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Abstract

This study demonstrates the utility of genetic algorithms to search exceptionally large and 

otherwise intractable mutant libraries for sequences with optimal binding affinities for target 

receptors. The Genetic Algorithm Managed Peptide Mutant Screening (GAMPMS) program was 

used to search an α-conotoxin (α-CTx) MII mutant library of approximately 41 billion possible 

peptide sequences for those exhibiting the greatest binding affinity for the α3β2-nicotinic 

acetylcholine receptor (nAChR) isoform. A series of top resulting peptide ligands with high 

sequence homology was obtained, with each mutant having an estimated ΔGbind approximately 

double that of the potent native α-CTx MII ligand. A consensus sequence from the top GAMPMS 

results was subjected to more rigorous binding free energy calculations by molecular dynamics 

and compared to α-CTx MII and other related variants for binding with α3β2-nAChR. In this 

study, the efficiency of GAMPMS to substantially reduce the sample population size through 

evolutionary selection criteria to produce ligands with higher predicted binding affinity is 

demonstrated.

Graphical abstract

Introduction

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that 

play an important role in cognitive function and the prevention of neuronal degradation, 
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bringing investigations of these receptors to the forefront of research into neurodegenerative 

disorders such as Alzheimer's disease and Parkinson's disease.1–4 Studies have demonstrated 

decreased levels of nicotinic receptors in post-mortem examinations of individuals 

previously afflicted with forms of dementia.5 In contrast, epidemiological studies have 

demonstrated an inverse relationship between the development of neurodegenerative 

disorders and smoking as well as the influence of nicotine in the enhancement of cognitive 

function in animals, including humans.6,7 Nicotine, an exogenous agonist and the namesake 

of nAChRs, triggers an active biological response upon binding that results in upregulation 

of neuronal receptors while reducing their susceptibility to proteasomal subunit 

degradation.8,9 The well-established negative impacts of nicotine usage notwithstanding, 

there are great potential benefits in the development or discovery of alternative nAChR 

agonists for the treatment of patients with neuro-degenerative disorders.

Another class of ligand for nAChRs that has been extensively studied are α-conotoxins (α-

CTx), which are neurotoxic peptides isolated from the venom of the marine snails of genus 

Conus.10–12 α-CTx are small peptides consisting of 10– 30 amino acid residues that contain 

one or more disulfide bonds. Unlike nicotine, these small peptides have been found to 

selectively block specific nAChR subtypes.13,14 For this reason, they have received a 

considerable amount of attention in the field of pharmacology as molecular probes for the 

structure– function relationships of nAChRs toward the goal of developing targeted 

therapeutics for neurodegenerative diseases.

Of particular interest, and the premise for this study, is α-CTx MII, a 16 amino acid peptide 

that exhibits an IC50 of 0.5 nM for the α3β2-nAChR isoform.13–15 αCTx MII has the 

primary sequence GCCSNPVCHLEHSNLC, contains two disulfide bonds (C2–C8 and C3–

C16), and features an α-helix initiated at P6 and ending at S13 (Figure 1). This peptide has 

been the subject of many investigations aimed at developing a better understanding of the 

selectivity and potency of α-CTx MII and its variants. Some such studies have included site-

directed mutagenesis of nAChRs, alterations of the primary sequence of α-CTx MII, and 

computational modeling using molecular docking and dynamics approaches.12,16–20 

Notably, several mutants of the α-CTx MII peptide have shown significant enhancement in 

binding affinity for the α3β2-nAChR isoform as well as other nAChR isoforms, such as the 

E11A mutant, which demonstrated a 50-fold binding preference for the α6α4β2β3-nAChR 

isoform.12,21

α-CTx MII was selected as a template for a comprehensive search of custom peptide 

sequences with optimal binding affinity for the α3β2-nAChR isoform because of its proven 

selectivity and potent inhibition of the receptor. The discovery of sequences with improved 

affinity to nAChR could increase the knowledge of the structure–function relationship 

consequential to neurodegenerative disorders. Understanding this relationship may also lead 

to the development of new non-peptide therapeutic agents based on structural similarities 

that are capable of the analogous binding affinity and specificity necessary for targeted drug 

treatments. The search for α-CTx MII mutants with high binding affinity for the α3β2-

nAChR was performed using the Genetic Algorithm Managed Peptide Mutant Screening 

(GAMPMS) method, a genetic algorithm designed for comprehensive structure-based high-

throughput virtual screening (HTVS) of a very large mutant library.22
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Genetic algorithms (GAs) have found application in computational and combinatorial 

chemistry.23–26 While machine-learning-based scoring functions can be used in place of 

traditional docking methods in order to increase the throughput of a ligand database screen, 

they are often less accurate. Also, the reported score that is assigned by a learning algorithm 

to ligand–receptor binding may be of limited value in the context of the scientific 

community since the assigned scores are not directly reproducible because of custom 

implementations using unique training sets. In contrast, GAMPMS is an unsupervised GA 

that uses the results of previous docking jobs to make an informed decision as to which 

mutations increase or decrease peptide binding affinity. Additionally, the GAMPMS method 

uses the popular AutoDock 4.0 molecular docking software to provide fitness scores, giving 

it the added advantage of making the molecular docking results reproducible by other 

researchers.27,28 A graphical representation of the GAMPMS workflow is shown in Figure 

2, demonstrating how the three genetic operators derived from the natural evolutionary 

processes of elitism, crossover, and mutation are used in determining peptide sequences with 

the highest fitness (binding affinity).

GAMPMS was used to perform a combinatorial biochemistry experiment based on the α-

CTx MII peptide utilizing structure-based HTVS methods in order to identify peptides with 

a higher predicted binding affinity for the α3β2-nAChR. The implementation of GAMPMS 

permitted the search of a remarkably large mutation space of 40.96 billion possible peptide 

sequences (84 × 107 possible mutant combinations). The binding free energies of the 

resulting top-ranking sequences obtained from GAMPMS were compared to that of native 

MII, and a consensus amino acid sequence was generated on the basis of the residue 

conservation probabilities. Molecular dynamics simulations were used to support the 

GAMPMS results as well as to further investigate the binding interactions resulting in the 

predicted enhancement in binding affinity.

The implementation and capacity of GAMPMS in searching exceptionally large peptide 

mutant libraries is of great importance for the advancement of peptide therapeutic 

development and research in neurodegenerative disorders. The implications of fast and 

effective methods for database searching cannot be understated as drug discovery efforts 

increasingly move toward in silico modeling and sophisticated search algorithms to 

streamline the process of discovering novel therapeutic agents. Furthermore, the integration 

of GAMPMS and the associated programs into the DockoMatic software package makes this 

methodology readily available to the research community.29

Methods

Genetic Algorithm

The detailed implementation of GAMPMS integrated into the DockoMatic 2.1 software 

package is described elsewhere, so only a brief description is provided here.22,29 The 

receptor structure used in docking calculations was a homology model of the α3β2-nAChR 

isoform constructed from the amino acid sequences of the α3 (UniProtKB ID P04757.1) and 

β2 (P12390.2) subunits of rat neuronal nAChR using the Torpedo marmorata nAChR (PDB 

ID 2BG9) as a structural template.30,31 The homology models were created using the 

DockoMatic 2.129 and MODELLER32 packages. The amino acid sequences of α3β2-nAChR 
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and the templates were aligned according to sequence similarity, and atomic coordinates 

were assigned to the models on the basis of sequence and structural alignment with the 

templates. This was followed by optimization of amino acid side-chain rotamers and 

steepest-descent energy optimization of the models. The constructed α3β2 subunit dimer 

consisting of only the extracellular domains was used for subsequent computational studies, 

although nAChR exists naturally as a pentameric transmembrane protein complex.

Representation of an Individual—In the GA integrated into DockoMatic 2.1, each 

individual (peptide mutant) is represented as a sequence of amino acids that can be 

substituted for the base peptide's mutable residues (Table 1). The α-CTx MII sequence was 

used as the base sequence for mutation. The C2, C3, P6, C8, and C16 residues were 

conserved during their simulation because of their importance in conformational stability. 

The cysteine residues are involved in disulfide bonds, while the proline initiates α-helix 

formation. Allowed mutations were not expected to alter the secondary structure of the 

peptide template. Residue mutations were constrained to maintain the polar/nonpolar 

character of the residue. The polar and/or charged S4, N5, H9, E11, H12, S13, and N14 

residues could mutate into polar and/or charged amino acids (excluding cysteine), and the 

nonpolar G1, V7, L10, and L15 residues could mutate into nonpolar amino acids (excluding 

proline).

Using the single-letter amino acid symbols, each individual is represented as a character 

array. Site-directed mutagenesis of individuals is handled by the Treepack program, which is 

included as part of DockoMatic 2.1. Three-dimensional peptide mutant structures are 

generated by the following process: (1) the coordinates of the mutable residue and two 

adjacent residues are copied into a new pdb file; (2) the side-chain atoms of the mutable 

residue are removed from the generated tripeptide pdb file; (3) the side-chain atoms of the 

substituted amino acid are added; (4) the peptide analogue is submitted to Treepack, which 

determines the appropriate orientation of the new side chain to eliminate side-chain spatial 

overlaps; (5) the modified peptide segment is grafted back into the original ligand pdb file. 

The fitness of an individual is determined by the AutoDock score produced when the ligand 

is docked against the target receptor.

Genetic Operators—Three basic genetic operators derived from the natural biological 

evolutionary process are implemented by GAMPMS: elitism, crossover, and mutation. The 

user-defined elitism operator is used to select the top elite factor × 100% of a population's 

individuals and add them to the successive population. The two-parent, two-offspring, N-

point crossover operator uses a fitness-proportionate selection scheme, choosing two 

individuals (parents) from the current population with a probability directly proportional to 

their fitness ranking within the population. A set of N indices are chosen randomly from 

within a parent's range, and both parents are split into N + 1 pieces according to the indices. 

The pieces from the two parents are alternated and combined to make two different offspring 

that share features of both parents. For the genetic operator of mutation, an amino acid has 

an equal chance of changing into any of the other amino acids in the associated residue's 

substitution set at a rate specified by the user. The resulting populations after the three 
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genetic operations are performed on a parent population are used as subsequent input 

sequences for docking until the convergence criteria are achieved.

Terminating Condition—GAMPMS iteratively builds new populations until the specified 

convergence criteria are met. In DockoMatic 2.1, the genetic algorithm stops generating new 

populations when there has been no change in the top X highest-affinity peptides over the 

last λ iterations. The parameters X and λ are both configurable in DockoMatic 2.1.

GAMPMS of the 40 960 000 000 α-CTx MII Mutant Ligand Library

The GAMPMS model was implemented and used to search the 40 960 000 000 α-CTx MII 

mutant library for binding affinity to the α3β2-nAChR. The search was performed using 128 

cores on the Fission cluster at Idaho National Laboratory. Forty pose evaluations (ga_runs) 

were used in the AutoDock docking simulation for ligand–receptor binding. Had 

conventional HTVS been performed on the mutant library, an intractable 3.2 × 108 

submissions would have been required (using 128 cores). Instead, the GAMPMS 

implementation required a total of only 19 041 molecular docking jobs to reach 

convergence. Input files for molecular docking were generated from pdb files using 

AutoDockTools, and docking was performed using AutoDock 4.0, both of which are 

integrated into DockoMatic. The GA was configured with an elitism carryover of the top 

40% of each population, a two-parent, two-offspring, three-point crossover, and a mutation 

probability of 2%. The GA terminated after five iterations without an improvement in the 

binding energy of the top 50 peptides.

The top-ranking individuals of such a large mutation space produce estimated binding free 

energies that are within the accepted error of the AutoDock scoring functions.28 Thus, the 

lowest-energy sequence cannot be taken as the “best” sequence. The well-documented 

uncertainty in values of predicted binding free energies from molecular docking scoring 

functions must be taken into consideration, and this is something that is often overlooked 

when molecular docking is applied in ligand– receptor binding studies. Since we are 

studying a highly variable peptide ligand, the best indicator that a side-chain mutation results 

in a beneficial effect on the predicted binding affinity is not the docking score directly but 

rather the conservation of any particular mutation that is observed among a population 

exhibiting the best docking scores. Therefore, the conservation of residues across the 

peptides with the highest binding affinities was used to determine the final top sequence. 

The residue occurring with the highest frequency in the top 50 peptides, with all residues 

having a conservation of at least 50%, was included in the consensus sequence (WCCSYPG-

CYWSSSKWC). This peptide sequence was subjected to further investigation and validation 

using molecular dynamics (MD) simulations and compared to sequences with known 

binding affinities with the α3β2-nAChR isoform.

Molecular Dynamics Simulations

MD simulations were performed using the Gromacs 5.0.4 software package with the 

AMBER03 force-field parameter set.34–39 GAMPMS-derived molecular docking results 

were used as input structures for MD. Simulations were performed with periodic boundary 

conditions with explicit solvation using the transferable intermolecular potential 3-point 
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(TIP-3P) potential model.40 To prepare the solvated systems for simulation, a conjugate-

gradient energy minimization followed by NVT and NPT equilibrations was performed. A 

100 ps equilibration was conducted under the NVT ensemble using a velocity-rescale 

thermostat at 300 K with a coupling time constant of 0.1 ps.41,42 A subsequent 200 ps NPT 
equilibration was performed using the isotropic Parrinello–Rahman barostat with a time 

constant of 1.0 ps.43 The integration time for both equilibration steps was 1 fs. An initial 50 

ns MD simulation was executed for each system using an integration time step of 1 fs. All 

bonds were constrained to their equilibrium values using the LINCS algorithm.44 Since only 

the extracellular α3β2 dimer subset was used, position restraints with force constants of 

5000 kJ mol−1 nm−2 were applied to the receptor residues on the interior portion of the 

dimer subunits, or what would be the ion channel side of the nAChR, opposite the α-CTx 

binding region. The Verlet cutoff scheme was used in the calculation of short-range 

Coulomb and van der Waals forces, and the particle-mesh Ewald method was employed for 

long-range electrostatics.45,46 The structures averaged over the final 10 ns of each simulation 

run were used in the subsequent free energy simulations.

For MD calculations of binding free energy of each variant with α3β2-nAChR, the classic 

thermodynamic cycle shown in Scheme 1 was used. The ΔGbind term is the free energy of 

binding between the receptor and the ligand. ΔG1 is the free energy change of the transition 

of the ligand from a bound state to a virtual (dummy) state in which all of the interaction 

terms have been turned off, and ΔG2 is the free energy of the transition of the ligand from a 

solvated state to a dummy state. The relative binding free energy of the ligand with the 

nAChR, ΔGbind, can be determined by calculating ΔG1 and ΔG2 and using the relationship 

ΔGbind = ΔG1 – ΔG2.

Simulation of state transitions from real to virtual states was implemented in two steps: (1) 

incrementally turning off the Coulombic interactions between the ligand and the receptor 

and (2) incrementally turning off the Lennard-Jones interactions between the ligand and the 

receptor. Calculations of intermediate λ states were performed at 11 and 21 equidistant 

nodes for steps 1 and 2, respectively. During decoupling of the van der Waals interactions, 

soft-core potential functions were applied with αLJ = 0.5 and the λ power dependence set to 

1.47 A harmonic restraint with a force constant of 100 kJ mol−1 nm−2 was placed between 

the receptor and ligand centers of mass to maintain the relative distance between the ligand 

and receptor in order to prevent unphysical repositioning of the ligand during the decoupling 

steps due to decreased interaction strengths. At each λ value, simulations were performed 

for 500 ps with a time step of 0.5 fs. ∂H/∂λ was saved every 10 fs for postprocessing and 

free energy calculations using the Bennett's acceptance ratio (BAR) perturbation 

method.48,49 Only the last 250 ps of each simulation was used for BAR calculations, with 

the first 250 ps being considered as additional system equilibration. Four series of free 

energy simulations were performed for each ligand in the forward and backward (coupling 

and decoupling) directions for the receptor-bound ligand and solvated ligand.

Results and Discussion

The top 10 peptide sequences obtained from searching the 40.96 billion mutant library using 

GAMPMS are provided in Table 2. These results had estimated binding free energies 
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ranging from −22.26 to −23.45 kcal/mol. Comparison with the affinity of native α-CTx MII 

for the α3β2-nAChR shows that the resulting binding free energies of the mutants are nearly 

double the ΔGbind of-12.38 kcal/mol of MII, with ΔΔG ranging from −9.88 to −11.07 kcal/

mol. The observed differences between the top mutants within the range of 1.19 kcal/mol are 

within the error range of free energies estimated by AutoDock 4.0 (∼2.1 kcal/mol).28 Thus, a 

definitive peptide sequence exhibiting the “best” binding affinity to the nAChR cannot be 

directly determined. However, examination of the top sequences produced by the genetic 

algorithm showed a high degree of sequence similarity, which is an important indicator of 

the mutations contributing most favorably to the overall ligand binding affinity.

On the basis of the estimated binding free energies producing by GAMPMS, the top 51 

sequences fell within the standard error of the AutoDock scoring function. A series of top 

mutant population sizes were evaluated to determine the extent of residue conservation and 

to support the viability of generating a consensus sequence based on the observed 

probabilities of residue occurrences at all mutated positions. Populations of the top 10, 20, 

30, 40, 50, and 60 mutants were examined, assuming statistical equivalence in the predicted 

binding affinities of all of the top peptide mutants. The same sequence resulted from each 

population when the highest frequency of any particular residue mutation was considered. 

Confidence intervals (CIs, α = 0.05) of residue mutation probabilities were generated for 

each population size. Only at N = 50 does the mutation of highest probability at each 

mutable residue lie outside the 95% CI of the second most frequently observed mutation, 

with the exception of residue 14 (although Lys14 occurs at the highest frequency in all 

populations). In addition, N = 50 is the largest population containing only resulting 

sequences within the standard error of the binding free energy estimates.

The bar graph in Figure 3 clearly shows the residue conservation for each mutable residue 

from the GAMPMS results. Each position, with the exception of residue 14, contained a 

single residue that appeared in a minimum of 50% of the top 50 sequences, with a 

tryptophan appearing at residue 10 in all of the sequences. The consensus sequence (KTM) 

produced from these findings was WCCSYPGCYWSSSKWC. Comparison of this sequence 

with the top 10 listed in Table 2 shows greater than 56% residue conservation in every case, 

75% conservation with the top sequence, and a high of 81.25% conservation with the sixth-

ranked sequence. The predicted binding free energy of the consensus sequence was −21.47 

kcal/mol, which ranks the mutant in the top 50 sequences and within the standard error of 

the AutoDock scoring function of the top-ranked peptide.

The overall sequences and structures of native α-CTx MII and KTM are notably different 

(Figure 4). The only mutable residues conserved between MII and KTM are Ser4 and Ser13, 

giving a total of seven conserved residues when the nonmutated Cys and Pro residues are 

taken into account. The additions of bulky amino acid structures, particularly three Trp and 

two Tyr residues, have a significant impact on the size of the mutant peptide. A nearly 10% 

increase in molecular volume was calculated, from 1578 to 1732 Å3 for α-CTx MII and 

KTM, respectively, with corresponding molecular weights of 1701 and 1835 Da. It is clear 

from Table 2 that each of the resulting top ligands has a higher molecular weight than the 

native α-CTx MII. While it is accepted that docking scores are biased toward molecules 

with higher molecular weights, the increases in predicted binding free energies of the top 
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ligands are significantly larger than can be explained by the less than 10% increase in 

molecular weight. Normalization of docking scores to correct for molecular weight using 

ΔGnorm = ΔGbind/N1/3, where N is the number of heavy atoms, yields normalized binding 

free energies of 2.55 and 4.58 kcal/mol for α-CTx MII and the top-ranking mutant from 

Table 2, respectively.50 The molecular weight bias, although not a major factor in the 

docking results, is one of many concerns inherent in molecular docking approaches. Other 

limitations leading to ambiguity in energy rankings obtained from docking programs include 

binding pocket flexibility and dynamics, adequate sampling of the receptor and ligand 

conformational spaces, and desolvation energies. Molecular docking is powerful in that such 

methods may provide reasonable results and ligand docking orientations and, most 

importantly, can facilitate HTVS of large compound databases. However, to achieve more 

reliable binding free energies and further explore the interaction dynamics of receptor–

ligand complexes, more robust computational methods are needed. The predicted binding 

affinities of the α-CTx MII and consensus KTM peptide ligands were further evaluated 

using molecular dynamics.

To initially evaluate the variations in binding interactions and pose between the two ligands, 

the two systems were subjected to 50 ns MD simulations. From these simulations, the 

accuracy of the docking pose provided by AutoDock and the primary interactions stabilizing 

the peptides within the nAChR binding pocket can be more closely examined. Molecular 

docking procedures offer only an estimate of the ligand binding free energy. Limitations are 

placed on molecular flexibility for both the ligand and receptor, which can lead to larger 

errors in predicted energies even with the implementation of rotatable bonds for residue side 

chains. In order to achieve reasonable values of binding free energies of ligand–receptor 

complexes, variability in all of the atomic positions directly and indirectly associated with 

the interactions is a necessity to allow the structures to relax and reach an energetic 

minimum. The dynamics of large biomolecular structures cannot be disregarded when 

attempting to quantify binding energies. That said, molecular docking does provide a 

reasonable estimation of energy rankings or docking scores, and these methods can be used 

to determine significant differences in favorable binding interactions. However, to obtain 

more accurate measures of actual molecular processes, more robust methods, such as 

molecular dynamics, are necessary.

With the docking poses obtained from the molecular docking calculations, 50 ns MD 

simulations were performed for both the α-CTx MII and KTM ligands bound to the nAChR. 

Both ligands showed a high degree of stability in their binding configurations, as evidenced 

by the root-mean-square deviations (RMSDs) of ligand atomic positions over 50 ns (Figure 

5). Some fluctuations were observed over the 50 ns simulations as the ligands sampled 

conformational space within the binding pocket to achieve more favorable interactions with 

the nAChR. As shown in Figure 6, the number of stabilizing hydrogen bonds increased for 

both ligands over 50 ns. The number of hydrogen bonds formed between KTM and the 

nAChR within a 3.5 Å cutoff distance was notably larger than that for α-CTx MII, with the 

number fluctuating around nine for KTM and six for α-CTx MII. This increased 

electrostatic interaction of KTM with the nAChR should correlate to a significantly greater 

binding affinity.
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The primary hydrogen-bonding interactions for the two ligands bound to the nAChR are 

shown in Figure 7. The hydrogen bonding of MII is exclusively to the β2 subunit, whereas 

the hydrogen bonding of KTM involves both the α3 and β2 subunits. The creation of strong 

contacts in opposing directions may act to further stabilize the ligand binding. This is in 

contrast to MII, which exhibits hydrogen bonding primarily along a single axis. 

Interestingly, the three bulky tryptophan residues of KTM do not make any strikingly 

obvious contributions that would lead to an explanation for the high sequence homology 

observed in the top results from GAMPMS, such as the conservation of Trp10 across all of 

the top 50 sequences. However, upon examination of the bound complex, it becomes 

apparent that the Trp10 side chain is stabilized deep in the largely hydrophobic inner portion 

of the binding pocket. The lesser, although significant, conservation of Trp1 and Trp15 is 

more difficult to explain but may result from the exclusion of a larger number of potentially 

destabilizing solvent molecules from the bound KTM by the bulky tryptophan side chains. 

Another interesting finding is that the Lys14 mutation of KTM does not play an important 

role in stabilizing the ligand despite the ability of charged lysine residues to readily form 

strong hydrogen-bonding interactions. The positioning of the ligand in the binding pocket 

and cumulative stabilizing interactions prevent K14 from forming strong contacts with any 

of the receptor residues. This discovery also agrees with the sequence homology of the top 

sequences displayed in Figure 3, where it can be seen that residue 14 has the lowest degree 

of homology of all the residues, suggesting that the functionality of this residue side chain is 

largely negated by the conformation of the ligand in the α3β2-nAChR binding pocket.

The orientations of MII and KTM in the receptor binding pocket are noticeably different 

(Figure 8). As a result of the variations in ligand–receptor interactions, a slight rotation of 

KTM with respect to MII was observed. This positional change of KTM induced a 

potentially significant structural change in the nAChR. The dynamics and functionality of 

the biologically active pentameric transmembrane structure involves the closing of the C 

loops between adjacent subunits (labeled in Figure 8) upon binding of α-CTx.51–53 The C 

loop of the α3 subunit moved into much closer proximity to the β2 subunit in the KTM 

simulation than was observed for MII, indicating tighter closure of the C loop upon KTM 

binding. The distance between receptor backbone atoms at the narrowest juncture was 

measured as approximately 13.2 Å for KTM binding compared with 18.1 Å for MII binding. 

This is nearly a 30% decrease in spacing between the α3 C loop and the β2 subunit. This 

reduction occurs despite the ∼10% increase in molecular volume of the KTM mutant. The 

KTM binding paradigm may have a substantial impact on the biological function of the 

α3β2-nAChR.

Calculations of binding free energies were performed for both MII and KTM using MD free 

energy perturbation methods. For comparison and also to validate the relative free energy 

calculations, the same calculations were carried out for two additional α-CTx's, PnIA and 

TxIA, which have been shown to have higher binding affinities for the α3β2-nAChR than 

MII.54,55 PnIA has nine residue variations from the MII sequence, while TxIA has eight 

different residues (Table 3). The PnIA and TxIA sequences are similar, with conservation at 

all but residues 5, 9, and 15. Only Ser4 is conserved across all four peptide sequences, and 

this is the only sequence similarity among KTM, PnIA, and TxIA, excluding the five 

nonmutable residues defined in the GAMPMS analysis.
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As shown in Table 3, the calculated ΔGbind for KTM was −45.59 kcal/mol, which is more 

than double that of MII (−20.42 kcal/mol). This difference corresponds to a significant 

increase in binding free energy of −25.17 kcal/mol. The relative binding free energies of the 

reference PnIA and TxIA peptides compared with MII were roughly half this magnitude, 

producing ΔΔG values of −11.11 and −11.77 kcal/mol, respectively. Although the calculated 

binding free energies of PnIA and TxIA are difficult to correlate with that of MII in absolute 

terms since there is no direct translation between ΔGbind and experimentally obtained IC50 

values, the relative ΔGbind is in agreement with experimental results showing the significant 

predicted enhancement in binding affinity of these peptides for the α3β2-nAChR.54 The even 

greater affinity of KTM binding for the α3β2-nAChR is clearly supported by the 

considerably larger calculated binding free energy.

To further validate the method of creating the consensus sequence from the top GAMPMS 

results, MD free energy simulations were performed on the top sequence shown in Table 2 

in an equivalent manner. The sequence of WCCSRPGCYWTSHKWC differs from that of 

KTM at only three locations by the substitutions Y5R, S11T, and S13H. The calculated 

ΔGbind was found to be −39.14 kcal/mol (ΔGbound = −215.36 kcal/mol, ΔGsolv = −176.22 

kcal/mol). Comparison of the values to those in Table 3 shows that while the binding affinity 

of this peptide ligand for the α3β2-nAChR is superior to those of the native MII, PnIA, and 

TxIA, this ligand has a lower ΔGbind than the consensus sequence KTM. This is evidence 

that high residue conservation among top peptides resulting from vast mutant library 

searches is a strong indicator of key amino acid residues contributing to enhanced binding 

affinity.

There are notable differences between the free energies from the GAMPMS and MD 

simulations (Tables 2 and 3). Such differences arise from the discrepancies in the methods 

used to obtain these values. In molecular docking experiments, there is limited flexibility in 

the ligand and receptor side chains, thus reducing the possibility that optimal binding 

interactions will be established and the ligand will find its most stable binding configuration. 

Although useful in ranking potential candidates, the estimated free energies obtained by 

molecular docking can only be used as approximations toward determining optimal ligands 

within the errors associated with these limitations. By subsequent analysis by molecular 

dynamics, the binding energies of ligands can be more carefully determined. MD 

simulations permit the sampling of ensemble interaction configurations while allowing for 

much greater flexibility in the molecular structures. Likewise, by the use of perturbative free 

energy simulations, more accurate values can be obtained by slowly turning off (or on) 

relevant binding interactions and using the appropriate statistical analyses. This results in a 

better representative model system from which the binding free energy can be calculated.

The GAMPMS search of 40.96 billion possible peptide sequences to find those with the 

greatest binding affinity for the α3β2-nAChR produced a series of top results with high 

sequence homology using molecular docking to estimate the free energy of binding. The 

estimated ΔGbind was nearly double that of the native α-CTx MII ligand. In comparison to a 

previous GAMPMS application to this system using a limited mutation space of 640 000, 

consistencies are evident in the resulting top peptide sequences from the two mutant 

libraries. Of those residues mutated in the peptide subset, amino acid conservation among 
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the top 10 mutants was seen in Tyr5 and Trp10, which are the same as in KTM and most of 

the top mutants from the comprehensive search. Similarities were seen with each of the 

other residues 9, 11, 12, and 15, showing partial conservation of the same mutations 

preferential in the generation of the KTM sequence. The predicted binding free energies 

obtained ranged from −20.66 to −21.07 kcal/mol, which is approximately 10% lower than 

for the peptide mutants shown in Table 2. The inclusion of additional mutable residues in the 

searchable mutant library provided further opportunity for optimization of the peptide 

binding affinity and effectively demonstrated consistency in favored mutations at 

corresponding residue positions.

The high sequence homology among the top peptide ligand sequences produced by 

GAMPMS are evidence of important mutations contributing to optimal predicted binding 

affinity. Since the differences among the estimated binding free energies for the top results 

from molecular docking were within the error range of these methods, a definitive peptide 

sequence with the greatest affinity for α3β2-nAChR could not be immediately identified, 

although each was substantially more likely to exhibit stronger binding than MII. A 

consensus sequence, KTM, was taken from the top 50 peptide sequences on the basis of 

sequence homology, selecting the most frequently reached amino acid among each of the 

mutable residues. Basing the KTM sequence on residue conservation, as opposed to the 

absolute AutoDock scores accompanied by large relative errors, puts emphasis on which 

amino acid residues most favorably contribute to an optimal binding interaction. Through 

further investigation by molecular dynamics simulations, it was demonstrated that the 

binding affinity of KTM for the α3β2-nAChR was much greater than those of MII, the 

known α-CTx's PnIA and TxIA, and the top resulting sequences from GAMPMS.

Identifying ligands with greater biological activities toward targeted receptors could aid in 

the development of therapeutics with either inhibiting or stimulating effects. In the case of 

the nAChR, such discoveries could lead to innovative new treatments for neurodegenerative 

diseases. These discoveries may also provide valuable insight into the essential biological 

function of the targeted receptor. The structure–function relationship of a peptide receptor 

can be exceedingly complicated, and those receptor structures whose activity involves 

several dynamical contributions, such as the trans-membrane structures of the nAChR, only 

increase this complexity. Any information about the intricate interactions of ligand–receptor 

complexes is a step further in developing important targeted therapeutics.

Conclusions

The efficiency of genetic algorithms to substantially reduce the sample population size 

through evolutionary selection criteria has been demonstrated in this study. The 

implementation of GAMPMS has produced an α-CTx MII analogue with optimal binding to 

the α3β2-nAChR by heuristically searching the set of all possible amino acid residue 

combinations. The resulting consensus mutant peptide, KTM, was shown to have 

considerably higher binding affinity for the α3β2-nAChR than the highly studied reference 

α-CTx MII. Molecular dynamics free energy calculations produced a ΔGbind for KTM that 

was more than double that of MII, in agreement with the estimates of binding free energy 

provided by initial molecular docking results.
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This study demonstrates the utility of GAMPMS to search exceptionally large and otherwise 

intractable mutant libraries for sequences that possesses greater binding affinities for target 

receptors. The GAMPMS search of 40.96 billion possible peptide sequences to find those 

with the greatest binding affinity for the α3β2-nAChR produced a series of top results with 

high sequence homology and estimated ΔGbind values twice that of the potent MII ligand. 

The binding affinity of the resulting consensus sequence was confirmed by more intensive 

molecular dynamics simulations. While the identification of ligands with greater affinities 

for targeted receptors is undoubtedly advantageous for the development of therapeutics, the 

implementation of advanced searching algorithms, such as GAMPMS, will aid in expediting 

the process of new treatment discovery.
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Figure 1. 
Peptide structure and sequence of α-CTx MII.
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Figure 2. 
Schematic representation of the GAMPMS workflow.
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Figure 3. 
Relative frequencies of amino acid residues present in the top 50 sequences obtained from 

GAMPMS.
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Figure 4. 
Peptide structures of (A) α-CTx MII and (B) the consensus sequence from the GAMPMS 

search results (KTM).
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Figure 5. 
Root-mean-square deviations (RMSDs) of ligand atomic positions over the initial 50 ns MD 

simulations for α-CTx MII (black) and KTM (red).
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Figure 6. 
Numbers of hydrogen bonds formed between the ligands and the nAChR over the 50 ns MD 

simulations. Running averages of 500 ps are shown in yellow and green for the MII and 

KTM ligands, respectively.
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Figure 7. 
Hydrogen-bonding interactions of the α3β2-nAChR with (A) MII and (B) KTM revealed 

from MD simulations of GAMPMS docked structures.
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Figure 8. 
Overlay of MII (blue) and KTM (green) in the α3β2-nAChR binding pocket.
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Scheme 1. 
Thermodynamic Cycle Used in MD Binding Free Energy Calculations
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Table 1
α-CTx MII Mutant Ligand Library, Defined as a Base Peptide and a Set of Mutation 
Constraints

mutable residue substitutable amino acids

G1 G A V L I M W F

S4 S T Y N Q D E K R H

N5 S T Y N Q D E K R H

V7 G A V L I M W F

H9 S T Y N Q D E K R H

L10 G A V L I M W F

E11 S T Y N Q D E K R H

H12 S T Y N Q D E K R H

S13 S T Y N Q D E K R H

N14 S T Y N Q D E K R H

L15 G A V L I M W F
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Table 2
Top 10 Peptide Sequences with the Highest Binding Affinities for the nAChR α3β2-

Isoform As Identified by GAMPMS

peptide sequencea ΔGbindb ΔΔGc

WCCSRPGCYWTSHKWC −23.45 −11.07

GCCSYPFCSWTNSKWC −23.38 −11.00

FCCSYPGCYWTNNKWC −23.12 −10.74

WCCSYPGCSWSNSRWC −22.71 −10.33

WCCSHPGCYWSSHNWC −22.70 −10.32

FCCSYPVCYWSNSKWC −22.65 −10.27

FCCTYPGCYWTSRTAC −22.64 −10.26

FCCSHPGCYWSSHKWC −22.52 −10.14

WCCSYPACYWQSSTAC −22.39 −10.01

WCCSRPGCHWSSSTWC −22.26 −9.88

GCCSNPVCHLEHSNLC (MII) −12.38 –

aResidues conserved from the native sequence are set in bold type.

bEstimated from the AutoDock scoring function, in kcal/mol.

c
Free energy of binding relative to MII, in kcal/mol.
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