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Abstract

Background and Objective—Sarcomas are rare but highly aggressive tumors, and local 

recurrence after surgical excision can occur up to 50% cases. Therefore, there is a strong clinical 

need for accurate tissue differentiation and margin assessment to reduce incomplete resection and 

local recurrence. The purpose of this study was to investigate the use of optical coherence 

tomography (OCT) and a novel image texture-based processing algorithm to differentiate sarcoma 

from muscle and adipose tissue.

Study Design and Methods—In this study, tumor margin delineation in 19 feline and canine 

veterinary patients was achieved with intraoperative OCT to help validate tumor resection. While 

differentiation of lower-scattering adipose tissue from higher-scattering muscle and tumor tissue 

was relatively straightforward, it was more challenging to distinguish between dense highly 

scattering muscle and tumor tissue types based on scattering intensity and microstructural features 

alone. To improve tissue-type differentiation in a more objective and automated manner, three 

descriptive statistical metrics, namely the coefficient of variation, standard deviation, and range, 

were implemented in a custom algorithm applied to the OCT images.

Results—Over 22,800 OCT images were collected intraoperatively from over 38 sites on 19 ex 
vivo tissue specimens removed during sarcoma surgeries. Following the generation of an initial set 
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of OCT images correlated with standard hematoxylin and eosin-stained histopathology, over 760 

images were subsequently used for automated analysis. Using texture-based image processing 

metrics, OCT images of sarcoma, muscle, and adipose tissue were all found to be statistically 

different from one another (p ≤ 0.001).

Conclusion—These results demonstrate the potential of using intraoperative OCT, along with an 

automated tissue differentiation algorithm, as a guidance tool for soft tissue sarcoma margin 

delineation in the operating room.
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Introduction

Soft tissue sarcomas (STS) are aggressive, locally invasive, malignant tumors that require 

wide excision as the mainstay of treatment. In 2015, there were 11,930 estimated cases of 

soft tissue sarcomas in adult humans and 4,870 deaths [1]. The reported international 

incidence ranged from 1.8 to 5 per 100,000 per year [2]. In a study by Shiu et al. [3], out of 

297 patients recruited for the study, 46% were returning with locally recurrent disease, while 

the remaining presented for initial therapy. Even higher recurrence rates (53.1%) have been 

previously reported [4]. Current evaluation of STS relies on clinical history, evaluation, 

lesion location, determination of mineralization on radiographs, and signal intensity 

characterization on magnetic resonance images [5]. Additional available imaging modalities 

that have been used to evaluate STS include ultrasonography, computed tomography (CT), 

and positron emission tomography (PET) [6]. However, presently, the use of only a single 

imaging technique offers a somewhat limited evaluation since it cannot reliably distinguish 

between benign and malignant soft-tissue lesions in some cases, which leads to false 

positives and the likelihood of unnecessary surgical procedures. Biopsies of lesions are 

commonly performed following imaging to differentiate between benign soft tissue lesions 

and soft tissue sarcoma. There is often over-estimation of lesion size, leading to imprecise 

surgical planning and resection of increased amounts of tissue. Therefore, STS identification 

and pre-operative surgical planning usually involves a combination of the aforementioned 

imaging techniques.

Magnetic resonance imaging (MRI) has been used for guiding the surgical resection of STS 

intraoperatively, and the extent of the tumor on MRI was found to be greater than suggested 

by clinical examination [7]. This technique, however, is expensive, and constrains the 

procedure to the location of the equipment. The current gold standard for surgical margin 

assessment of STS is post-operative histopathology, or in some surgeries, intraoperative 

frozen-section histopathology obtained during the time of the operation. However, the latter 

technique is often limited to only 1 or 2 margin assessments of small areas due to time 

constraints; thus, reducing the confidence of clean margins and complete tumor removal.

An imaging modality that has the potential to be used for tissue differentiation during and 

immediately after tumor resection is optical coherence tomography (OCT). This label-free 

imaging modality can be used in situ to visualize large surface areas of tissue microstructure 
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within seconds [8-12]. In a study by Wang et al., liposarcomas (sarcoma occurring in 

adipose tissue) and adipose tissue were compared, as well as skeletal muscle with 

leiomyosarcoma (a sarcoma occurring in smooth muscle), via individual A-line 

computational analysis from OCT images. All tissue samples were taken from surgical 

resections and a total of six specimens from six patients were imaged within 12 h [10]. In 

their analysis, the A-line slope was linearly fitted and removed, and the standard deviation of 

the intensity signal was then calculated, followed by a fast Fourier transform to provide 

amplitude information of the spatial frequency spectrum, which in turn was used for a Beer-

Lambert law exponential fit. Different measurements were acquired from regions of adipose, 

liposarcoma, skeletal muscle, and leiomyosarcoma tissue. Results indicated a higher optical 

attenuation coefficient for liposarcoma compared to adipose tissue, and noted smaller 

attenuation differences between skeletal muscle and leiomyosarcoma tissue [10]. In our 

current study, analysis of entire B-scans is performed, with additional information provided 

by texture-based features that appear from adjacent and local A-line data. While the previous 

study investigated A-line data below the air-tissue interface, the segmented B-scans in this 

current study include the tissue surface, which is particularly important for assessing the 

surgical margin, one of the main goals of this current study.

Intrinsic texture properties of speckle in OCT images of normal and tumor tissues have also 

been studied [11]. In this study, OCT pixel intensity distribution within a region of interest 

(without log-compression) were represented as a histogram. Then, for optimal histogram 

comparison of many images, a fixed binning of the distribution was applied based on the 

Shimazaki method. The histograms were then fitted using the least square method, and in an 

analogous manner to high frequency ultrasound, a ratio of parameters was determined, 

proportional to the effective tissue scatterer number density, and related to cellular changes 

that affect the scattering properties of the tissue in question [11]. With their method, they 

were able to differentiate between normal and tumor tissues in vivo in a mouse xenograft 

model.

In a recent study from our group, intraoperative OCT was used for the in vivo assessment of 

human breast tumor margins, and compared to post-operative histopathology as the gold-

standard. OCT was found to have a 92% sensitivity and a 92% specificity for identifying 

positive and negative margins [12]. These early successful intraoperative studies in breast 

cancer have motivated the investigation of using intraoperative OCT for other solid tumor 

surgeries, especially those such as STS, which suffer from high re-operation rates and high 

local recurrence rates.

Prior to applications in humans, we conducted this study involving STS in feline and canine 

veterinary medicine patients, with the goal of gaining insight into the OCT image properties 

of soft tumor sarcomas and their margin delineation in normal soft tissues, primarily muscle. 

The incidence of STS in feline and canine patients (17 and 35 per 100,000, respectively [13], 

is approximately 10 times greater than in humans, and the use of OCT would not only 

benefit these veterinary patients (health and preventive approach) and their owners (budget 

savings), but also allow for a straightforward translation to intraoperative human studies.
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In animals, injection-site-associated sarcomas develop as several histological sub-types 

including fibrosarcoma, rhabdomyosarcoma, extra-skeletal osteosarcoma, chondrosarcoma, 

and histocytic sarcoma, and they all are known to characteristically spread invasively into 

surrounding tissue [14]. Cats biologically respond to inflammation by fibroblast 

proliferation and have a higher rate of tumorigenesis compared to dogs [14]. Feline injection 

site sarcomas are locally invasive tumors, and their complete removal has been associated 

with longer tumor-free interval and survival time compared to those with positive or 

incomplete margins [15]. However, despite determination of negative surgical margins using 

current post-operative histopathology assessment methods, a recurrence of 14%-36% has 

been observed [12,13]. Current post-operative margin assessment methods usually under-

sample the total margin due to time constraints and feasibility. This spatial under-sampling 

of the surgical margins likely accounts for the high recurrence rate.

OCT image textures of various tissue types are often challenging to characterize because 

tissues are frequently heterogeneous. This heterogeneity can be attributed to cell and tissue 

microstructure, structural orientation, cellular density, and tissue hydration level, among 

others. The various textures of tissue microstructure that appear in OCT images can, 

however, contain important cues for tissue type detection and diagnosis that are not always 

discernible visually by the human eye. Other statistical metrics and algorithms have also 

been investigated to quantify differences in tissue types [16,17]. For example, statistical 

parameters and filters such as mean, standard deviation, and range of local scattering 

variations have been applied in OCT volumes to segment dense collagen, loose collagen, 

and normal myocardium in human atrial tissue [17], and classification results are often then 

color coded. Texture feature extraction has also been demonstrated using a gray level co-

occurrence matrix in which the classification is achieved by extracting the spatial 

relationship of pixels in the matrix [18], then statistical features such as contrast, correlation, 

energy, and homogeneity can be calculated [19].

In this study, intraoperative OCT images of tissue types present in areas near or within soft 

tissue sarcomas were obtained from ex vivo specimens collected during STS surgeries, and 

these were used to develop an image processing-based statistical algorithm to compare 

sarcoma, muscle, and adipose tissue types, with the future goal of delineating tumor margins 

in vivo in the operating room. To test whether or not OCT is a viable tool for tissue 

differentiation between soft-tissue sarcomas and tissues that surround a sarcoma in vivo (i.e 

adipose and muscle tissue), a two-step process comprised of a learning phase and a 

comparison phase was employed. In the learning phase, a data set which comprised of 

images with known tissue type labels was generated, accomplished by co-registering OCT 

images with corresponding histology. In the second phase, each tissue type was compared 

using the means of three statistical parameters: coefficient of variation (CV), standard 

deviation (STD), and Range, over the intensity values in the given OCT images. This 

comparison showed statistically significant differences between the tissue types in the OCT 

images.
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Materials and Methods

Tissue acquisition and OCT imaging

Animal tissues were acquired under protocols approved by the Institutional Animal Care and 

Use Committee at the University of Illinois at Urbana-Champaign. For this study, ex vivo 
tissue specimens were collected intraoperatively from 17 dogs and 2 cats (client-owned) 

which were undergoing resection of a STS or FISS. Histologically, since no microstructural 

differences between feline and canine soft tissues (adipose, muscle, and soft tissue sarcoma) 

were observed, for the purpose of this study, the feline and canine tumors were considered 

together. The tissues were imaged with OCT to generate the sets of OCT images with 

corresponding histological images encompassing three primary tissues types: tumor (STS), 

muscle, and adipose. The tissues and tumors were excised by an American College of 

Veterinary Surgeon (L.E.S.) board-certified in small animal surgery.

A commercial spectral-domain OCT imaging system (Envisu C2300, Bioptigen) was used to 

generate three dimensional volumetric scans of the areas of interest in the tissues. With a 

central wavelength of 1310 nm and an incident illumination power of ~ 5 mW, the system 

was able to image with ~ 8 μm axial resolution, ~ 10 μm lateral resolution, and to an 

imaging depth of ~ 1-2 mm, depending on the optical properties of the tissue. OCT imaging 

was performed in the operating room and/or adjacent imaging room, immediately after 

tissue resection. Each B-scan had physical dimensions of 5 mm (lateral) × 2 mm (depth), 

represented by 600 × 257 pixels, respectively. The tissue was placed in a Petri dish and 

positioned on a mounted micrometer positioning stage. The sample arm beam was 

positioned over an area of interest. Typically, 2-4 areas per resected specimen were imaged, 

depending on the available tissue types per specimen. The imaging goal was to acquire 

images from at least one area where a sarcoma was suspected to be present (determined by 

visual and manual palpation), and other areas which contained other tissue types. In the 

sample arm of the OCT system, lateral beam scanning was performed with galvanometers, 

passing the OCT beam through a fixed focus objective lens to volumetrically scan the 

selected tissue (5 × 5 × 2 mm3) at 7.4 frames/sec (6 kHz A-scan rate) via raster collection of 

B-scans along the x-y plane. The imaged area corresponded to 600 sequentially-acquired 

and adjacent OCT images, and required approximately 1 minute to capture the image data at 

each site.

Following OCT imaging, the selected areas were marked with surgical ink applied in a U-

shape on the specimen surface to delineate the imaged area, which was then used for 

histology/OCT co-registration. Surgical ink was applied with a toothpick and allowed to dry 

for 5 minutes. The specimens were then placed in 10% neutral buffered formalin. In addition 

to standard histopathological processing and margin assessment, the inked areas were 

histologically sectioned and stained for correlation with OCT images.

An American College of Veterinary Pathology (ACVP) board-certified pathologist (J.S.) 

acquired multiple histological tissue sections from the same location and plane as the OCT 

B-scans. Each ~3 μm-thick tissue section was stained with hematoxylin and eosin (H&E) 

and digitized with a digital slide scanner (NanoZoomer 2.0 RS, Hamamatsu C10730). The 

pathologist performing the standard tumor histopathology and assessment of the inked 
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regions was blinded to the results of the OCT imaging. Tissue sections were classified as 

sarcoma, adipose, or muscle tissue based on the predominant cell/tissue type present within 

the section. When multiple tissue types were present, boundaries were noticeably distinct 

with little intermixing of cell types in any region.

Image processing and statistical analysis

Light scattering from tissue is dictated by the morphological and biochemical features of the 

tissue, and variations in optical scattering are represented in the OCT images. The most 

commonly observed tissue types within the resected specimens were STS, muscle, and 

adipose. A series of 600 consecutive OCT images were acquired in each 5 × 5 mm2 area 

imaged. Then, 10 non-consecutive frames (separated by at least 500 μm) were further 

selected to be used as input for the statistical analysis. The selected frames were chosen 

based on image quality, avoiding image artifacts such as strong reflections that resulted from 

sensor saturation. The requirement to select 10 images with at least 500 μm separation was 

applied to each imaged area. The choice of sampling at least every 500 μm was based on the 

empirical observation that the different OCT images would appear structurally different, 

implying a different area of the tissue. Images were primarily excluded from further analysis 

if the tissue surface or fluid collection at the surface was flat, with the beam normally 

incident on the flat surface. This resulted in strong back-reflections, saturation, and poor 

image quality. Images were also excluded if the tissue/surface was too far away from the 

beam focus near the center of the image, which would result in poor image quality often 

with low SNR. There were 2 specimen sites where only 7 or 8 high-quality images were 

selected, but all images were at least 500 μm apart. An algorithm was then generated to 

process the selected OCT images (Fig. 1). Within the OCT images, variations in signal 

intensity suggest underlying scattering structures and features, and time-dependent signal 

intensity fluctuations were largely driven by Brownian motion or tissue settling.

First, the foreground (tissue) was segmented from the background via manual segmentation. 

A binary image, identified in this paper as a polygonal mask, was interactively generated by 

selecting <10 user defined initial contour positions that were around the periphery of the 

tissue region. Once the points were selected, 300 iterations of contour evolution with the 

Chan-Vese method [19] would then define the segmented region, against a uniformly black 

background. Then, within the segmented tissue regions, three statistical parameters were 

calculated: CV, STD, and Range. Coefficient of Variation is a measure of the spread of the 

data (pixel intensity) that describes variability relative to the mean (STD divided by the 

mean), and was chosen because it can compare the spread of image regions that have 

different means. For example, sarcoma is known to have a dense, relatively homogeneous, 

yet randomly organized structure. Therefore, STS CV values were expected to be lower than 

muscle CV values since muscle is more linearly structured and does not appear as 

homogeneous as sarcoma tissue. The STD measures the degree of pixel intensity variability, 

and was chosen as a variable to visualize the distribution or spread of the intensity data 

about the mean value. The Range parameter corresponds to the minimum-to-maximum 

range of the data in the window, and is another estimate of distribution of intensity values in 

each B-scan. This minimum-to-maximum range is a sub-range of the full dynamic range of 

the data throughout the entire image, and is an indicator of the full distribution of local 
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intensity values. Outlying intensity values (OCT images suffer from outliers if the pre-

processing tissue/background segmentation was not performed) usually have an undue 

influence on this statistic, which makes the range a less reliable estimator. Therefore, it was 

expected that this metric would probably be the least robust of the three.

A sliding window of 11 × 11 pixels, which corresponds to 91.3 μm × 85.8 μm, was used to 

calculate the aforementioned metrics over each OCT image, and was found suitable for 

differentiating tissue types in this study. This window size was selected based on trade-offs. 

The larger the window, the longer the processing time. Also, a larger window would average 

out fine variations within the image data, while too small of a window would tend to 

increase contributions from sub-structural fluctuations in the data. Adipocytes, myofibers, 

fibroblasts, and neoplastic cells vary in their size, as do any bundles or larger structural 

groups they may form. From the literature, and as seen histologically in our tissue sections, 

an adipocyte is approximately 10 μm in diameter, myocytes range from 10-100 μm in 

diameter, and a soft-tissue sarcoma tumor cell has a diameter of ~10 μm [20]. A typical 

dimension of a skeletal muscle fiber is 100 μm, while a myofibril is ~200 μm [21]. The 

dimensions of our sliding window fall roughly in the middle of the dimensional scale range 

we wish to interrogate, roughly between the size of individual cells, and the size of the larger 

ordered structures such as the fibers. Using this window size, the statistical metrics (means 

of CV, STD, and Range) were determined in less than 1 minute using a standard multi-core 

desktop PC. A robust non-parametric statistical test for independent samples (Wilcoxon test) 

was then used to test whether or not the different tissue types were statistically different. The 

Wilcoxon test was chosen because it does not assume that the data follows a specific 

distribution.

Results

The three primary tissue types present in the tissue samples were sarcoma, muscle, and 

adipose tissue, which are shown both microscopically on histology and indicated in 

corresponding OCT images (Fig. 2). Adipose tissue was expectedly found to have a 

characteristic honeycomb structure which exhibited relatively lower scattering, and had a 

distinctive hole-filled appearance and texture pattern on OCT. The refractive index of 

adipose tissue has been previously reported to be 1.333 ± 0.024 (mean ± standard deviation), 

which is different from that of muscle, which was found to be 1.399 ± 0.013 [23].

Even though adipose tissue can be readily identified and discriminated against sarcoma and 

muscle, both visually and with OCT, it was still analyzed with these metrics against muscle 

and then against sarcoma. Figure 3 shows a representative set of box plots for comparing the 

STD between adipose and sarcoma, and between adipose and muscle. Using the Wilcoxon 

test, adipose tissue was determined to be statistically different (p ≤ 0.0000001) from both 

muscle and sarcoma.

In contrast to adipose tissue, muscle and sarcoma tissue are both dense and highly scattering; 

thus, more challenging to differentiate with OCT. A photograph of a representative tissue 

specimen resected during surgery is shown in Fig. 4, along with the representative 

corresponding OCT images and histology. This specimen contains marked regions of the 

Mesa et al. Page 7

Lasers Surg Med. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



three tissue types encountered in this study: sarcoma, muscle, and adipose tissue. Sarcoma 

tissue is highly cellular (there is a larger quantity of smaller cells present in a given area 

(Fig. 4.A) and sarcoma is structurally disorganized due to the irregular growth patterns that 

are typical of most cancers. In contrast, muscle tissue has a more distinct and defined 

cellular content (with fewer but larger cells) with aligned structural organization (Fig. 4.B).

Figure 5 illustrates the image processing steps for the CV metric, with a direct comparison 

between sarcoma and muscle tissue. The original intensity image (OCT image) of sarcoma 

tissue is shown with its corresponding mask, followed by the result of multiplying the CV 

with the mask (Fig. 5.A-C). The same CV metric was calculated on an original OCT 

intensity image of muscle tissue and similarly processed (Fig. 5.D-F). B-scans were grouped 

based on tissue types. The CV, STD, and Range were calculated over all of the segmented B-

scans in every group, then the mean of each statistical parameter was calculated, and the 

Wilcoxon rank sum test was applied to compare the means of each statistical parameter. The 

Wilcoxon rank sum test tested the null hypothesis that the data from the two groups have 

equal means, against the alternative that they are not equal. Finally, a box plot was generated 

to visualize the results (Fig. 6). The means for the STD and Range metrics can be visualized 

in the box plots shown in Figs. 7 and 8, respectively.

The CV metric illustrated in Fig. 5 demonstrates that with our image processing algorithm 

and display, there is a visually perceptible difference between sarcoma and muscle. The 

sarcoma image in Fig. 5.C reveals lower CV values (towards purple on the color scale). In 

contrast, the muscle image in Fig. 5.F reveals higher CV values (towards orange and white). 

The two-sided Wilcoxon rank sum test (set to the 5% significance level) tested the null 

hypothesis that the means of the CV for muscle and sarcoma in OCT images are equal, 

against the alternative that they are different. For all three metrics, the test rejected the null 

hypothesis, indicating that indeed there were statistically significant differences between 

sarcoma and muscle in the OCT images. For the CV metric, p-values were ≤ 0.001, and for 

STD and Range values, p-values were ≤ 0.0001.

Discussion

To summarize these results, there were statistically significant differences between the 

means of the CV, STD, and Range metrics for OCT images of sarcoma and muscle, and 

clearly for adipose tissue. While these three metrics are somewhat related, it is validating 

that all three showed significant differences, and demonstrated their use as discriminating 

metrics between these two highly scattering tissue types (sarcoma and muscle). In the OCT 

images, sarcoma tissue appeared to be more homogenous and texturally smooth. In contrast, 

muscle tissue had image-based structure that was somewhat disruptive and less texturally 

smooth or homogeneous. In terms of signal intensity, both tissues are highly scattering, with 

sarcoma having a higher cellular density and a more random homogeneous pattern compared 

to muscle, which exhibited a more aligned, anisotropic structure with higher angles of 

potential light scatterers.

The sarcoma group showed a lower CV but a higher STD metric. We interpret that the lower 

CV values are likely due to a higher intensity mean, which is a differentiating factor between 
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tissue types. The lower CV metric could also be due to the more uniform or homogeneous 

texture or structure of sarcoma tumor tissue at these resolutions/scales, compared to the 

larger honeycomb-like adipose tissue or more linear structural features in the muscle tissue. 

It should be noted that the Range metric for sarcoma is also greater than for muscle, which 

parallels that of the STD metric. It appears that while locally, within the windowed regions, 

sarcoma appear more homogenous, but when considering the Range and STD across the 

entire image and between images of the same tissue type, there is a greater variation of 

structures encountered, thereby increasing the STD and Range. Furthermore, muscle tissue, 

within a local windowed region, appears more heterogeneous, but exhibits more uniform 

longer-range order and similarities due to the muscle fibers and structures. These 

differences, both the subtle visual differences and the differences in cellular architecture, 

were likely responsible for the statistically different metrics investigated in this study. 

Ongoing studies are investigating the use of polarization-sensitive OCT (PS-OCT) to further 

differentiate these tissue types, just as we have previously demonstrated for breast cancer 

[24], given that muscle is birefringent and sarcoma tissue is likely to be less so.

In this study, there were several sources of variability. Since the statistical parameters/

metrics were calculated over the entire foreground image of tissue (instead of smaller 

individual windows of local pixel neighborhoods), the variability of intensity values is likely 

to be higher. Visual inspection of sarcoma and muscle tissue in OCT images suggests that 

there is a higher variability of signal intensity and coarser texture in muscle tissue compared 

to sarcoma. However, images inherently contain a mixture of multiple tissue types 

(including tissue types other than adipose, sarcoma, and muscle) as well as a wide range of 

microscopic cellular and structural orientations (notably muscle fibers), as these tissue 

specimens come from different areas of the body, and are imaged at varying orientations. 

These architectural variations likely also increase the inherent variability of the OCT signal 

intensity and texture patterns. In this study, samples were not aligned specifically along any 

inherent direction of the tissue fibers, so sample rotation invariance should be considered in 

future imaging sessions and analysis, particularly for the use of PS-OCT. Nevertheless, 

statistically, the adipose, muscle, and sarcoma tissues evaluated in this study were found to 

be significantly different.

Conclusion

Due to the inherent cellular microstructural and organizational differences, texture analysis 

of scattering signal intensity in OCT images has been shown to be appropriate for 

differentiating sarcoma, muscle, and adipose tissue. The mean values of CV, STD, and 

Range showed that these tissues are indeed significantly different under OCT. This study 

was developed with the future goal of improving intraoperative differentiation of these tissue 

types.. While the surgical resection of the sarcoma includes a supposedly clear margin, there 

are significant risks that the tissue left behind in the patient still contains residual tumor, or 

tumor cells, particularly for delicate surgical procedures near sensitive tissue structures. 

Frozen-section histology is often used to assess margins, but at the expense of 

undersampling the large margin area, and delaying the surgical procedure for tens of minutes 

until the pathologist has a result. Therefore, an intraoperative imaging tool such as OCT that 

is able to identify tissue structure and differentiate tissue types in real time has the potential 
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to reduce surgery costs as well as reduce or eliminate the high local recurrence rates of 

sarcomas in humans and companion animals. Similar approaches should be investigated in 

other sub-types of sarcoma, and these methods may also extend into other solid-tumor 

surgeries where rapid intraoperative margin assessment is critical.

Future implementation of this algorithm and method will focus on ways to automatically 

differentiate tissue types in real time displays for immediate feedback during the surgical 

procedure, and with samples that have a diverse mixture of poorly defined tissue types.
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Fig. 1. 
Image processing flowchart. Out of 600 images acquired from each imaged site, 10 were 

selected, ensuring that there was an adequate separation between the chosen images. 

Segmentation masks were then generated by choosing areas of interest, avoiding areas of 

saturation and background noise. An active contour was then applied to every mask. A 

sliding window (yellow box) was applied over every image to determine the statistical 

metrics of Coefficient of Variation, Standard Deviation, and Range. The results were then 
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multiplied with each mask and overlaid with the original frame. Statistical comparisons 

between tissue types were made between these resulting B-scan images.
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Fig. 2. 
Physical (histology) and textural (OCT) properties of (A) sarcoma, (B) muscle, and (C) 

adipose tissue with corresponding OCT images (D-F, respectively). The top row shows 

H&E-stained digitized histological images of the resected tissue, and the corresponding 

OCT images are shown in the bottom row. The dashed red boxes in the OCT images 

correspond to the dimensions of the histology images. The black scale bars across the 

bottom of each image in (A-C) represent 500 μm, and the scale bars in (D-F) represent 1 

mm.
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Fig. 3. 
Box plots of the means of Standard Deviation comparing (top) all the adipose and sarcoma 

B-scans, and (bottom) all the adipose and muscle B-scans.
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Fig. 4. 
OCT and corresponding histopathology from an excised specimen from the dorsal thorax of 

a domestic long hair cat. Specimen dimensions were 9.5 cm × 6.5 cm × 5 cm. Three OCT 

images and corresponding histology are shown for the three inked areas on the specimen. 

(A) Sarcoma, (B) Muscle, (C) Muscle (m) and Adipose (a). The scale bars for the OCT 

images represent 1 mm and the scale bars for the histology represent 10 mm.
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Fig. 5. 
Image processing sequence for the descriptive Coefficient of Variation (CV) statistical 

metric. (A) Original OCT image of sarcoma, (B) corresponding mask, and (C) calculated 

CV. (D) Raw OCT image of muscle, (E) corresponding mask, and (F) calculated CV. Scale 

bar represents 1 mm and the color bar ranges from 0.1 to 1.1 in steps of 0.1.
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Fig. 6. 
Box plot of the means of Coefficient of Variation for all muscle and sarcoma B-scans.
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Fig. 7. 
Box plot of the means of Standard Deviation for all muscle and sarcoma B-scans.
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Fig. 8. 
Box plot of the means of Range for all muscle and sarcoma B-scans.
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