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Abstract

An automated wireless system (WS) for sleep monitoring was recently developed and validated 

for assessing nighttime sleep. Here, we aimed to evaluate the validity of the WS to correctly 

monitor daytime sleep during naps compared to polysomnography (PSG). We found that the WS 

underestimated wake, sleep onset latency, wake after sleep onset, and overestimated total sleep 

time, sleep efficiency and duration of REM sleep. Sensitivity was moderate for wake (58.51%) and 

light sleep (66.92%) and strong for deep sleep (83.46%) and REM sleep (82.12%). These results 

demonstrated that the WS had a low ability to detect wake and systematically over-scored REM 

sleep, implicating the WS as an inadequate substitute for PSG in diagnosing sleep disorders or for 

research in which sleep staging is essential.
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Introduction

A continuous challenge in sleep research is the development of cost-effective systems for 

sleep monitoring in real-world environments. Several portable monitoring devices have been 

developed as an alternative to polysomnography (PSG), the gold standard for sleep 

recording. Generally, compared to PSG, these devices are less expensive, less-invasive, user-

friendly and can acquire several days of recordings in non-laboratory settings (Kelly, 

Strecker, & Bianchi, 2012). However, these devices (e.g. bed sensors, non-contact biomotion 

sensors) do not differentiate sleep stages and remain at the prototype level (Van de Water, 

Holmes, & Hurley, 2011) until they can be accurately validated for clinical and research 

purposes.
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An automated wireless sleep-stage monitoring system was recently developed (WS; Zeo, 

Inc., Newton, MA), consisting of three dry frontal electrodes integrated in an elastic 

headband placed on the forehead, which records electroencephalogram activity, muscle tone 

and eye movements (Shambroom, Fabregas, & Johnstone, 2012). These data are wirelessly 

transmitted to a bedside base station, which automatically scores the data as wake or a 

specific sleep stage (i.e., light, deep and REM sleep). The automated sleep staging, 

portability and user-friendly configuration of this device makes the WS a promising 

substitute for PSG. The WS could potentially be used for several clinical and research 

purposes, such as assessing the effect of short naps on performance in a workplace 

environment, or providing ecologically valid measures of afternoon naps in children in pre-

school and kindergarten. Clinically, the device could be employed to continuously monitor 

the duration and quality of sleep in shift workers, or the effect of treatments on sleep 

disorders such as insomnia.

To date, three laboratory studies have validated the WS against concurrent nighttime PSG-

recording. A company-sponsored study compared the WS to PSG and actigraphy (Actiwatch 

64) in healthy adults and reported overall good agreement between the WS and PSG 

(Shambroom et al., 2012). Moreover, the WS performed better than actigraphy in 

discriminating sleep from wakefulness. Tonetti and colleagues (2013) found moderate to 

high agreement, measured by Cohen’s kappa, for the different sleep stages between PSG and 

the WS in a group of healthy young adults. Griessemberger and colleagues tested the WS, an 

automated sleep staging system and manual scoring (using the AASM criteria; (Iber, Ancoli-

Israel, Chesson, & Quan, 2007) against a semi-automatic sleep staging system (Somnolyzer 

24×7) in a mixed sample of insomnia patients and healthy sleepers (Griessenberger, Heib, 

Kunz, Hoedlmoser, & Schabus, 2012). They reported moderate overall agreement between 

the WS and the Somnolyzer, but worse performance compared to the other staging systems. 

These studies concluded that the WS was useful for sleep monitoring at home with some 

weaknesses related to overscoring of REM sleep and an underestimation of wakefulness 

(i.e., sleep onset and wake after sleep onset (WASO)). Notably, despite not being sold or 

marketed as a scientific device, the WS has already been used as the primary sleep monitor 

in published studies (Gumenyuk et al., 2011; Kudesia & Bianchi, 2012; Scullin, 2012).

Prior validation studies assessed performance of the WS during nocturnal sleep. To the best 

of our knowledge, the WS has yet to be validated for daytime sleep (naps). Although few 

studies have investigated differences between daytime and nocturnal sleep architecture 

(Milner & Cote, 2009), daytime sleep is known to have increased wakefulness and stage 1 

sleep (15% vs. 2%) (Nishida & Walker, 2007; Payne et al., 2009; Wamsley, Tucker, Payne, 

Benavides, & Stickgold, 2010; Wamsley, Tucker, Payne, & Stickgold, 2010), and lower 

sleep efficiency than nocturnal sleep. Decreased sleep efficiency (SE) during daytime naps, 

(e.g. between 68–77% SE (Kanady, Drummond, & Mednick, 2011; Nishida & Walker, 2007; 

Tucker et al., 2006)) is mainly due to the “weight” of sleep onset latency in a short sleep 

period. These differences pose an interesting challenge for monitoring daytime sleep with a 

device that uses an algorithm rendered on nighttime PSG-data recording (Shambroom, 

Fabregas, & Johnstone, 2011), and has already shown limitations in its ability to detect 

wakefulness (Griessenberger, et al., 2012). The aim of the current study was to determine the 

validity of the WS for monitoring sleep during daytime naps.
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Method

Participants

Thirty healthy, non-smoking young adults (17 female, Mage = 20.3, SD = 2.76) gave 

informed consent to participate in the study, which was approved by the University of 

California at Riverside Human Research Protections Program. Exclusionary criteria 

included: a) having an irregular sleep-wake schedule (reporting a habitual time in bed (TIB) 

longer/shorter than 7–9 hrs per night); b) having a sleep disorder. Sleep disorders were 

screened by interviewing the subject at the first meeting and asking about potential 

symptoms of insomnia, apnea, narcolepsy, restless leg syndrome/periodic leg movements; c) 

any personal or immediate family (i.e., first degree relative) history of diagnosed significant 

psychopathology; d) personal history of head injury with loss of consciousness greater than 

2 minutes or seizures; e) history of substance dependence; f) current use of any psychotropic 

medications; and g) any cardiac, respiratory or other medical condition which may affect 

metabolism. Participants received financial compensation or course credit for participating 

in the study.

Procedure

The study took place at the Sleep and Cognition Lab in the Department of Psychology at the 

University of California, Riverside. Each participant completed one PSG-recorded nap while 

wearing the WS between 1:30 pm and 4:00 pm. Sleep was monitored online by a trained 

sleep technician. Participants were woken after they had accrued 90 minutes of total sleep 

time, or they had spent two hours time in bed, whichever occurred first. Participants were 

also pulled out of bed if they spent more than 30 minutes continuously awake without falling 

asleep. The WS and PSG computer clocks were synchronized before each recording in order 

to compare the WS and PSG records.

Polysomnography

PSG recordings were collected using Astro-Med Grass Heritage Model 15 amplifiers with 

Grass Gamma software. Scalp electroencephalogram and electrooculogram electrodes were 

referenced to unlinked contralateral mastoids (C3/A2, C4/A1, O1/A2, LOC/A2 and ROC/

A1), and muscle tone electromyogram electrodes were attached under the chin according to 

the International 10–20 system (Jasper, 1958). Raw data were digitized at a sampling rate of 

256 Hz and visually scored in 30-sec epochs following the American Academy of Sleep 

Medicine (AASM) rules for sleep staging (Iber, et al., 2007). In order to reduce the possible 

level of variability, scoring was performed by a single well-trained sleep technician. The 

technician demonstrated a reliability of 88% with his own scores.

Wireless system recording

The WS (Zeo, Inc., Newton, MA, USA) used a headband with a single bi-polar dry fabric 

sensor (and a single ground lead), which acquired EEG, EOG and EMG signals. Data were 

transmitted to a bedside base station and automatically scored in 30-sec epochs following 

Rechtschaffen & Kales (1968) sleep scoring criteria using a proprietary algorithm. For the 

technical specifications of the WS see Shambroon et al. (2011).
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Data Analysis

All analyses were confined to the period between lights off and lights on, which was marked 

on the PSG recording and synchronized with WS.

Sleep Summary

The following sleep parameters were calculated for the two systems: total sleep time (TST), 

defined as the number of minutes scored as sleep between lights off and lights on; sleep-

onset latency (SL), minutes between lights off and the first epoch scored as any stage other 

than wake; wake after sleep onset (WASO), minutes scored as wake after sleep onset; sleep 

efficiency (SE), the ratio between TST and total time in bed (i.e., minutes from lights out to 

lights on); and the number of awakenings lasting at least 2 minutes (NA ≥ 2). In order to 

compare wake and sleep staging of PSG and WS, we also calculated total minutes spent in 

wake, light sleep (stage N1 and N2), deep sleep (stages N3), and REM sleep.

Wilcoxon Matched-Pairs Rank Sum tests were used to compare non-normally distributed 

sleep parameters, and paired t-tests to compare normally distributed variables (determined 

by Shapiro–Wilk tests), between WS and PSG. Intra-class correlation coefficients (ICCs) 

were calculated to assess the relationship between the systems. Statistical significance was 

set at p < .05 for all analyses.

Bland–Altman Statistic

Bland-Altman statistics (Altman & Bland, 1983; Bland & Altman, 1999), a technique that 

plots the difference score between two measures against their average, assessed the 

concordance between sleep summaries derived from the WS and PSG. In order to determine 

the significance of the “bias”, we computed the upper and the lower limits of the mean 

difference between the two methods based on 95% confidence intervals.

Epoch-by-Epoch Agreement

In order to assess the ability of the WS to correctly identify different sleep stages, we 

computed two dichotomous variables for each stage: specific sleep stage identification from 

visual scoring of the PSG data (e.g., N1 = 1, N2 = 1 and the remaining epochs = 0) and 

automated sleep stage scoring by the WS (e.g., light sleep = 1 and the remaining epochs = 

0). We created a 2×2 contingency table for each sleep stage by combining these two 

dichotomous variables, which was used to compute the following parameters: accuracy (the 

agreement rate between PSG and WS), sensitivity (ability of the WS to detect a specific 

stage that was also scored from PSG), predictive positive value (PPV; the percentage of 

epochs scored as a specific stage by the WS that were also scored in the same way via PSG) 

and Cohen’s kappa (a measure of inter-rater reliability that reflects the percentage of scoring 

agreement between two methods not due to chance). According to the Landis and Koch 

scale (Landis & Koch, 1977), we considered a kappa coefficient of 0–0.2 as slight 

agreement, 0.2–0.4 as fair agreement, 0.4–0.6 as moderate agreement, 0.6–0.8 as substantial 

agreement, and 0.8–1.0 almost perfect agreement.

By comparing wake to non-wake epochs, we provided an index of the ability of the device to 

discriminate sleep from wakefulness. For the sleep/wake comparison, we also computed 
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specificity, the ability of the WS to detect wakefulness when the PSG also scored 

wakefulness.

RESULTS

Sleep Summary

Results from Shapiro–Wilk tests showed that all sleep variables were non-normally 

distributed (p < .05), with the exception of light sleep (p = .499). The Wilcoxon Matched-

Pairs Rank-Sum tests showed that WS significantly overestimated TST, SE and minutes of 

REM, but underestimated SL, WASO and wake. No differences were found in NA ≥ 2, light 

and deep sleep (Table 1).

ICCs revealed significant associations between the two systems for all of the parameters. 

The weakest relationship between devices was found for REM sleep and the strongest for 

TST and deep sleep (Table 2).

Bland Altman

Also the Bland-Altman statistic (Table 3) highlighted an overestimation of TST, SE and 

minutes of REM and a systematic underestimation of wake as a consequence of 

underestimating both SL and WASO (Fig. 1).

Epoch-by-Epoch Agreement

Accuracy, sensitivity, PPV and Cohen’s kappa values for each sleep stage are reported in 

Table 4. Wake and light sleep showed moderate sensitivity, whereas REM and deep sleep 

showed strong sensitivity. REM sleep showed extremely poor PPV. Cohen’s kappa revealed 

an agreement between PSG and WS that was not due to chance, ranging from moderate 

(light sleep) to substantial (wake, deep). However, Cohen’s kappa highlighted very low 

agreement for REM sleep. Specifically, the WS correctly identified 82.1% of PSG-defined 

REM sleep, but it also defined 27.6% and 22.9% of wake and light sleep epochs as REM, 

respectively. These results also explain the reduced sensitivity of WS for wake and light 

sleep.

Regarding the sleep/wake comparison, accuracy and Cohen’s kappa values statistically 

remained the same (86.8% and 0.62 respectively), whereas sensitivity, specificity and PPV 

of the sleep/wake comparison were 96.8%, 58.51% and 86.8%, respectively. Thus, the WS 

showed validity for detecting sleep, but only a moderate capacity to correctly identify wake.

DISCUSSION

The current study examined the ability of WS to accurately discriminate daytime sleep 

stages. We utilized multiple analyses to completely describe the performance of this device. 

Our main finding was the reduced ability of WS to detect wakefulness. Although Cohen’s 

kappa showed a moderate/substantial agreement (0.62), the moderate specificity (58.51%) 

and the underestimation of SL, WASO and NA ≥ 2 (and consequent overestimation of TST 

and SE), suggests poor wake detection by the WS. These data confirm previous findings for 

nighttime sleep (Griessenberger, et al., 2012; Shambroom, et al., 2011; Tonetti, et al., 2013). 
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Thus, the limitation of the WS is likely an intrinsic feature of the device that is not specific 

to daytime sleep monitoring.

The second weakness of the WS is REM classification. Only considering accuracy (81.03%) 

and sensitivity (82.12%), the WS showed high epoch-by-epoch agreement with PSG. 

However, the WS also showed an overestimation of REM sleep (e.g., 1110 epochs scored as 

REM by WS compared to 302 epochs scored as REM by PSG). This bias was confirmed by 

low PPV (22.34%), Cohen’s kappa (0.28) and ICC (0.24) values. As reported in previous 

validation studies (Griessenberger, et al., 2012; Shambroom, et al., 2011), this over-scoring 

of REM mostly occurred at the expense of wake (27.6%) and light sleep (22.9%). This may 

result from the absence of an independent EOG channel in the WS (Shambroom, et al., 

2011; Tonetti, et al., 2013). Additionally, sensor placement in the pre-frontal area, where 

alpha activity is low, has been implicated in the WS’s difficulty detecting quiet wakefulness 

(Tonetti, et al., 2013).

It should be noted that contrary to previous studies (Shambroom, et al., 2011; Tonetti, et al., 

2013), we failed to find significant differences between the WS and PSG sleep scoring 

methods for deep sleep. This may be due to the sleep stage scoring system applied. In the 

current study, we used AASM criteria (Iber, et al., 2007) whereas Shambroom and 

colleagues (2011) used Rechtschaffen and Kales (1968), the same criteria used to develop 

the WS scoring algorithm. Although AASM criteria were reported to increase scoring of 

WASO, N1 and N3, and decrease scoring of N2 compared to Rechtschaffen and Kales 

criteria (Moser et al., 2009), the WS showed no differences in deep sleep stages compared to 

PSG. Nonetheless, the different scoring system could potentially explain the absence of 

significant differences for deep sleep.

For the sleep/wake comparison, WS sensitivity was high (96.8%), indicating good ability of 

the device to detect sleep when PSG also scores sleep. This sensitivity value was even higher 

than actigraphy reported for daytime sleep (92%–96% in Kanady et al. (2011) and 86%–

94% in Cellini et al. (2013). WS also showed poor specificity (58.51%), similar to that of 

actigraphy for naps (40%–66% in Kanady et al. (2011), 36%–64% in Cellini et al. (2013), 

confirming the limited ability of this device to correctly detect wakefulness. These results 

corroborate previous reports on this WS. Tonetti et al. (2013) reported 97.6% sensitivity and 

56.1% specificity, Griessemberger et al. (2012), reported 40.8% specificity in a mixed 

sample of insomniacs and healthy sleepers (sensitivity for total sleep stages was not reported 

in this study), whereas Shambroom et al. (2011) reported a higher specificity of 64%. These 

differences could be the consequence of different samples and different sleep contexts (i.e., 

daytime and nighttime sleep).

A potential limitation of the current study relates to the age range of our sample. We studied 

healthy, young adults (Mage = 20.3), which may limit the generalization of our findings to 

other populations such as infants or older adults who exhibit greater variations in sleep 

quantity (e.g. total sleep time, minutes spent in different stages) and quality (e.g. amplitude 

of slow-wave sleep, fragmentation index) (Cajochen, Münch, Knoblauch, Blatter, & Wirz-

Justice, 2006). In addition, it is worth noting that we collected data in a laboratory setting, 

but home validation with concurrent ambulatory PSG could yield different results.
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Finally, further direct comparison between the WS, PSG and different brand of actigraphy is 

warranted.

In conclusion, WS monitored daytime naps comparably to previous studies of nighttime 

sleep. Moreover, sleep/wake comparisons showed performance similar to actigraphy for 

daytime sleep (Kanady, et al., 2011). Given the automatic sleep staging capability and 

relatively lower price compared to actigraphy (Cellini, et al., 2013), the WS may be an 

excellent alternative to actigraphy for objective sleep monitoring outside the lab (Tonetti et 

al., 2012). Thus, the WS is a relatively inexpensive device for ecological sleep/wake 

monitoring that could be used as a screening tool, to improve sleep hygiene and for general 

assessment of sleep quality and quantity. However, the systematic over-scoring of REM and 

low ability to detect wake make this system an inadequate substitute for PSG in diagnosing 

sleep disorders or for research in which sleep staging is essential. As such, we recommend 

further improvements in the scoring algorithm and electrode placement to provide more 

effective wake and REM detection.
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Fig. 1. 
Bland-Altman plots of PSG and WS for sleep parameters. Only the significant parameters 

are shown. The y-axis indicates the differences between the WS score minus the PSG score, 

whereas the x-axis showed the average of their scoring. The bias represents the mean 

difference between the devices for a specific parameter, with values above zero meaning a 

overestimation and the values below zero meaning an underestimation of the WS relative to 

PSG. The limits of agreement (± 2 SD) are depicted as dashed-dotted lines.
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Table 1

Sleep measures (mean ± SD) for WS and PSG.

PSG WS Z p

TST (min) 58.85±16.43 66.07±17.33 3.68 .001

SL (min) 9.85±6.11 7.82±5.68 1.97 .049

WASO (min) 13.60±13.01 8.42±9.01 3.09 .002

SE (%) 72.40±14.15 80.96±12.98 3.62 .001

NA≥2 (nr.) 2.27±1.76 1.70±1.47 1.89 .059

Wake (min) 23.45±14.66 16.23±12.08 3.68 .001

Light (min) 36.28±13.46 32.67±13.19 1.38* .177

Deep (min) 17.53±15.73 14.90±13.22 1.67 .095

REM (min) 5.03±8.29 18.50±17.39 4.51 .001

*
=t-value
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Table 2

ICC’s between systems for each sleep variable.

ICC’S

TST (min) 0.75***

SL (min) 0.53***

WASO (min) 0.62***

SE* (%) 0.61***

NA≥2 (nr.) 0.58***

Wake (min) 0.62***

Light (min) 0.49**

Deep (min) 0.83***

REM (min) 0.24*

***
= p<.001;

**
= p<.01;

*
= p<.05
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Table 4

Accuracy, sensitivity, PPV and Cohen’s kappa values for each sleep stage.

Wake Light Deep REM

Accuracy (%) 86.79 74.94 90.81 81.03

Sensitivity (%) 58.51 66.92 83.46 82.12

PPV (%) 86.64 75.60 72.03 22.34

Cohen’s kappa 0.62 0.49 0.72 0.28
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