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Abstract: Globular proteins composed of different secondary structures and fold types were exam-

ined by synchrotron radiation circular dichroism spectroscopy to determine the effects of dehydra-
tion on their secondary structures. They exhibited only minor changes upon removal of bulk water

during film formation, contrary to previously reported studies of proteins dehydrated by lyophiliza-

tion (where substantial loss of helical structure and gain in sheet structure was detected). This
near lack of conformational change observed for globular proteins contrasts with intrinsically dis-

ordered proteins (IDPs) dried in the same manner: the IDPs, which have almost completely unor-

dered structures in solution, exhibited increased amounts of regular (mostly helical) secondary
structures when dehydrated, suggesting formation of new intra-protein hydrogen bonds replacing

solvent-protein hydrogen bonds, in a process which may mimic interactions that occur when IDPs

bind to partner molecules. This study has thus shown that the secondary structures of globular
and intrinsically disordered proteins behave very differently upon dehydration, and that films are a

potentially useful format for examining dehydrated soluble proteins and assessing IDPs structures.

Keywords: globular proteins; intrinsically disordered proteins; synchrotron radiation circular dichro-
ism (SRCD) spectroscopy; dehydration; unfolding; folding; secondary structure

Introduction

Native globular protein structures, which usually

consist of significant amounts of regular helical,

sheet, and turn secondary structures, are driven

and/or stabilised by hydrogen bonds, electrostatic

forces, van de Waals, and hydrophobic interactions.

Their three-dimensional structures generally also

include significant numbers of partially- and fully-

ordered buried water molecules1,2 present in inter-

nal cavities, which can contribute to the stability of
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the protein.3 Canonical protein secondary structures

(helices, sheets, and turns) tend to satisfy their

hydrogen bonding potentials within the secondary

structural elements rather than with surrounding

water molecules; statistical analyses have shown

that buried waters are most often associated with

polypeptide backbone atoms not participating in reg-

ular secondary structural elements.1 Globular pro-

teins also include many buried residues that are not

in contact with any solvent molecules. In contrast,

intrinsically disordered proteins (IDPs) exhibit limit-

ed amounts of regular secondary structures, have

minimally ordered tertiary structures in solution,

and tend to have most residues exposed to solvent,

involving both side chain and backbone interactions

with water molecules.4 Consequently they have

extensive interactions with aqueous solvent through-

out their length.

The influence of removing the water on the

structures of both types of proteins is of interest for

two quite disparate reasons: (1) the creation and sta-

bility of pharmaceutical formulations, and (2) the

roles of water in intrinsically disordered protein

structures and their intermolecular and intramolec-

ular interactions.

One of the impediments to using proteins in

pharmaceutical formulations has been their inherent

instability upon dehydration, as proteins are sensi-

tive to a variety of physical and chemical degrada-

tive processes, which are either facilitated or

directly mediated by loss of water.5,6 Common bioin-

dustrial dehydration processes are lyophilization or

freeze-drying, spray-drying7,8 and microglassifica-

tion,9 which may have different effects on the pro-

tein integrity. Fourier-transform infrared (FTIR),

Raman and solid state nuclear magnetic resonance

(NMR) spectroscopic investigations of several soluble

globular proteins have indicated that protein dena-

turation may be induced by lyophilization,6,10,11

spray-drying,12 and precipitation with organic sol-

vents followed by drying.10 These procedures in gen-

eral resulted in a significant loss of native secondary

structures contents. For example, following lyophili-

zation, the proteins studied exhibited significantly

increased the b-sheet contents and decreased the a-

helix contents, although the magnitudes of the

effects varied amongst the proteins.10

By comparison, a study13 on the effect of dehy-

dration on MEG-14, an intrinsically disordered pro-

tein (IDP), using synchrotron radiation circular

dichroism (SRCD) spectroscopy, suggested that the

MEG-14 protein gained regular (mostly helical)

structure upon dehydration into films. IDPs are a

class of proteins that generally exhibit little regular

secondary structure in solution.4 It was suggested13

that dehydration could be a possible way of mimick-

ing their interactions/conformational changes upon

binding partner molecules (a process which may

involve partial dehydration upon exclusion of water

molecules in the complexes). Because dehydration in

that study was achieved in a physical process differ-

ent from lyophilization, and because the result con-

trasts with the previous FTIR studies on globular

proteins that showed a decrease in helical content,

or increase in sheet (which could be a manifestation

of aggregation) when dehydrated, in this study we

examined both globular and intrinsically disordered

proteins in which the dehydrated state was pro-

duced by the same process of drying into films.

SRCD spectroscopy was used to monitor the effect of

dehydration. The aim was to evaluate if the differen-

tial effects observed for globular and IDPs are due

to the method used to monitor the structures or due

to the nature of the proteins examined. The meas-

urements of dehydrated samples were then com-

pared with SRCD spectra of the IDPs after

rehydration to identify if the effects of dehydration

were reversible.

The advantage of using SRCD spectroscopy

rather than conventional CD spectroscopy in this

study was because the high light flux of the synchro-

tron source enables light penetration into (and thus

measurements) of films that absorb light strongly.14

In addition, the shorter wavelength data measurable

with SRCD spectroscopy are particularly valuable

for detecting disordered structures in proteins, as

the characteristic peaks for these features are locat-

ed at wavelengths below 190 nm.14 It is noteworthy

that the presence of water in aqueous solution sam-

ples normally limits the wavelengths measurable

(even by SRCD spectroscopy) to around 170 nm, due

to the strong water absorption peak near this wave-

length. However, measurements in dehydrated films

allow acquisition of data to considerably shorter

wavelengths, and, most importantly, provides a

means of monitoring the water content in the dehy-

drated samples.

Results
CD spectra of solutions and films were collected for

soluble globular proteins included representatives of

the four main CATH classes15 (Fig. 1, Table I):

1 [mostly helical] (hemoglobin, myoglobin, and cyto-

chrome c), 2 [mostly sheet] (a-chymotrypsin, elastase

and concanavalin A), 3 [mixed helix/sheet struc-

tures] (ribonuclease A, carbonic anhydrase II) and 4

[mostly unordered] (aprotinin). In general, the calcu-

lated helical and sheet secondary structures derived

from the CD spectra corresponded closely to the sec-

ondary structures as found in the crystal structures

(Table I).

For the globular protein films, the principal

observation was that the spectra for the proteins in

the two physical forms (solution and film) (Fig. 1)

were very similar up to the wavelength where the

HT (pseudo-absorbance) indicated the light
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penetration into the film was too low (Supporting

Information Fig. S1) to make accurate measure-

ments. Some spectra included a slight red-shift in

the peak wavelengths upon dehydration, which was

likely to be a result of a change in the dielectric con-

stant adjacent to some of the peptide bonds resulting

from differences in energy between ground and

excited states, as has been seen previously when

proteins were subjected to solvent dielectric

changes.16 In most cases the calculated secondary

structure content was not substantially different for

the same protein in the two states (Table I). Only in

a few globular protein cases (a-chymotrypsin, elas-

tase, and aprotinin), did the spectra in solution and

films differ to any significant extent: they all tended

to exhibit an increase in the peak around 224 nm,

resulting in a slight increase in the calculated heli-

cal content for the films. It is noteworthy that in

each of these cases, the protein has a substantial

irregular (not helical, not sheet) secondary structure

content in solution (indeed aprotinin is in the CATH

class 4 — indicative of “irregular” or little secondary

structure15).

To determine if the observations on the films

were associated with the specific nature of the sub-

strate used, films were produced on plates formed

from two different materials (quartz and calcium

fluoride) with different wetting (contact angle) prop-

erties; the resulting spectra were very similar (Sup-

porting Information Fig. S2), suggesting that the

interactions with the substrates were not the main

reason for the similarities between the solutions and

films.

To determine if the water had been effectively

removed from the films during the dehydration pro-

cess, samples were measured using SRCD spectrosco-

py, while the HT spectra were collected at the same

time (Fig. 2). In the solution sample, the beginning of

the large peak due to water [located at �165 nm] is

visible in the HT curve, starting at around 180 nm,

so the lowest wavelengths measurable (i.e., the cutoff)

in the SRCD spectra were �170 nm. From the HT

spectra of the films, however, it could be seen that

the water peak at �165 nm is essentially completely

missing, with the cutoff occurring at around 126 nm

(which is essentially due to the absorbance of the

substrate). This indicated that all or most of the bulk

water had been removed during the process of film

formation. Note that these measurements required

SRCD instrumentation as the water peak observed

(or missing) is at a much shorter wavelength than

the instrumental cutoff (�180 nm) for CD spectra.

Upon rehydration of the films, the secondary struc-

ture was retained (Fig. 3a).

Figure 1. CD Spectra of Globular Soluble Proteins. CD spectra of soluble globular proteins representing the four CATH classes

(mostly helical: panels A, B, and C; mostly sheet: panels D, E, and F; mixed helix/sheet: panels G and H; and irregular: panel I).

Solid lines represent solution spectra, while dashed lines are from films. The error bars indicate one standard deviation in three

repeated measurements. The proteins are A: hemoglobin, B: myoglobin, C: cytochrome C, D: a-chymotrypsin, E: elastase, F:

concanavalin A, G: ribonuclease A, H: carbonic anhydrase II, I: aprotinin.
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The results obtained in this study on dehy-

drated globular proteins, are quite different from

those reported in earlier FTIR studies of lyophilized

proteins.6,10 To determine if these different observa-

tions were technique- or sample- associated, it was

possible to compare several of the proteins that were

used in both the present study and one of the previ-

ous FTIR studies of lyophilized proteins: aprotinin

(also called BPTI), ribonuclease A, myoglobin and

cytochrome C. In general, the helical secondary

structures calculated for solutions of those proteins

from the CD and FTIR spectroscopic studies were

quite similar (Supporting Information Table S1).

However, the FTIR lyophilization study indicated

most proteins decreased in helix content while their

sheet content increased10 (Supporting Information

Table S1) upon dehydration. In contrast, in this

study, most globular proteins produced very similar

spectra (Fig. 1) and calculated secondary structures

(Supporting Information Table S1) for both solutions

and films. The reason for the differences between

this study and the previous studies could be the pro-

cess of dehydration: during lyophilization, protein

aggregation may have occurred, which often produ-

ces an apparent increase in beta sheet, such as that

Table I. Calculated Secondary Structures of the Soluble Globular Proteins

Protein a-helix b-sheet turn other NRMSD CATH

HBN S 73 6 3 2 6 1 9 6 0 15 6 3 0.020
F 70 6 5 2 6 1 9 6 1 17 6 6 0.060
PDB 77 0 23 1.10.490.10

MBN S 73 6 2 1 6 1 10 6 0 17 6 3 0.011
F 65 6 7 4 6 4 11 6 1 22 6 6 0.038
PDB 74 0 26 1.10.490.10

CYC S 38 6 1 14 6 4 13 6 1 35 6 2 0.033
F 37 6 2 15 6 3 12 6 1 35 6 2 0.042
PDB 37 0 63 1.10.760.10

CHM S 20 6 0 21 6 1 15 6 0 43 6 1 0.051
F 33 6 4 11 6 1 17 6 1 40 6 4 0.048
PDB 12 32 56 2.40.10.10

ELA S 9 6 2 32 6 3 15 6 1 44 6 0 0.072
F 15 6 1 27 6 1 15 6 0 43 6 1 0.068
PDB 10 30 60 2.40.10.10

CON S 9 6 3 40 6 2 11 6 1 38 6 1 0.057
F 8 6 3 41 6 2 12 6 1 38 6 1 0.108
PDB 4 46 50 2.60.120.200

RNS S 23 6 1 29 6 1 12 6 1 35 6 1 0.040
F 18 6 1 31 6 1 12 6 1 38 6 1 0.056 3.10.130.10
PDB 21 33 46

CAH S 11 6 3 35 6 2 12 6 0 40 6 1 0.085
F 12 6 3 35 6 2 13 6 1 41 6 2 0.115
PDB 16 29 55 3.10.200.10

APO S 23 6 1 23 6 1 11 6 2 44 6 2 0.019
F 45 6 8 11 6 7 13 6 1 33 6 6 0.125
PDB 21 24 55 4.10.410.10

Secondary structures of the proteins in solution (S), in films (F), and calculated from PDB files using the DSSP algorithm.
Their CATH classification is also listed. The values determined from the solutions and films are the average calculations
derived from 3 different algorithms, with the 6 values indicating the S.D. between the methods, and the NRMSD is a
goodness-of-fit parameter. The protein names are abbreviated as: HBN, hemoglobin; MBN, myoglobin; CYC, cytochrome C;
CHM, alpha-chymotrypsin; ELA, elastase; CON, concanavalin A; RNS, ribonuclease A; CAH, carbonic anhydrase II; and
APO, bovine trypsin inhibitor (aprotinin).

Figure 2. SRCD and HT Spectra of Hemoglobin in Solution

and Films. These spectra demonstrate that the film samples

have little or no water remaining, due to the lack of a peak in

the HT spectrum (dotted black line) around 170 nm. This lack

of water also enables the film SRCD spectrum (solid black

line) to be measured to shorter wavelengths (�125 nm). The

series of sharp peaks in the HT spectrum below �140 nm

are due to absorbance of the nitrogen gas flushing the sam-

ple chamber. By comparison, the HT spectrum of the solution

(dotted grey line) exceeds the maximum cutoff value of 5.0 at

all wavelengths below 172 nm due to edge of the large water

absorption band, which limits the lowest wavelength measur-

able in the SRCD spectrum (solid grey line) to �170 nm.
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associated with amyloid formation. The dehydrated

film samples examined by CD spectroscopy may

have retained some water content (most likely

intramolecular waters which are tightly bound and

not removed by the process) although the simulta-

neous HT measurements on the samples described

above indicate the water content remaining is very

small (Fig. 2). This retained water may contribute to

the retention, rather than collapse, of the regular

secondary structures present in the proteins. Fur-

thermore, as nearly identical spectra of the films

were obtained when the proteins were dried onto

the two types of plates with different wetting prop-

erties (silica quartz, which is relatively hydrophilic,

and calcium fluoride which produces much larger

contact angles, thus indicating it provides a more

hydrophobic surface for interaction with the protein)

(Supporting Information Fig. S2), it was possible to

rule out the interactions with the substrates as con-

tributing to any folding/unfolding effects.

The most dramatic finding in this study, however,

was the differential effects of dehydration on globular

and IDP proteins. While there was little change in the

secondary structures of globular proteins, when water

was removed from the samples, IDPs (which exhibit

little persistent regular structure in solution) tended

to produce vastly different spectra upon dehydration

(Fig. 4), consistent with a large gain in the amount of

regular secondary structure (primarity a-helix) as

they underwent the process of dehydration (Table II).

The increase in the amount of helical structure was

entirely reversible if the films were rehydrated [Fig.

3b]. Hence, it was not simply an irreversible aggrega-

tion effect. This ordering/unordering effect is in line

Figure 4. SRCD Spectra of Intrinsically Disordered Proteins. SRCD spectra of intrinsically disordered proteins: (A) MEG-14, (B)

b-synuclein, (C) SHERP, and (D) a-synuclein, all of which are almost entirely unstructured (irregular secondary structure) in solu-

tion (solid lines). Dashed lines are from films, where the proteins have much more regular (helical) secondary structures.

Figure 3. Effect of Rehydration on the SRCD Spectra of Pro-

tein Films. Black solid lines are dehydrated films, gray solid

lines are resolubilized films, and dashed lines are HT spectra

in the same respective colors as Figure 2. (A) Concanavalin A

(globular) and (B) b-synuclein (IDP).
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with the previous observations on the IDP MEG-14,13

where a substantial increase in helix content was

observed upon dehydration.

It is noticeable that the most substantial differ-

ences between solution/film samples in the soluble

globular proteins were for aprotinin (APO) and elas-

tase (ELA), proteins chosen because they have less

regular secondary structure (Table I) and more

irregular structure than the other globular proteins

examined. This is consistent with the observations

that the IDPs change their structure dramatically.

Although the APO and ELA proteins are sufficiently

well ordered to form crystal structures, they do rep-

resent examples of globular proteins that contain

significant amounts of disordered residues. From the

present study, it appears that these proteins (which

have intrinsically disordered regions (IDRs)17) may

behave to a lesser, but detectable, extent as do the

fully IDPs by becoming more regular when

dehydrated.

Discussion
In this study, it was shown that soluble globular pro-

teins do not significantly change their conformations

upon dehydration into films. These results differ

considerably from previous studies of proteins dehy-

drated by lyophilization6. They suggest that the dif-

ferent types of dehydration processes (lyophilization

and film formation) produce different effects on the

structures of soluble globular proteins, with proteins

retaining near-native structures upon film forma-

tion, but undergoing significant conformational

changes upon lyophilization. These differing obser-

vations could be a consequence of the use of differ-

ent proteins in the different studies, the manner in

which the proteins associate during the drying, the

interactions of the proteins with the substrates in

films, and/or the amounts and locations of water

molecules remaining in the samples. Direct compari-

sons of the effects of the dehydration procedures

could be made for some of the proteins examined in

this study and the lyophilized proteins studied previ-

ously by FTIR spectroscopy,6 because a number of

the same proteins were used in both studies. Those

direct comparisons (Supporting Information Table

S1) suggest that the two processes have different

effects on the protein structures, and the differences

observed are not because different proteins were

used in different studies, nor were they apparently

due to the use of different spectroscopic methods in

the two studies, as the cognate solution structures

in both studies tended to be quite similar. Further-

more, since the studies examined the same protein

on two different materials with different wetting

properties, the nature of the film interactions with

the solid substrates could be eliminated as the

source of the retention of the native-like folded

structures. It was not possible to detect if any minor

amount of water was retained in the films (although

all bulk water was demonstrated to have been

removed by virtue of the lack of a water peak in the

low wavelength HT spectra), so it may be that a few

buried waters remain in the films, helping the pro-

teins to retain their native-like structures; perhaps

during the process of lyophilization even the inter-

nal water molecules are stripped away, contributing

to the differences seen. A final possibility is that

some of the differences could be more apparent than

real, due to the nature of the FTIR measurements:

Given the difficulty in precisely removing the contri-

bution of water solvent baselines during the process-

ing of the FTIR data, some apparent changes in the

lyophilization studies could be due to spectral arti-

facts in those studies. Such effects would vary with

remaining water content (something very difficult to

measure); the presence of small amounts of remain-

ing water, however, would not affect the CD spectra,

as water molecules do not contribute to the chiral

signals measured by this method.

In contrast to the dehydration studies on globu-

lar proteins in films, dehydration of IDPs produced

an increase in regular secondary structures in dried

films, which was a completely different behavior

than that seen for the globular proteins, even

though both types of proteins were dehydrated in

the same manner. IDPs gained order in the form of

increased canonical secondary structure contents

(primarily helix), whereas globular proteins tended

to retain very similar secondary structures. This

suggests that removal of water in dehydrated films

of soluble proteins does not cause the unfolding or

refolding of the proteins, but that removal of the

water in IDPs does. We speculate that this is

because in IDPs, the peptides form intermolecular

Table II. Secondary Structures of the Intrinsically Dis-
ordered Proteins

Protein a-helix b-sheet turn other NRMSD

MEG S 4 6 2 23 6 2 15 6 1 51 6 8 0.036
F 32 6 6 11 6 1 14 6 0 41 6 6 0.182

BSN S 3 6 1 10 6 4 9 6 4 75 6 6 0.042
F 37 6 2 13 6 1 14 6 1 36 6 1 0.066

SHP S 7 6 2 14 6 2 11 6 2 68 6 3 0.073
F 69 6 4 4 6 2 11 6 4 17 6 6 0.018

ASN S 4 6 2 17 6 4 13 6 3 62 6 4 0.035
F 35 6 1 25 6 2 18 6 4 22 6 5 0.045

Secondary structures of the intrinsically disordered pro-
teins in solution (S), in films (F). The values determined
from the solutions and films are the average calculations
derived from three different algorithms, with the 6 values
indicating the S.D. between the methods, and the NRMSD
as a goodness-of-fit parameter. The protein names are
abbreviated as: MEG, MEG-14; BSN, b-synuclein; SHP,
SHERP; ASN, a-synuclein.

Yoneda et al. PROTEIN SCIENCE VOL 26:718—726 723



hydrogen bonds with the water solvent molecules to

the exclusion of intramolecular hydrogen bonds

within the protein, so they don’t exhibit significant

amounts of regular helical or sheet secondary struc-

tures. The removal of the surrounding water in the

IDPs enables the formation of intramolecular hydro-

gen bonds and the formation of helices (and to a

lesser extent) sheets. However, these changes are

transient and can be broken when the bulk water is

restored. This type of behavior may mimic the types

of transient interactions involving intermolecular

hydrogen bonding between IDPs and their partner

molecules, which has been suggested as a basis for

their promiscuous interactions which have been pro-

posed to be related to their roles in regulation and

intermolecular interaction processes.

Materials and Methods

Concanavalin A (Canavalia ensiformis) [CON], car-

bonic anhydrase II (Bos taurus) [CAH], elastase

(Sus scrofa) [ELA], bovine trypsin inhibitor (aproti-

nin) [APO], a-chymotrypsin (Bos taurus) [CHM],

cytochrome C (Equus caballus) [CYC], were pur-

chased from Sigma. Ribonuclease A (Bos taurus)

[RNS], myoglobin (Equus caballus) [MBN], and

hemoglobin (Bos taurus) [HBN] were from Calbio-

chem. Human b-synuclein [BSN] and human a-

synuclein [ASN] were purchased from Sigma-Aldrich

(United Kingdom). Micro-exon gene protein 14

(MEG-14) [MEG] was prepared as previously

described,13 and the Small Hydrophilic Endoplasmic

Reticulum-associated Protein (SHERP) [SHP] was

prepared as described in Moore et al.18

For the films, an aliquot (10–20 ll) of each pro-

tein (at a concentration of 1.0–3.0 mg/mL) in 10 mM

sodium phosphate buffer, pH 7.4, was deposited on

the surface of a quartz Suprasil (Hellma UK, Ltd.)

plate or a calcium fluoride plate (Hellma Jena, Ger-

many) to form a dried film with an area about

1.0 cm2. For spectra collected to very low wave-

lengths (<155 nm), calcium fluoride plates were

used; all other film samples described were deposit-

ed on quartz plates. The plates were placed on a flat

surface for 20 to 30 min at room temperature to

form the film by the slow evaporation of the solvent

and then placed under vacuum for four hours to

remove any residual solvent. Subsequently, each

was placed in a specially-designed cell holder to pre-

vent water reabsorption. The sealed cell holder con-

tained another Suprasil (or calcium fluoride) plate

separated from the protein-containing plate by a

spacer of several mm19 and could be rotated without

moving the area of the film (� 5 mm diameter) that

was in the beam.20 Each sample was rotated in 908

increments (to ensure there was no contribution of

linear dichroism to the spectrum) (Supporting Infor-

mation Fig. S3). Three replicate spectra were

obtained at each of the 908 rotation positions,

making a total of 12 sample spectra, which were

then averaged to produce the average spectrum.

From this the final net spectrum was produced by

subtracting a baseline, that was also the average of

12 raw spectra produced in the same way, but mea-

sured for the plates alone (without any sample). The

solutions of the same proteins were examined using

standard demountable Suprasil (Hellma UK, Ltd.)

quartz cells with pathlengths of 0.01 cm. Three

scans were collected for the protein solutions and

baselines (10 mM sodium phosphate, pH 7.4). Film

rehydration was achieved by placing 3 mL of the

appropriate buffer onto the center of the film and

then placing a plate with a 0.005 cm pathlength

well on top and allowing the protein to resolubilize.

SRCD spectra were obtained at the Soleil

(France), ISA (Aarhus, Denmark) or ANKA (Karls-

ruhe, Germany) synchtrotron beamlines. The same

instrument parameters (1 nm interval, 25oC) were

used with dwell times of 1.2 s, 2 s, and 3 s, respec-

tively, at the 3 different synchrotrons, to obtain the

spectra for the solutions and the films. The samples

on calcium fluoride plates were measured over the

wavelength range from 280 to 125 nm, while, in gen-

eral, the other spectra were measured over the

wavelength range from 280 to �180 nm. High Ten-

sion (HT) spectra (Supporting Information Fig. S1)

were measured at the same time as the SRCD spec-

tra to demonstrate the level of light penetration into

the samples, thereby indicating the wavelength cut-

off of the spectra.21 The CD signal is the absorbance

of left circularly polarized light minus the absor-

bance of right circularly polarized light and is inde-

pendent of the total photon flux through the sample.

However photomultiplier detectors used in CD and

SRCD spectroscopy require a certain level of input

light to make accurate measurements. At wave-

lengths where the sample absorption is low, the pho-

ton flux reaching the detector is adequate. At

wavelengths where the absorption of the sample is

high, the signal is maintained by applying an exter-

nal current which is proportional to the decrease in

light flux reaching the detector and therefore pro-

portional to the absorbance of the sample. The HT

signal is a measure of this current and therefore a

measure of the pseudoabsorbance of the sample. The

cutoff wavelength is determined for each instru-

ment21 as the wavelength corresponding to maxi-

mum HT value where enough light penetrates so

that accurate data can be measured. For the spectra

shown in Supporting Information Figure S1, the cut-

off wavelength was determined to occur when the

HT value was greater 500 mV.

Conventional CD spectra, primarily obtained as

preliminary tests of sample conditions for the SRCD

measurements, were made using an Aviv 430 instru-

ment (Aviv Biomedical, Lakewood, NJ USA) over the

wavelength range from 280 to 180 nm using
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wavelength steps of 1.0 nm, averaging time of 1 s,

settling times of 0.33 s, and bandwidth of 1.0 nm.

Three scans were collected for both the sample and

baselines.

The low wavelength (<155 nm) films were mea-

sured at eight different rotation positions of the

plate (in 45 degree intervals) with 1 scan at each

position, to assess whether there was any linear

dichroism contribution to the spectra, which would

have resulted had there been any orientation/align-

ment of molecules within the films. For the rehydra-

tion experiments, data were collected from 280 to

170 nm on beamline CD1 at the ISA beamline, at

208C using a step size of 1 nm and an averaging

time of 2 s.

The spectra were processed using CDTool soft-

ware,22 and for the solutions, scaled to delta epsilon

values using mean residue weights of: hemoglobin

(108.6), myoglobin (111.5), cytochrome C (113.6), a-

chymotrypsin (105.2), elastase (108.4), concanavalin

A (108.7), ribonuclease A (111.3), carbonic anhydrase

(112.3), and aprotinin (119.6). The protein concentra-

tions of the solutions (�1 mg/mL) were determined

using a Nanodrop spectrophotometer (measurements

in triplicate), with extinction coefficients calculated

using EXPASY.23 For the films, the delta epsilon val-

ues were determined using the scale factor meth-

od,24 because the amount of deposited material

actually in the area subtended by the beam could

otherwise not be quantified. This method involves

first scaling the spectral magnitudes so that they

are roughly in the expected range of delta epsilon

values for proteins, then iteratively using a fine

multiplication factor [small increments (6 0.1)] to

carry out a series of secondary structure analyses

using the CONTIN algorithm, until the goodness-of-

fit parameter (NRMSD) is minimized.

Secondary structure analyses were undertaken

using the DichroWeb server25 with the ContinLL,26

Selcon3,27 and CDSSTR28 algorithms and the SP175

reference data set.29 The values derived from the 3

algorithms were averaged, and the 6 values reported

are the standard deviations of the results from the

three methods. For Supporting Information Table

S1, the algorithm producing the closest match to the

crystal structure was used. The NRMSD value is a

goodness-of-fit parameter calculated for the Con-

tinLL method, indicating correspondence between

calculated and measured spectra.30

Secondary structures derived from the corre-

sponding crystal structures were determined using

the DSSP algorithm31 available on the 2Struc serv-

er32 based on the following PDB codes: hemoglobin

(1hda), myoglobin (1ymb), cytochrome C (1crc), a-

chymotrypsin (5cha), elastase (3est), concanavalin A

(1nls), ribonuclease A (3rn3), carbonic anhydrase II

(1v9e), and aprotinin (5pti). Their CATH classifica-

tions were obtained from the CATH server.15

Data Deposition

The CD spectral and metadata for the solutions and

dehydrated films have been deposited in the Protein

Circular Dichroism Data Bank (PCDDB)33 under ID

codes CD0005919000 to CD0005944000, and will be

released upon publication.
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