40033279 6.6563E-282
ssc-miR-30a-5p 189.304 142.7009 ¡0.40771046 3.98374E-34
ssc-miR-30e-5p 77.3834 72.1322 ¡0.10138069 0.04124945
ssc-miR-323 71.3952 6.6766 ¡3.41864157 1.74916e-313
ssc-miR-340 55.6585 133.2354 1.25930352 6.7342E-162
ssc-miR-365-3p 13.9727 30.6784 1.13461242 4.8597E-33
ssc-miR-382 52.4091 5.8314 ¡3.16790314 6.6392E-215
ssc-miR-424-5p 43.0321 10.9867 ¡1.96965513 1.4251E-102
ssc-miR-432-5p 328.752 34.3124 ¡3.26019773 0
ssc-miR-451 78.1262 40.1439 ¡0.96062566 3.72505E-63
ssc-miR-486 289.9442 387.5785 0.41871326 4.66669E-71
ssc-miR-503 192.3213 53.0322 ¡1.85857805 0
ssc-miR-885-3p 29.2915 64.1879 1.13181929 5.32121E-67
ssc-miR-98 88.0138 74.7521 ¡0.23561564 7.70423E-07
ssc-miR-99a 97.298 45.1724 ¡1.10696858 2.73637E-98

Figure 2. The profiles of miR-432 in mice different tissues and during C2C12 cell myogenesis. (A) The expression level of miR-432 in different tissues of mice. (B) The
expression profile of miR-432 in skeletal muscle of 2-week-old and 8-week-old mice. (C) RT qPCR was performed to detect the expression of miR-432 in proliferating myo-
blasts. (D) RT qPCR analysis of miR-432 expression after inducing myoblast differentiation. U6 small nuclear RNA was used as an internal control. All results were represen-
tative of means§ SD of three independent experiments.
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PI3K-mediated signaling pathway. As we expected, the
protein levels of P55PIK and E2F3 were downregulated in
miR-432 mimics-treated myoblasts during myogenesis
(Fig. 7A–D). Moreover, we found that the ratios of p-AKT/

AKT and p-mTOR/mTOR declined during myogenic differ-
entiation (Fig. S3A, S3B), but not proliferation stage
(Fig. 7E, F), indicating that miR-432 regulated myogenesis
via blocking Akt/mTOR signaling pathway. Since insulin

Figure 3. MiR-432 inhibited myoblast proliferation. MiR-432 mimics or negative control (NC) were transfected into cells at 50% density at 50nM and cells were harvested
on 24 h after transfection. (A) The overexpression efficiency of miR-432 after transfecting miR-432 mimics compared with negative control (NC). (B) Real-time qPCR was
used to detect cell cycle genes, Cyclin E, cdk2 and PCNA after 24 h transfection. (C) Western blot analysis of cell cycle genes. (D) Cell cycle analysis were performed by flow
cytometer after transfection for 24 h. (E) The statistics results of cell cycle analysis. (F) EdU assay was carried out after transfection for 24 h. Cells during DNA replication
were stained by EdU (red) and cell nuclei were stained with Hoechst (blue). (G) The percentage of EdU positive cells / Hoechst positive cells was quantified. (H) Cell count
was measured by cell count kit 8 (CCK8), results represented absorbance value at 490 nm after incubation with 10% CCK8 solution for 4 h. Data were representative of
means§ SD of three independent experiments.�, P < 0.05;��, P < 0.01.
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was classical upstream regulator of PI3K/Akt signaling, we
explored how miR-432 responded to insulin. The inhibitory
effect of miR-432 on myogenic differentiation was attenu-
ated and even eliminated when treated with 10 nM and

100 nM insulin, respectively (Fig. 7G–I). Additionally, the
level of miR-432 was not changed when treated with
100nM insulin (Fig. S2), manifesting that miR-432 was not
as a downstream regulator of insulin. Taken together, our

Figure 4. MiR-432 inhibitor promoted proliferation of myoblasts. (A) RT qPCR analysis of cell cycle related genes after transfection for 24h. (B) Western blot analysis of
Cyclin D1, Cyclin E, P27. (C) Quantification of Western blot analysis of Cyclin D1, Cyclin E, P27. (D) Flow cytometer was used to analyze cell cycle. (E) Statistics of cells number
in different stages. (F) Edu staining of myoblasts after transfection for 24 h. Cells during DNA replication were stained by EdU (red) and cell nuclei were stained with
Hoechst (blue). (G) Quantification of the percentage of EdU positive cells/total cells. (H) Cell cycle kit 8 was used to estimate total cell number and the data displayed the
absorbtivity at 490nm. Data were shown by mean § SD of three independent experiments. �, P < 0.05;��, P < 0.01.
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findings suggested that miR-432 was a negative regulator by
targeting E2F3 and P55PIK via PI3K/AKT/mTOR signaling
pathway to inhibit myogenic differentiation whereas it sup-
pressed myoblast proliferation independently of PI3K/Akt/
mTOR signaling pathway (Fig. 8).

Discussion

By profiling miRNA expression in porcine longissimus dorsi,
we revealed 7-fold higher expression of miR-432 in weaned pig-
lets compared to adult pigs and thus seek to explore the role
and regulatory mechanism of miR-432. First, we evaluated
miR-432 expression in 9 different tissue types and confirmed
that it is highly expressed in skeletal muscle. Consistent with
the observations in pigs, miR-432 also shows higher expression
in the muscle of 2-week old mice compared to that of 2-month
old mice, implying that miR-432 may regulate myogenesis. In
addition, the ‘seed sequence’ of mouse miR-432-5p is conserved
between mice and porcine, indicating that miR-432 may have
important functions in regulating gene expression that is evolu-
tionarily conservative.

We showed that miR-432 mimic transfection caused prolif-
erating myoblasts to be markedly arrested at G1 phase with
reduced number of S-phase cells. The mRNA and protein levels

of E2F3 and P55PIK both declined after with miR-432 mimic
treatment, although the expression patterns of these two target
genes showed weak inverse-correlation with that of miR-432
during myoblast proliferation Dual-Luciferase reporter assay
also demonstrated that miR-432 can directly target E2F3 and
P55PIK. E2F3 had been well characterized with regard to mam-
malian cell growth.41 The downstream target genes of E2F3
participate in the initiation of DNA replication, thereby impart-
ing a potent control of the entry into S-phase.42 In addition,
some miRNAs have been reported to control cell cycle process
by targeting E2F3. MiR-141 interacts with long non-coding
RNA MEG3 and down-regulates E2F3 expression to inhibit
gastric cancer proliferation.43 MiR-200 targets Sox2 and E2F3
while directly regulating miR-200 to form a feed-back circle to
controls neural progenitor cell-cycle exit and differentiation.44

In our study, miR-432 is also shown to inhibit proliferation by
targeting E2F3. P55PIK, a regulatory subunit of PI3K, was
identified to promote cell growth and cell proliferation45,46 and
interacted with proliferation cell nuclear antigen (PCNA)25 to
stimulate DNA synthesis. Interestingly, we observed that the
expression of P55PIK and PCNA declined both in mRNA level
and protein level following miR-432 forced expression, imply-
ing that miR-432 may also regulate PCNA by unknown mecha-
nisms. Moreover, we also used miR-432 inhibitor to further

Figure 5. MiR-432 suppressed myoblast differentiation. MiR-432 mimics or negative control (NC) were transfected into cells at 70% density at 50nM. The total RNA on day
0, 2, 4 for RT qPCR and protein on day 4 for western blotting analysis. (A) The overexpression efficiency of miR-432 after transfecting miR-432 mimics compared with neg-
ative control (NC). (B, C) Real-time qPCR was used to detect cell myogenic genes, MyoG, MyHC (MYH1) after inducing. (D) Immunofluorescence of muscle myosin heavy
chain (MyHC) in C2C12 cells on fourth day of differentiation. (E) The fusion index was counted by MyHC-positive cells to total nuclei (Hoechst-positive cells). (F) Western
blot analysis of myogenic genes on fourth day of differentiation. (G) The quantify results of protein level. Data were representative of means § SD of three independent
experiments. �, P < 0.05; ��, P < 0.01.
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Figure 6. MiR-432 directly targets E2F3 and P55PIK. (A) The construction of the luciferase (Luc) expression vector fused to the 30 UTR and predicted target sites between
miR-432 and mouse E2F3 30 UTR or P55PIK 30 UTR. (B and C) The expression of E2F3 mRNA (B) and P55PIK mRNA (C) during myoblast proliferation. (D and E) The expres-
sion of E2F3 mRNA (D) and P55PIK mRNA (E) during C2C12 myoblasts differentiation. (F and G) The mRNA expression of E2F3 (F), P55PIK (G) when treated with different
concentration of mimics. a, b, c, d: significant difference among group treated with NC, 25 nM, 50 nM and 100 nM mimics. (P < 0.05). (H and I) The results of Dual lucifer-
ase reporter assay of E2F3 (H), P55PIK (I). Predicted target sites between miR-432 and E2F3 30UTR or P55PIK 30UTR. psi-CHECKTM¡2 Vectors, containing the E2F3 30UTR or
the mutated E2F3 30UTR were transfected into HEK293 cells either with NC or miR-432 mimics. Renilla luciferase activity was normalized to firefly luciferase. Each treat-
ment was carried out in triplicate and repeated 3 times. Data were representative of means § SD of three independent experiments. �, P < 0.05;��, P < 0.01.
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confirm the effect of miR-432 on myoblast proliferation. After
miR-432 inhibitor treatment, target genes E2F3 and P55PIK
were upregulated significantly and myoblast proliferation was
improved. Consistent with our data, miR-432 has been demon-
strated to suppress cell growth in several types of cancers: ovar-
ian cancer, cervical cancer, hepatocellular carcinoma and
pituitary GH adenomas.19,47,48 These studies, altogether point
to an ubiquitous role of miR-432 in regulating cell proliferation.

MyoG is a master transcription factor for initiating terminal
differentiation of myoblasts,49,50 and MyHC is also a marker
gene for evaluating myoblast differentiation51 In our study,
myoblast differentiation and fusing to form myotube were sup-
pressed via miR-432 overexpression, manifested by the down-
regulation of MyoG and MyHC. Transgenic mice that express a
constitutively active Akt, specifically in skeletal muscle, showed
an increase in muscle mass owing to an increase in muscle fiber

Figure 7. MiR-432 blocked myogenesis through PI3K/AKT signaling pathway. (A) Western blot analysis of protein change of E2F3 and P55PIK during proliferation. (B)
Quantification of E2F3 and P55PIK protein expression in proliferating cells. (C) Protein changes of E2F3 and P55PIK during myoblast differentiation. (D) Quantification of
E2F3 and P55PIK protein expression in differentiating cells. (E) Western blot analysis of signal molecules of PI3K/Akt/mTOR pathway during proliferation. (F) Ratios of p-
Akt/t-Akt and p-mTOR/t-mTOR in proliferating cells. (G) Protein level of signal molecules in PI3K/Akt/mTOR pathway. After transfection with NC or miR-432 mimics, myo-
blasts were induced by myogenic differentiation medium for 3 days followed by incubating with control, 10nM insulin or 100nM insulin respectively for 24 h. Total protein
was collected for western blot analysis. (H) The ratios of p-Akt/t-Akt and p-mTOR/t-mTOR protein changes in 7G. (I) Quantification of P55PIK, MyoG, and MyHC protein
changes in 7G. Data were shown by mean § SD of three independent experiments. �, P < 0.05;��, P < 0.01.

RNA BIOLOGY 355



size, which suggested that PI3K/Akt/mTOR signaling pathway
involved in myogenic progression.52,53 Moreover, miR-21 tar-
gets TGF-b to regulate porcine skeletal muscle development
through PI3K/Akt/mTOR signaling.54 MiR-133 in myogenesis
also functions through targeting insulin-like growth factor-1
receptor (IGF-1R) to down-regulate phosphorylation of Akt.55

Given the fact that PI3K/Akt/mTOR pathway promotes myo-
blast differentiation and P55PIK is a participant of this path-
way, we reason that during terminal differentiation, miR-432
may still use P55PIK as a target gene and exert inhibitory
effects on myoblast differentiation through this pathway.
P55PIK acts as a regulatory subunit gamma of type IA phos-
phatidylinositol 3-kinase (PI3K) and can integrate with the
110-kDa catalytic subunit of PI3K to form stable heterodimer
and activate downstream Akt signaling pathways. Actually, we
found miR-432 is able to down-regulate the ratio of p-Akt/t-
Akt and p-mTOR/t-mTOR via targeting P55PIK. We also
found that insulin treatment could reverse the inhibitory effects
of miR-432 on myoblast differentiation. Insulin is a potent nat-
ural stimulator of PI3K/Akt/mTOR pathway. In this experi-
ment, the expression level of miR-432 was not affected by
insulin, and this indicates a direct regulation on PI3K/Akt/
mTOR pathway by miR-432, probably through targeting
P55PIK. It is worthy to note that in our study, the ratio of p-
Akt/t-Akt and p-mTOR/t-mTOR remained unchanged in pro-
liferating cells after forced miR-432 expression, which is in con-
trast to the observation in differentiated cells. The reason why
miR-432 inhibits PI3K/Akt/mTOR signaling pathway during
differentiation but not in myoblast proliferation is still unclear,
although miR-432 targets P55PIK in both conditions.

It was point out that we found 19 novel miRNAs by miRNA
sequencing analysis. These novel miRNAs will be further
explored in skeletal muscle growth and development in the
future. Moreover, effect and regulatory mechanism of miR-432

need be also confirmed in porcine myoblast system and satellite
cells.

In summary, we identified that miR-432 can target E2F3 and
P55PIK in myoblasts. In proliferating condition, miR-432 can
regulate cell cycle through repressing E2F3 and P55PIK. IN-ter-
minal differentiation, miR-432 is able to block PI3K/Akt/
mTOR signaling pathway, probably through down-regulating
P55PIK. Although miR-432 also targets P55PIK in proliferating
myoblasts, it seems PI3K/Akt/mTOR pathway is not function-
ing downstream of miR-432/P55PIK in proliferation condition.
Taken together, our findings indicate that miR-432 is potent
negative regulator of myoblast proliferation and differentiation
through multiple target genes. A better understanding of miR-
432 in the context myogenesis benefits both the controlling of
meat quality in animal husbandry industry and human medical
research.

Materials and methods

Preparation of RNA sequencing samples

Three 35-day-old weaning Rongchang piglets and three 287-
day-old adult Rongchang pigs were used in this study. They
were housed in the same circumstances, respectively. In prepa-
ration of sequencing, longissimus dorsi tissues, located between
the third and fourth ribs to last, were taken from them. All pig
experiments were carried out in accordance with the protocol
approved by the Animal Ethics Committee of Northwest A&F
University and the experimental protocol was performed in
accordance with applicable guidelines and regulations. Samples
were quick-freezed in liquid nitrogen immediately until RNA
extraction. Total RNA was extracted using Trizol reagent (Invi-
trogen. Carlsbad, CA) according to the manufacturer’s protocol

Figure 8. A model depicting role of miR-432 in regulating myogenesis. In proliferating cells (left), suppression of E2F3 mRNA by miR-432 resulted in transcription factor
E2F3 decreasing in nucleus to dampen transcription of cell cycle genes and finally caused arrest in G1-phage. In differentiating cells (right), on the one hand, suppression
of E2F3 by miR-432 inhibited transcription of MyoG to restrain myogenic differentiation; on the other hand, miR-432 contributed to phosphorylation of its downstream
Akt and mTOR being suffocated to block myogenesis by targeted P55PIK.
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and then pooled for Solexa sequencing. Before sequencing the
RNA quality was determined in BGI, Shenzhen, China.

Cell culture

Mouse C2C12 cells (ATCC, Rockefeller, New York, NY, USA)
and HEK293T (Human embryonic kidney 293T) cells were cul-
tured in DMEM growth medium (GM) composed of high glu-
cose Dulbecco’s modified Eagle’s medium DMEM with 10%
fetal bovine serum (FBS, Gibco) and 100 IU/ml penicillin–
streptomycin at 5% CO2 and 37 �C. Myoblasts were induced
with differentiation medium (DM, DMEM supplemented with
2% horse serum) when cells reached at 90% density. Cells were
collected at different time points. Culture medium was changed
every other day.

Animals

The C57BL/6 male mice were purchased from the Fourth Mili-
tary Medical University Animal Center (Xi’an, China). The tis-
sues were taken from 2-week, 8-week old mice. The use of
animals was in accordance with the recommendations of the
Guide for the Care and Use of Laboratory Animals of China.

Transfection of miRNA mimic or inhibitor

Myoblasts were seeded in 12-well or 6-well plates, and miR-432
mimics or negative control (NC) (Ribobio, China) were trans-
fected into cells at 50% density in 50nM using X-tremeGENE
siRNA Transfection Reagent (Roche, USA) and Opti-MEM
(Gibco, USA) culture medium according to the manufacturer’s
protocol and the culture medium was changed to fresh medium
after 12 hours for studying proliferation of myoblasts. Cells
were harvested on 24 h after transfection. When transfected
with miR-432 inhibitor, the protocol was same as mimics, but
the final concentration of miR-432 inhibitor was 100nM
according to the introductions. Nevertheless, for myogenic dif-
ferentiation, cells were transfected when density of myoblasts
reached 70%. When cells grew to confluence after transfection,
myogenic differentiation was initiated by switching to differen-
tiation medium.

Luciferase reporter assays

The 30 UTR of mouse E2F3 and P55PIK mRNA were amplified
from myoblast cDNA. The forward primer of E2F3: 50-
ccgctcgag TCGCAGTGTTGTCCCTTCCTA ¡30 and the
reverse primer of E2F3: 50-taagaatgcggccgc TAGGAAGGGA-
CAACACTGCGA ¡30, the forward primer of P55PIK: 50-
ccgctcgag CCTTTGCTGCCAACTGCTCAT ¡30 and the
reverse primer of P55PIK: 50-taagaatgcggccgc GCAAGTCTGC-
CAACCATTCCA ¡30 added with restriction sites of XhoI or
NotI. Then link 30 UTR of E2F3 and P55PIK mRNA into a psi-
CHECK2-reporter vector (Promega), downstream of the
reporter gene (Renilla luciferase). HEK293T cells were seeded
at 8000 cells per well in a 48-well. 250 ng of psiCHECK2–
E2F3–30 UTR or psiCHECK2–P55PIK–30 UTR was cotrans-
fected with 50 nM of either miRNA mimics or NC when the
cells reached 70% density. Co-transfection was performed with

X-tremeGENE HP DNA Transfection (Roche, USA) and Opti-
MEM1 (Gibco, USA). After transfection for 48 h, the relative
luciferase activities of Renilla compared with firefly were mea-
sured with a Dual Luciferase Reporter Assay System (Promega)
according to the manufacturer’s protocol.

Real-time quantitative PCR

To detect the expression of miRNA and genes associated with
cell cycle and myogenic differentiation, the total RNA was
extracted with Trizol reagent (TakaRa, Otsu, Japan). The con-
centration of total RNA was measured by the NanoDrop 2000
(Thermo, Waltham, MA, USA). Then we used reverse tran-
scription kits (TakaRa, Otsu, Japan) to synthesis cDNA. For
miRNA analysis, specific reverse transcription primers and
procedures were used, whereas the normal process was per-
formed for mRNA analysis. In real-time quantitative PCR,
every reaction performed in triplicate using SYBR green kits on
a Bio-Rad iQTM5 system (Bio-Rad, USA). The expressions of
all genes were normalized to GAPDH, but U6 small RNA was
internal reference when examined the level of miR-432. The
primer sequences used for qPCR were shown in Table S1.

Western blotting analysis

Wash twice with PBS before adding RIPA (Applygen Technol-
ogies Inc., China) and protease inhibitor (complete mini-tablet,
Roche, USA) to myoblasts under low temperature (4�C). Then
we used cell scraper to separate cell lysate from bottom of cul-
ture plate as much as possible followed by centrifuging
(12000xg) at 4�C for 10 minutes. Supernatant lysates protein
concentration was determined by Thermo Scientific Pierce
BCA protein assay kit (Thermo Fisher, USA) and add 1/4 vol-
ume of 5£loading buffer to supernate and 20 mg protein was
electrophoresed on a 10% SDS-polyacrylamide gel and shifted
to polyvinyldene difluoride (PVDF) membrane (CST, Boston,
MA, USA), then the membrane was blocked with 5% defatted
milk at 4�C for 2 hours, incubated with antibodies (1:1000)
against Cyclin E (Santa Cruz, USA), Cyclin D1 (Santa Cruz,
USA), P27 (Santa Cruz, USA), PCNA (CST, USA), MyHC
(Abcam, USA), MyoG (Abcam, USA), E2F3 (Santa Cruz,
USA), P55PIK (ProteinTech, China), p-Akt (CST, USA), t-Akt
(CST, USA), p-mTOR (CST, USA), t-mTOR (CST, USA) and
GAPDH (BOSTER, China) at 4�C overnight. After being
washed by TBST (Tris Buffered Saline with Tween), the mem-
branes were incubated with HRP goat anti-mouse IgG or goat
anti-rabbits IgG secondary antibodies (BOSTER, China). The
targeted proteins were detected using the Gel Doc XR System
and analysis software Image Lab (Bio-Rad, USA) as per the
instructions of the manufacturer.

EDU imaging assay

Cell-LightTM EdU Apollo�567 In Vitro Imaging Kit was pur-
chased from RiboBio, China. Myoblasts at normal growth stage
were incubated with 50mM EDU culture medium for 2h, which
was prepared according to the introduction followed by fixa-
tion. Then the cells labeled with EDU were dyed in Apollo reac-
tion solution. And cell nuclei were stained with Hoechst for 30
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minutes. Afterwards, cells were observed by using a Nikon
TE2000 microscope (Nikon, Tokyo, Japan) and the data was
analyzed with Image J.

Flow cytometry

Myoblasts being the stable phase of cell growth, were seeded in
6- well culture plate at a density of 4£105 cells per well. After
24 hours, cells were transfected with miR-432 mimic or inhibi-
tor by X-tremeGENE HP siRNA Transfection Reagent (Roche,
USA), and cells were washed three times with PBS and har-
vested at 24 h post-transfection. Cells were then fixed with 70%
alcohol overnight at ¡20�C followed by being treated with
1 mg/mL RNaseA at 37 �C for 40 min, and stained with 50 mg/
mL propidium iodide (PI) at 4 �C for 1 h. Samples were
detected with a FACSCalibur flow cytometry (Becton Dickin-
son, Franklin Lakes, NJ, USA). The proliferative index (PtdIns)
shows the ratio of mitotic cells from 20,000 cells examined.

Immunofluorescent Staining

Myoblasts cultured in differentiation medium were induced to
form myotube for 4 days. Cells were fixed in 4% formaldehyde
for 15 min at room temperature and permeabilized with 0.5%
Triton X-100 for 15 min. Non-specific binding was minimized
by incubating the cells in PBS containing 5% BSA for 1 h fol-
lowed by washing three times with PBS. Cells were then incu-
bated overnight at 4�C with a monoclonal anti-MyHC
antibody (1:100) overnight, and washed with PBS (3£10 min)
at room temperature. Subsequently, cells were incubated with
Alexa Fluor 488-conjugated anti-mouse IgG (1:200) for 1 h at
room temperature, washed with PBS (3£10 min). Finally, cell
nuclear were stained with DAPI and Cells were viewed on a
fluorescence microscope.

Cell counting kit 8 (CCK8) analysis

Myoblasts were subcultivated to 96-well plate in a number of
3£103 cells. Myoblasts were transfected with miR-432 mimics
or negative control (NC) with 3 repetitions. After treatment for
24 h we switched the cells to culture medium containing 10%
CCK solution for 4 h at 37�C followed by measuring absor-
bance at 490 nm.

Bioinformatic analysis

The sequences of miRNAs were searched for at miRBase
(http://www.mirbase.org/) and the 30UTR sequences of E2F3
and P55PIK were downloaded from NCBI. Target genes of
miRNA were predicted by TargetScan 6.2 Mouse (http://www.
targetscan.org) and miRDB (http://www.mirdb.org/miRDB/).

Insulin treatment

Insulin was bought from Sigma and dissolved into storage solu-
tion. To study how miR-432 responds to insulin stress, insulin
was added to differentiation medium, in which the final con-
centrations of insulin were 10nM or 100nM respectively.

C2C12 cells were treated with 10nM or 100nM insulin for 24 h
before harvesting cells for western blot analysis.

Statistical analyses

All charts were made up by GraphPad Prism and the error bar
represented mean SD. Statistical significance of differences
between the groups were assessed using Student’s t test or one-
way ANOVA. It was considered significant when P value less
than 0.05. (�, P < 0.05; ��, P < 0.01)
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