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Heras1*, Laura Bindila3‡, Fernando Rodrı́guez de Fonseca1,2‡*

1 Departamento de Psicobiologı́a. Facultad de Psicologı́a, Universidad Complutense de Madrid. Campus de

Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain, 2 IBIMA, Unidad de Gestión Clı́nica de Salud

Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain, 3 Institute of

Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz,

Germany, 4 Departamento de Biologı́a Celular, Genética y Fisiologı́a. IBIMA. Facultad de Ciencias,
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Abstract

Undernutrition during pregnancy has been associated to increased vulnerability to develop

metabolic and behavior alterations later in life. The endocannabinoid system might play an

important role in these processes. Therefore, we investigated the effects of a moderate

maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol

(2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA),

oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat off-

spring. We focused on brain structures involved in metabolism, feeding behavior, as well as

emotional and cognitive responses. Female Wistar rats were assigned during the entire

pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-

restricted diet. Weight gain and caloric intake of rat dams were monitored and birth out-

comes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippo-

campus and olfactory bulb of the offspring. R dams displayed lower gain weight from the

middle pregnancy and consumed less calories during the entire pregnancy. Offspring from

R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male

offspring displayed decreased levels of AA and OEA, with no change in the levels of the

endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels.

The opposite was found in the hippocampus, where R male displayed increased 2-AG and

AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory

bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moder-

ate diet restriction during the entire pregnancy alters differentially the endocannabinoids
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and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the under-

weight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfac-

tory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling

alterations might be involved in the long-term and sexual dimorphism effects commonly

observed after undernutrition and low birth weight.

Introduction

Decades ago, Barker and colleagues demonstrated a strong and paradoxical correlation

between low birth weight and the development of metabolic syndrome in adulthood [1].

Simultaneously, Dutch Famine cohort studies showed the long-lasting and deleterious effects

of undernutrition during early development [2]. These investigations led to propose the

DOHaD (Developmental origin of Health and Disease) hypothesis, stating that early life

insults could lead to increased vulnerability to develop diseases later in life [1] through a pro-

cess known as programming [3]. Extensive investigations in this area have focused on the

effects of undernutrition in the fetal period. Particularly, it has been shown that poor nutri-

tional environment in pregnancy is commonly associated to low birth weight, and to the devel-

opment of metabolic diseases, such as obesity and metabolic syndrome [1], whose prevalence

is reaching epidemic proportions worldwide [4].

Currently, although overnutrition is much more common in developed countries, the con-

sequences of undernutrition in critical windows of development represent still a burden. For

instance, for women in rich societies, the pressure of being fit and thin may lead to gain less

weight than recommended, increasing the risk to deliver a baby small for his gestational age

[5, 6]. Similarly, women with a past of eating disorders are at high risk for suffering preterm

birth and intrauterine growth restriction fetuses [7]. Despite the risk of metabolic diseases,

underweight at birth has been associated to behavioral abnormalities, including alterations in

cognitive performance, inadequate emotional responses or modifications in feeding behavior

[8–10]. Therefore, this evidence emphasizes the importance to approach the burden of fetal

undernutrition from different perspectives.

The effects of malnutrition during critical windows of human development by using animal

models mostly focused on investigating metabolic and/or behavioral alterations [11–14]. Simi-

larly to human studies, investigations using different animal species, but predominantly

rodents, have demonstrated that the phenotype exhibited by offspring following undernutri-

tion in utero may depend on the sex [11, 15–17] but also on the developmental stage where

undernutrition occurs [2, 18–20]. Furthermore and importantly, the research using animal

models has highlighted the underlying mechanisms leading to inadequate programming,

showing alterations in brain structures involved in metabolism, learning and emotional pro-

cesses after exposure to fetal undernutrition. For instance, the impairment of hypothalamic

circuitry development, intimately connected to modifications in leptin signaling, has been

described in animal models of intrauterine growth restriction [21, 22]. Moreover, dysregula-

tion in hippocampal circuitries associated to BDNF (brain-derived neurotrophic factor) alter-

ations in specific developmental stages has also been reported in offspring, either after

exposure to a maternal calorie-restricted diet [23] or low dietary intake of n-3 polyunsaturated

fatty acids (PUFAs) during pregnancy and lactation [24].

Closely related to leptin signaling and BDNF [25, 26], the endocannabinod system (ECS), a

lipid signaling system, has emerged as a putative modulator of the biological mechanisms

involved in developmental programming [27]. Indeed, the ECS has been demonstrated to be
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crucial for regulating energy balance and food intake via central and peripheral mechanisms

[28], as well as for the control of emotional responses and learning [29]. Consequently, ECS

dysregulation has been associated to the development of obesity, metabolic syndrome and neu-

ropsychiatric disorders [30, 31], which are diseases that might occur as a result of inadequate

early life programming [1, 2, 8–13, 15–17, 20], as mentioned above. In addition to the endo-

cannabinoids, non-cannabinoid acylethanolamines (OEA, PEA) that shares biosynthetic and

degradation enzymatic pathways with anandamide, also contribute to the control of appetite,

weight gain and lipid metabolism [28, 31, 32]

The main endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are syn-

thesized from phospholipids containing arachidonic acid (AA), which is a linoleic acid derivative

[32] and belongs to the n-6 polyunsaturated fatty acid (PUFA) family. Noteworthy, several investi-

gations have revealed the importance of PUFAs in brain development. For instance, a negative

correlation between n-3 PUFA intake and increased vulnerability to neuropsychiatric disorders

has been shown [33–36]. The role of n-6 PUFAs, precursors of arachidonic acid and ultimately of

endocannabinoids, has been pointed out as critical in these processes as well [33, 37]. Specifically,

endocannabinoid signaling plays a crucial role in important processes involved in brain matura-

tion, including the establishment of adequate neural connections and synaptogenesis [33, 38].

Moreover, prenatal administration either of agonists, such as THC (Δ9-tetrahydrocannabinol), or

antagonists of cannabinoid receptors, has been associated to disruption of neuronal activity, defec-

tive establishment of cortical connectivity and behavioral abnormalities [39–43].

Although less investigated, altered nutritional conditions during early life might also have

an impact on endocannabinoid signaling, leading to disturbances in brain functions and/or

behaviors. Thus, prenatal and postnatal exposure to restricted omega-3 diet has been associ-

ated to impaired endocannabinoid-mediated neuronal functions in the adult brain, together

with behavioral abnormalities [36]. Moreover, exposure to a maternal diet rich in n-3 or n-6

fatty acids modifies arachidonic acid and/or endocannabinoid levels in neonatal hypothalamus

and hippocampus, resulting in alterations in the hypothalamus- pituitary-adrenal axis func-

tions [44]. Therefore, this piece of evidence suggests that an inadequate endocannabinoid

signaling resulting from exposure to an unbalanced maternal diet, might disrupt the establish-

ment of functional circuitries involved in metabolism, learning and emotional control, leading

to metabolic and neurobehavioral abnormalities later in life [27].

To date, only a few studies have addressed the relation between a global undernutrition in

early life and endocannabinoid signaling. For instance, a pioneer study demonstrated modifi-

cations in the levels of endocannabinoids at weaning after maternal exposure to a calorie-

restricted diet during pregnancy and/or lactation [45]. However, the impact of nutrient defi-

ciency in earlier stages has been poorly investigated. Addressing this question could be espe-

cially pertinent considering that endocannabinoid levels fluctuate strongly during early

development [46], which suggests a potentially critical contribution of endocannabinoid sig-

naling in the earliest neural development processes. Accordingly, we have recently showed

that exposure to a hypocaloric maternal diet implemented before and during gestation has an

impact on the brain endocannabinoids and endocannabinoid-related lipids, leading to long-

lasting consequences in offspring [47].

Taking into account that the timing of caloric restriction could be critical on the effects exhib-

ited by offspring [2, 18–20] and that these effects might be sex-dependent [11, 15–17], this study

aims at investigating the impact of a moderate caloric restriction applied during the entire preg-

nancy on male and female newborn rats. Particularly, we measured at birth the endocannabinoid,

arachidonic acid and N-acylethanolamines (NAEs) content in brain structures involved in the

modulation of metabolism, feeding behavior, learning and emotional responses, such as hypo-

thalamus, hippocampus and olfactory bulb [28, 29, 48]. We hypothesize that endocannabinoid
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signaling could be impaired in the offspring after exposure to maternal undernutrition during

the complete pregnancy in a sex specific-manner.

Material and methods

This study was approved by the Animal Ethics Committee of the Complutense University of

Madrid and was conducted in compliance with the European Directive 2010/63/EU on the

protection of animals used for scientific purposes and according to the Spanish regulations

(RD 53/2013 and 178/2004).

Animals, diets and experimental design

Adult female Wistar rats (6 months old) (Harlan, Barcelona, Spain) were allowed to acclimate

for a minimum of four weeks before the beginning of the experiments. Rats were handled and

housed in groups under a 12 hours light-dark cycle with temperature of 22±1˚C. After the

acclimation period, animals weighed 304±4 g and estrous cycle was evaluated daily. In the

morning of proestrous, females were allowed to mate with a male of the same strain. Each

male rat was mated with females from both groups (described below). The mating phase lasted

24 hours and occurred in the female cage. In the following morning the presence of vaginal

plug or spermatozoa in vaginal smear confirmed successful mating, and this was defined as

gestational day 0. Then, females rats were individually housed and randomly assigned to con-

trol (n = 4) or caloric restriction diet (n = 7) groups. At this stage, no statistical significant dif-

ference in body weight between groups was found.

Control rats (n = 4) were given free access to standard chow (Standard chow SAFE A04,

Panlab, Barcelona, Spain). The standard chow provided 16.1% protein, 60% carbohydrate,

3.1% fat, 4% fiber, 0.0025% sodium and 2.9 kcal/g as energy content. In contrast, calorie-

restricted dams (n = 7) were given a daily amount of food corresponding to 80% of the calories

provided to control rats in the same gestational day, according to body weight (20% of caloric

restriction). Water was provided ad libitum in both animal groups.

The day the dams were found with their respective litter was defined as postnatal 0 (PN0).

Within 14 hours after birth, pups were weighed, sexed and sacrificed by quick decapitation.

Brains were collected and brain regions were dissected for endocannabinoids measurement.

None of the animals utilized in the present study showed signs of illness or died prior to the

experimental endpoint.

Endocannabinoids and endocannabinoid related-lipids measurement

At PN0, male offspring chosen to be sacrificed were decapitated during the second/third hour

of the dark phase and brains were quickly removed and frozen at −80˚C until brain region dis-

section. To avoid the possibility of variable outcomes among litters, brains from at least three lit-

ters per group were used to carry out endocannabinoids and endocannabinoid related lipid

measurement (control male pups, n = 14-14-12 and male pups from calorie-restricted group,

n = 14-18-14, for hypothalamus, hippocampus and olfactory bulb respectively; control female

pups, n = 10-9-9 and female pups from calorie-restricted group, n = 10-10-10, for hypothala-

mus, hippocampus and olfactory bulb respectively). For the isolation of the selected brain

regions, brains were thawed in cold Tris-HCl buffer (50 mM, pH = 7.4) and the entire hypothal-

amus, right hippocampus and right olfactory bulb was quickly dissected and immediately frozen

at −80˚C until lipid extraction. The overall dissection procedure was carried out in less than 7

minutes for all animals to allow reliable comparative assessment of endocannabinoid levels.

For lipid extraction, pre-cooled steel balls of 5 mm were added to pre-cooled tubes contain-

ing the tissue. A solution of deuterated endocannabinoids (AEA-d4, 2-AG-d5, AA-d8, MAEA,
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OEA-d2, PEA-d4 and 1-AG-d5, Cayman Chemicals, Ann Arbor, MI, USA) in acetonitrile was

added to the tissue along with 300 μL of ice-cold 0.1 M formic acid and 300 μl of ethylacetate/

hexane (9:1, v/v). Then, the samples were homogenized with a TissueLyser II (Qiagen, Hilden,

Germany) for 60 s at 30 Hz. Subsequently, the samples were centrifuged for 10 min at 5,000 g

and 4˚C and frozen at -20˚C for 20 min. The organic phase was removed and evaporated

under a gentle stream of nitrogen at 37˚C. The aqueous phase was further used for protein

content determination. The lipid extract was resolubilized in 50-μL acetonitrile/water (1:1, v/

v) and quantitative analysis of the endocannabinoid levels was carried out by liquid chroma-

tography-multiple reaction monitoring (LC-MRM). The concentrations of internal standards,

as well as the calibration curves, were set and tailored using test hypothalamus, hippocampal

and olfactory bulb tissues. The LC/MRM conditions for quantitative analysis of the endocan-

nabinoids were set as previously described [49]. For protein quantification, the BCA method

(bicinchoninic acid assay) was used and measurements were performed by using a FLUOstar

Galaxy (BMG Labtechnologies).The endocannabinoid levels determined by LC/MRM were

then normalized to the corresponding protein content of the tissues as previously described

[49–51].

Statistical analysis

Caloric intake and body weight gain over time of rat dams were analyzed by two-way repeated

measures analysis of variance (ANOVA), with time and pregnancy diet as factors. Multiple

comparisons were assessed by Bonferroni post hoc test. Further analysis were performed by

using the Student’s t-test, when data passed the normality requirements (D’Agostini Pearson

test), or Mann-Whitney’s U test. A p-value below 0.05 was considered statistically significant.

Results

Impact of a moderate caloric restriction during gestation on rat dams

Effect of a moderate gestational restriction diet on maternal weight gain. Repeated

measures ANOVA showed decreased cumulated weight gain in calorie-restricted dams as

compared to controls during the entire pregnancy (F(1,9) = 5.7, p<0.05). Specifically, Bonfer-

roni multiple comparisons showed that statistically significant differences between groups

started at gestational day 12 (F(1,9) = 7.78, p<0.05) and lasted up to day 20 (F(1,9) = 6.40, p<

0.05) (Fig 1A and S1 Data). Moreover, at PN0, calorie-restricted mothers weighed signifi-

cantly less than controls (mean weight and SEMs of controls vs calorie-restriction: 342.1 9.38

vs 303.2 9.82, Mann-Whitney’s U test, U(4,7) = 3, p<0.05) (data not shown).

Effect of a moderate gestational restriction diet on maternal caloric intake. According

to the experimental design carried out, the cumulative caloric intake of calorie-restricted dams

was decreased (repeated measures ANOVA, F(1,9) = 184.51, p<0.001). Statistically significant

differences between groups started at gestational day 1 (F(1,9) = 53.08, p<0.001) and lasted up

to the end of measurements (day 20) (F(1,9) = 169.53, p<0.001) (Fig 1B).

Taken together these data indicate that calorie-restricted diet has an impact on weight gain

and absolute body weight during pregnancy. Moreover, taking into account the experimental

design adopted in the present study, calorie-restricted dams consumed less calories as com-

pared to controls.

Effect of a moderate maternal caloric restriction on birth outcomes

Pups from control dams and calorie-restricted mothers were born between gestational day

21–22. At birth, offspring from gestational calorie-restricted dams weighed significantly less
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than controls: both sexes taken together (t = 6.199, p<0.001); male (t = 4.768, p<0.001);

female (t = 3.997, p<0.001) (Fig 1C). In contrast, no significant differences in litter size were

found either in both sexes analyzed together or in each sex analyzed separately (Fig 1D).

Thus, gestational calorie-restriction leads to underweight at birth without modifying the litter

size.

Fig 1. Effect of gestational calorie-restriction on rat dams and birth outcomes. Experiments started the following day of mating. Calorie-

restricted rat dams (n = 7) received 80% of control dams (n = 4) food intake according to body weight, which was measured daily (restriction of 20%).

Calorie-restricted diet lasted until birth. Figures A and B describe the cumulative weight gain (g) and cumulative caloric intake (Kcal/Kg), respectively,

of control (open triangles) and calorie-restricted (solid circles) dams during pregnancy. At PN0 (birth day), litter size was evaluated and pups were

sexed and weighed. Figures C and D describe the absolute body weight (g) and litter size, respectively, of offspring from control dams (n = 30) and

offspring from calorie-restricted dams (n = 47) at birth (open and solid bars, respectively). Values are expressed as mean +/- SEM. Data were

analyzed with repeated measures ANOVA followed by Bonferroni multiple comparisons (A, B), and Student´t test (C, D): *p<0.05, ***p<0.001.

https://doi.org/10.1371/journal.pone.0174307.g001
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Impact of a moderate maternal caloric restriction on endocannabinoid

and endocannabinoid-related lipid levels in specific brain regions of male

and female offspring at birth

Hypothalamic endocannabinoid and endocannabinoid-related lipid levels in male and

female offspring at birth. Statistically significant differences between perinatal groups were

found in endocannabinoids and/or endocannabinoid-related lipids at birth in male and female

offspring. Specifically, male pups from gestational calorie-restricted dams displayed significant

lowers levels of AA as compared to controls (U = 45.00, p<0.05) (Fig 2C and S2 Data), but

similar levels of AEA (t = 0.8515, p>0.05) and 2-AG (t = 1.275, p>0.05) (Fig 2A and 2B,

respectively). Regarding NAEs levels, offspring from calorie-restricted dams presented lower

concentrations of oleoylethanolamide (OEA) (U = 46.00, p<0.05) (Fig 2D), but no significant

differences in palmitoylethanolamide (PEA) levels (U = 79, p>0.05) (Fig 2E). Female pups

exhibited decreased level of 2-AG (t = 2.649, p<0.05) (Fig 3B) but no differences either in

AEA or AA (U = 42, p>0.05 and U = 36, respectively) were found (Fig 3A and 3C). Females

also presented a reduction of PEA levels (t = 2.197, p<0.05) (Fig 3D). The OEA values in the

hypothalamus could not be reliably quantified in female offspring (data not shown).

Taken together, these data show that a moderate caloric restriction diet during pregnancy

decreases hypothalamic content of the endocannabinoid and/or the endocannabinoid-related

lipids in the offspring with sex-dependent differences.

Hippocampal endocannabinoid and endocannabinoid related-lipid levels in male and

female offspring at birth. Measurements of hippocampal endocannabinoid and endocanna-

binoid-related lipids showed statistical differences between perinatal groups in both sexes.

Fig 2. Endocannabinoid and endocannabinoid-related lipid levels in the hypothalamus of male offspring at birth. Anandamide (AEA),

2-arachidonoylglycerol (2-AG), arachidonic acid (AA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels in the hypothalamus of

male offspring (A-E) from control dams (n = 14) and calorie-restricted dams (n = 14) at birth (open bars and solid bars, respectively). Values are

expressed as mean +/- SEM. Data were analyzed by Student´s t-test (A, B) or Mann Whitney´s U test (C, D, E): *p<0.05.

https://doi.org/10.1371/journal.pone.0174307.g002
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Specifically, the male offspring from calorie-restricted dams displayed increased levels of 2-AG

(t = 2.721, p<0.05) and AA (U = 65.00, p<0.05) (Fig 4B and 4C, respectively, and S3 Data).

A strong tendency to increased levels of PEA in calorie-restricted male offspring was also

detected (t = 1.775, p = 0.08) (Fig 4E). However, no differences between groups either in AEA

(t = 0.1325, p>0.05) or OEA (U = 93, p>0.05) levels were found (Fig 4A and 4D, respectively).

In contrast, calorie-restricted female pups showed increased hippocampal AEA (t = 2.264,

p<0.05) (Fig 5A) and, similarly to male offspring, enhanced levels of AA (t = 2.401, p<0.05)

(Fig 5C), although 2-AG levels were unchanged (t = 1.489, p>0.05) (Fig 5B). Moreover,

female offspring from diet-restricted dams presented higher hippocampal levels of PEA

(U = 18, p<0.05) than control female pups (Fig 5D). The OEA values in the hippocampus

could not be reliably quantified in female offspring (data not shown).

Taken together, these data indicate that a moderate caloric restriction during pregnancy

increases the hippocampal endocannabinoids and/or endocannabinoid-related lipids in the

offspring with sex-dependent differences.

Endocannabinoid and endocannabinoid-related lipid levels in the olfactory bulb of

male and female offspring at birth. The statistical analysis did not reveal any alteration in

endocannabinoids, such as AEA (t = 0.68, p>0.05) and 2-AG (U = 75, p>0.05), AA (U = 68,

p>0.05) and PEA (U = 68, p>0.05) levels in the olfactory bulb of male offspring from calorie-

restricted dams as compared to controls (Fig 6). In contrast, significant alterations in the endo-

cannabinoid and endocannabinoid-related lipids were detected in female restricted offspring

(Fig 7 and S4 Data). Specifically, calorie-restricted females exhibited decreased levels of AEA

(t = 3.279, p<0.01) (Fig 7A), AA (t = 2.471, p<0.05) (Fig 7C) and PEA (t = 2.639, p<0.05)

(Fig 7D) in this brain structure. No differences were found between groups in the levels of

Fig 3. Endocannabinoid and endocannabinoid-related lipid levels in the hypothalamus of

female offspring at birth. Anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and

palmitoylethanolamide (PEA) levels in the hypothalamus of female offspring (A-D) from control dams (n = 10)

and calorie-restricted dams (n = 10) at birth (open bars and solid bars, respectively). Values are expressed as

mean +/- SEM. Data were analyzed by Student´s t-test (B, D) or Mann Whitney´s U test (A, C): *p<0.05.

https://doi.org/10.1371/journal.pone.0174307.g003
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2-AG (t = 1.550, p<0.05) (Fig 7B). The OEA values in the olfactory bulb could not be reliably

quantified in both male and female offspring (data not shown).

Taken together, these data indicate that a moderate caloric restriction diet during preg-

nancy modifies the levels of endocannabinoids and/or endocannabinoid-related lipids in the

hypothalamus, hippocampus and/or olfactory bulb of offspring. Specifically, male and female

offspring from calorie-restricted dams that were underweight at birth displayed decreased

endocannabinoids and endocannabinoids-related lipids in the hypothalamus, whereas the

opposite was found in the hippocampus. The female offspring also showed the same tendency

as hypothalamus to reduced endocannabinoid and endocannabinoid-related lipids in the

olfactory bulb. Importantly, alterations in each endocannabinoid and/or related lipid occurred

differently according to the sex of the offspring.

Discussion

The main finding of the present study is that newborn rats exposed to a moderate caloric

restriction during the entire pregnancy displayed alterations in endocannabinoids and/or

endocannabinoid-related lipids, in brain structures involved in the regulation of metabolism

and emotional and cognitive responses. Specifically, male and female offspring from diet-

restricted dams exhibited decreased levels of the main endocannabinoids, their precursor and/

or NAEs in the hypothalamus and, conversely, they showed enhanced content of these lipids

in the hippocampus. This similar profile between males and females from calorie-restricted

dams was not evident in the olfactory bulb, where the calorie-restricted female offspring pre-

sented decreased levels of AEA, their precursor (AA) and PEA. Moreover, these modifications

Fig 4. Endocannabinoid and endocannabinoid-related lipid levels in the hippocampus of male offspring at birth. Anandamide (AEA),

2-arachidonoylglycerol (2-AG), arachidonic acid (AA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels in the hippocampus of

male offspring (A-E) from control dams (n = 14) and calorie-restricted dams (n = 18) at birth (open bars and solid bars, respectively). Values are

expressed as mean +/- SEM. Data were analyzed by Student´s t-test (A, B, E) or Mann Whitney´s U test (C, D): *p<0.05

https://doi.org/10.1371/journal.pone.0174307.g004
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were accompanied of underweight at birth, a common result when diet restriction is applied

for the entire pregnancy or in the last phases of pregnancy [12, 13]. Interestingly, this finding

has been widely associated to metabolic and behavioral abnormalities later in life [12–14].

The majority of animal research conducted to evaluate the effects of undernutrition in criti-

cal developmental windows has focused on investigating the deleterious effects of a severe ges-

tational diet restriction in the offspring [12, 13]. In our study, we have adopted a moderate

maternal calorie-restriction, that may have simulated better the reduction in food intake docu-

mented in some human studies, commonly associated to decreased weight gain during preg-

nancy [5, 6, 52], and could have prevented unnecessary effects in the animals. In rodents, this

type of maternal restriction has been demonstrated previously to be enough to induce long-

lasting alterations in offspring [11, 14, 53, 54]. Moreover, we have recently showed that the pre-

conceptional and gestational exposure to a moderate calorie-restricted diet increases the risk

of developing features of metabolic syndrome as well as behavioral abnormalities in the off-

spring [47, 55]. Importantly, in the present study, we have demonstrated for the first time that

a moderate maternal caloric restriction applied during the entire pregnancy alters brain endo-

cannabinoid and/or endocannabinoid-related lipid levels at birth in male and female offspring

and reduces the weight at birth.

The modifications in the supply of nutrients to the fetus may have altered the intrauterine

growth leading to inadequate size at birth in our study. Regarding the most important nutri-

ents during intrauterine life, apart from glucose and aminoacids, the fatty acids and, particu-

larly, the long-chain (LC) PUFAs, such as the arachidonic acid (AA) and docosahexaenoic

acid (DHA) has been revealed as critical elements for a correct growth and neurodevelopment

[37, 56]. The concentration of LC-PUFAs and their precursor depends on diet, fatty acid stor-

age in the adipose tissue and endogenous synthesis, which requires adequate functionality of

the enzymes involved in desaturation and elongation of essential fatty acids [57]. Therefore, to

Fig 5. Endocannabinoid and endocannabinoid-related lipid levels in the hippocampus of female

offspring at birth. Anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA), and

palmitoylethanolamide (PEA) levels in the hippocampus of female offspring (A-D) from control dams (n = 9)

and calorie-restricted dams (n = 10) at birth (open bars and solid bars, respectively). Values are expressed as

mean +/- SEM. Data were analyzed by Student´s t-test (A, B,C) or Mann Whitney´s U test (D): *p<0.05.

https://doi.org/10.1371/journal.pone.0174307.g005
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ensure an adequate fatty acid supply, the fetuses and new born animals depend on the mother

nutritional status and the placenta functionality to obtain both essential fatty acids (EFAs) and

long-chain fatty acids (LC-PUFAs). This is due to the limited capacity of the fetus to transform

EFAs and the importance of depositing the PUFAs in key tissues, including the fetal brain,

during intrauterine growth [57, 58]. Regarding the endocannabinoids, little is known about

the fetal-maternal relationship in endocannabinoid content. It has been proposed that, al-

though n-6 PUFA derivatives may be synthetized by the fetus in the tissues, the placenta may

also transfer maternal endocannabinoids to the fetus by contributing to maintenance of the

endocannabinoid basal tone [27]. Consequently, a maternal caloric restriction in our study

may have had an impact on the levels of PUFAs and their derivatives, including the endocan-

nabinoids, in the fetus, and leading to alterations in endocannabinoid and related lipid levels

in different brain structures.

Indeed, we found decreased levels of endocannabinoids and/or endocannabinoid-related

lipids in the hypothalamus of male and female offspring. Specifically, we found decreased AA

levels in the hypothalamus of male offspring, without any change in the concentrations of AA-

derived endocannabinoids (i.e., AEA and 2-AG). In contrast, the female offspring exhibited

decreased levels of 2-AG in this brain region despite the unchanged concentrations of its pre-

cursor (AA). Apart from the reduced concentration of the LC-PUFAs after a caloric restriction,

including the reduction of the AA, precursor of endocannabinoids, an alternative explanation

to these findings may involve a sex-specific alteration in the activity and/or levels of the endo-

cannabinoid metabolic enzymes. Therefore, in an attempt to maintain endocannabinoid and/or

Fig 6. Endocannabinoid and endocannabinoid-related lipid levels in the olfactory bulb of male

offspring at birth. Anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and

palmitoylethanolamide (PEA) levels in the olfactory bulb of male offspring (A-D) from control dams (n = 12)

and calorie-restricted dams (n = 14) at birth (open bars and solid bars, respectively). Values are expressed as

mean +/- SEM. Data were analyzed by Student´s t-test (A) or Mann Whitney´s U test (B, C, D): *p<0.05.

https://doi.org/10.1371/journal.pone.0174307.g006
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AA homeostasis, an increased synthesis of 2-AG and AEA could have lately determined the

reduction of AA in male offspring. Conversely, an increased degradation of 2-AG may have

determined its reduction and maintained the AA content in females unchanged. Further analy-

sis of the expression and activity of enzymes responsible for biosynthesis and degradation of

endocannabinoids has to be addressed to confirm this hypothesis. Another possibility is that an

increased endocannabinoid transfer from mother, through placenta, might have also contrib-

uted to maintain an endocannabinoid tone in the hypothalamus of male offspring [27], despite

the decreased AA availability and the depletion in maternal tissues due to undernutrition. This

idea is supported by previous studies showing differences in male and females placentas after

inadequate maternal diets [59, 60].

Our finding in male hypothalamus contrasts with a previous report [45], describing

decreased hypothalamic endocannabinoid levels in male offspring coming from dams exposed

to a 50% calorie-restricted diet during late pregnancy. However, in this interesting study and

differently to ours, the endocannabinoid measurement was performed at weaning, and not at

birth. Considering that the pups are independent from the maternal fatty acid stores at this

developmental stage, the levels of endocannabinoids here may easily have reflected the meta-

bolic status of the pups and, thus, their own fatty acid stores. Specifically, in this previous study

the pups at weaning exhibited decreased body weight that was accompanied by a reduction of

hypothalamic AEA. Although the body weight at birth was not reported in this study, similar

types of restriction have been associated to decreased body weight at birth, which suggests that

these animals did not exhibited a rapid catch-up growth. This phenomenon has been described

after caloric restriction in pregnancy and/or small fetuses associated to hyperphagia [12, 13]

and is known to induce a severely dysfunctional metabolic phenotype in the offspring later

life [13, 61]. Therefore, the decreased hypothalamic anandamide described in the study of

Matias et al. (2003) might have affected the appetite [62, 63] in these animals, leading to a lean

Fig 7. Endocannabinoid and endocannabinoid-related lipid levels in the olfactory bulb of female

offspring at birth. Anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and

palmitoylethanolamide (PEA) levels in the olfactory bulb of female offspring (A-D) from control dams (n = 9)

and calorie-restricted dams (n = 10) at birth (open bars and solid bars, respectively).Values are expressed as

mean +/- SEM. Data were analyzed by Student´s t-test: *p<0.05, **p<0.01.

https://doi.org/10.1371/journal.pone.0174307.g007
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phenotype at weaning and favoring complete recovery at adulthood. Although we did not eval-

uate the long-term effects on the offspring, the opposite might have occurred in our study. Par-

ticularly, we found decreased levels of OEA in the hypothalamus of male offspring from

calorie-restricted mothers. Considering that this NAE is involved in the modulation of satiety

[64], our data suggest a possible increased appetite in these animals, similar to previously

reported in offspring exposed to undernutrition in pregnancy and undergoing to rapid catch-

up growth during lactation and infant period and impaired metabolic phenotype at adulthood

[13, 61].

Moreover, in female hypothalamus we found decreased levels of PEA, a NAE with anti-

inflammatory and antiobesity properties [65, 66], suggesting the possibility of inflammatory

status in female offspring, which has been associated to the development of metabolic and

behavioral abnormalities [67–69].

The reduction of the levels of OEA and PEA in male and female offspring may be a conse-

quence of a limited amount of the precursors required for their synthesis, particularly the oleic

acid and/or palmitic acid, as previously proposed in adult animals [70, 71] and recently dem-

onstrated in humans [72]. Additionally, the impairment of the activity and/or levels of the

enzymes implicated in the synthesis and degradation of NAEs might also explain these results.

Further research is needed to address these possibilities.

Concerning the possible interpretation to our findings in hypothalamus, it is important to

note that previous studies have showed that the reduction in both AA and endocannabinoid

levels in this brain structure at birth is associated to the development of metabolic disturbances

at adulthood [47, 51]. Although alterations in endocannabinoids were not observed in male

offspring in this brain region, the decreased levels of AA and their association with decreased

birth at weight found in the present study might have promoted adverse consequences in the

development of hypothalamus. This supposition takes into account that AA is a LC-PUFA

involved in growth and brain development and is the precursor of the eicosanoids, which con-

tribute to regulate cell proliferation, growth, immunity and inflammation [37].

We also evaluated the endocannabinoid levels in the hippocampus, a brain structure

involved in modulating emotional responses and where the endocannabinoid system plays an

important role in memory formation and neurogenesis associated to metabolism-dependent

mechanisms [29, 73]. Intriguingly, we found increased hippocampal levels of AA and 2-AG at

birth in male offspring from calorie-restricted dams, which is opposite to the findings in the

hypothalamus. In the female hippocampus we also found increased concentration of AEA, AA

and PEA levels. The increased endocannabinoid and AA levels found in our animals might

reflect a fetal adaptation against the reduced availability of nutrients to preserve hippocampal

development. This idea is supported by previous works showing fluctuating BDNF levels, a

protein related to endocannabinoids [26], in different stages of the brain development of off-

spring from severely calorie-restricted dams [23]. Interestingly, a peak in 2-AG levels at PN1

in the whole brain has been described together with increased expression of the cannabinoid

receptor type 1 (CB1), suggesting the importance of endocannabinoids (i.e., 2-AG) and endo-

cannabinoid synthesis precursors (i.e., AA) for an adequate brain development [46]. Consider-

ing this evidence, the increased 2-AG and AA levels at PN0 in male offspring may reflect a

premature peak to prevent the deleterious effects on hippocampus development. In female off-

spring we found increased AEA and PEA levels. It is interesting to note that the enzyme fatty

acid amide hydrolase (FAAH) degrades both AEA and PEA [74], which suggests that an even-

tual alteration in this metabolic enzyme may be implicated. Moreover, the increased levels of

AA, 2-AG and AEA in male and female offspring suggest that implementing a moderate calo-

ric restriction in rat previously well-nourished might have a modest impact on the fatty acid

storage at the beginning of pregnancy, favoring the deposition of AA in hippocampus. In
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particular, it is interesting to note that these findings contrasts with the results recently

described by our group in offspring from mothers exposed to the same caloric restriction dur-

ing the preconceptional and gestational period, and with presumably decreased maternal

stores. In this previous study, we observed decreased levels of AEA in hippocampus at birth in

association to increased anxiety-related responses in adolescence [47], suggesting that the

potential compensatory effect of increased endocannabinoids in the hippocampus is inverted

in worse nutritional conditions. Further research is needed to confirm these possibilities.

Although the role of the endocannabinoid system in behavioral programming has not been

well established yet, alterations in hippocampal endocannabinoid content are known to pro-

mote impaired emotional and cognitive responses. For instance, a decrease in the hippocampal

2-AG level has been correlated to anxiety-related responses [51, 75, 76], and the blockade of

anandamide reuptake specifically in the hippocampus produces anxiolytic effects [77]. Fur-

thermore, increased 2-AG in hippocampus was associated to mitigation of the cognitive alter-

ations in severely undernourished mice supplemented with a diet rich in fish oil, an important

source of n-3 PUFAs [78], although the opposite has been described in an animal model of

schizophrenia [79]. In the context of nutritional programming, emotional responses and cog-

nitive performance have been found to be affected after exposure to undernutrition during

critical windows of development and/or in new born small for gestational age [14, 20, 80] and

in a sex specific-manner [81, 82]. Despite this evidence, the increased levels of 2-AG, AEA and

AA we found in the hippocampus are difficult to interpret, considering that CB1 receptor acti-

vation by endocannabinoids may mediate bimodal opposite responses depending on the dif-

ferential distribution of CB1 in distinct neuronal populations [29].

Additionally, we measured endocannabinoid and NAE levels in the olfactory bulb of male

offspring. The contribution of the endocannabinoid system has been revealed recently in this

brain structure, where CB1 receptor stimulation increases odor perception and food intake in

fasted animals [48]. In male offspring, we did not detect any modification in the endocannabi-

noid levels in the olfactory bulb from calorie-restricted dams, even though these animals dis-

played higher levels of OEA in the hypothalamus, which was probably associated to disrupted

hunger and/or feeding behavior in these animals. However and interestingly, the female off-

spring displayed decreased levels of AEA, AA and PEA in the olfactory bulb, suggesting alter-

ations in feeding behavior and an inflammatory status. The findings in female offspring are in

agreement to a previous report showing that prenatal adverse conditions (such as prenatal

stress) can affect odor preference in a sex specific-manner, leading to alterations in odor pref-

erence in female offspring [83] and suggesting that the females might have increased vulnera-

bility in this brain structure after exposure to adverse perinatal conditions.

The changes in endocannabinoid and/or endocannabinoid-related lipid levels found in the

hypothalamus and hippocampus of male and female offspring from calorie-restricted dams

raise several questions. On the one hand, as modifications in these lipid regulators were found

in developing brain structures in association with decreased weight at birth, we cannot discard

the possibility that these alterations might have long-lasting consequences in the offspring, as

it has been previously reported [12–14]. Indeed, alterations in endocannabinoid signaling in

brain structures involved in the modulation of metabolism and emotional responses may lead

to inadequate neuronal wiring or subtle alterations in neuronal connectivity and favor vulner-

ability to diseases later in life [27]. Moreover, previous studies have shown that alterations in

endocannabinoid signaling during early development after treatment with specific agonists/

antagonists of the CB1 cannabinoid receptors are associated to long-lasting neurochemical,

endocrine and behavioral effects [39–43]. In support of this notion, we have recently reported

changes in brain endocannabinoids and endocannabinoid-related lipids at birth after inade-

quate maternal diets in hypothalamus and hippocampus in association with metabolic and
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behavioral alterations [47, 51]. On the other hand, it is possible that some brain structures

were protected from the effects of a moderate caloric restriction implemented only during

pregnancy by the preferential uptake of the fetal tissues of specific LC-PUFAs, such as AA or

n-3 PUFAs. It is interesting to note here that the n-3 PUFAs can affect the levels of endocanna-

binoids by decreasing their levels by competing for the metabolic enzymes [70, 84], or by

increasing their levels depending on different circumstances [78, 85]. Additionally, the pres-

ence of sexual dimorphism mainly associated to the alterations found in olfactory bulb and the

PEA levels in all the brain regions of females, suggest that the maternal calorie-restriction

might have affected the male and female offspring through different mechanisms. Further

investigations are needed to explore these possibilities.

Conclusions

In summary, we have demonstrated that a moderate caloric restriction during the entire preg-

nancy results in underweight offspring with altered endocannabinoid, AA and/or NAE levels

in the hypothalamus, hippocampus and/or olfactory bulb of male and female offspring at birth

in a sex-specific manner. These data represent a first step towards understanding the possible

contribution of the ECS in the nutritional programming, considering the available data on the

long-lasting effects of undernutrition and underweight at birth. Understanding why dietary

manipulations modify hypothalamic, hippocampal and olfactory bulb endocannabinoid and

endocannabinoid-related lipid levels, and whether these changes lead to permanent dysfunc-

tions in the ECS and/or impairment in circuitries involved in the regulation of metabolism

and emotional behaviors in a sex-specific manner need to be elucidated. Therefore, further

investigations are required to clarify the role of the ECS in nutritional programming.
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51. Ramı́rez-López MT, Vazquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, et al. Exposure to a

Highly Caloric Palatable Diet During Pregestational and Gestational Periods Affects Hypothalamic and

Hippocampal Endocannabinoid Levels at Birth and Induces Adiposity and Anxiety-Like Behaviors in

Male Rat Offspring. Front Behav Neurosci. 2016; 9:339. https://doi.org/10.3389/fnbeh.2015.00339

PMID: 26778987

52. Micali N, Treasure J, Simonoff E. Eating disorders symptoms in pregnancy: a longitudinal study of

women with recent and past eating disorders and obesity. J Psychosom Res. 2007; 63(3):297–303.

https://doi.org/10.1016/j.jpsychores.2007.05.003 PMID: 17719368

53. Garcia AP, Palou M, Priego T, Sanchez J, Palou A, Pico C. Moderate caloric restriction during gestation

results in lower arcuate nucleus NPY- and alphaMSH-neurons and impairs hypothalamic response to

fed/fasting conditions in weaned rats. Diabetes Obes Metab. 2010; 12(5):403–13. https://doi.org/10.

1111/j.1463-1326.2009.01174.x PMID: 20415688

54. Garcia AP, Palou M, Sanchez J, Priego T, Palou A, Pico C. Moderate caloric restriction during gestation

in rats alters adipose tissue sympathetic innervation and later adiposity in offspring. PLoS One. 2011; 6

(2):e17313. https://doi.org/10.1371/journal.pone.0017313 PMID: 21364997
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