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Abstract

Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease.
In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a
late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for
new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations
in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs)
that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they
can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive
oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound
activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and
the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs
improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An
important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards
healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in
cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.
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Review
Introduction
During the congress of the American Physical Society in
Caltech, on 26th December 1959, an American physicist
R. Feynman [1] held a presentation. He was the first to
claim the matter can be altered at the level of atoms and
particles. That statement, the main thesis of the speech
entitled “There’s plenty of room at the bottom,” earned
him the attribute of a forerunner of nanotechnology. In
the lecture, R. Feynman suggested that in his day, the
only limit to the development of nanotechnology
resulted from the lack of sufficiently precise tools and
techniques. For the first time, the term “nanotechnology”
was applied by a Japanese scientist N. Taniguchi [2] and

meant the possibility of material engineering at the nano-
meters level. A book by K. Drexler [3] “Nanosystems:
molecular machinery, manufacturing and computation”
contributed to the popularization of the knowledge in this
area. At present, nanotechnology is a rapidly developing
multidisciplinary field that combines the latest achieve-
ments of many disciplines of science, including biology,
chemistry, physics, informative technology, and mechan-
ics. It designs nanomaterials (NMs) and nanoparticles
(NPs) with at least one dimension ranging in the scale
from 1 to 100 nm [4], confers on them the desired proper-
ties, and alters them accordingly. For comparison, the
diameters of DNA, viruses, and lymphocytes are 2.5,
30–50, and about 7000 nm, respectively [5]. Nano-
technology, besides biotechnology and genetics, has
recently become one of the most highlighted fields of
science [6]. It gave rise to the creation of nanomedi-
cine [7]. According to Fakruddin et al. [8], thanks to
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the achievements of nanotechnology, it will soon be
possible to increasingly or even fully control the
matter structure; hence, to overcome numerous obsta-
cles, the medicine is nowadays struggling against. For
example, by using quantum dots, nanotechnology
might greatly assist in an early stage cancer diagnosis
and therapy [9]. The regeneration and remodeling of
damaged neuronal connections is going to be pos-
sible, thanks to dendrimers [10]. Carbon nanotubes
can deliver drugs to cells in a more targeted manner
[11]. Another example might be NM-based video
capsule endoscopy providing high quality images of
formerly inaccessible spots, e.g., small bowel [12].
The challenge the nanomedicine is now facing is to

find the most effective way of the tumor cells eradication
[13]. The main area this discipline is trying to explore is
designing systems of targeted drug delivery and release
into pathologically altered cells, increasing the drug
treatment effectiveness, and limiting their side effects
[14, 15]. There are several key attributes of NPs in their
performance as drug carriers. One of them is their
ability to become conjugated with ligands that are
specific to cancer cells and that enable the targeted drug
delivery [16–18]. NPs can be also conjugated with
monoclonal antibodies, a process preventing them from
immunological system response [19]. Moreover, thanks
to the possibility of modifying the physicochemical
properties of NPs, a smooth endocytosis into the cancer
cells can occur [20]. NPs have also found their applica-
tion in nanodiagnostics as biosensors for an early stage
tumor markers detection [21] and in gene therapy as
carriers delivering into cancer cells foreign nucleic acids
that encode proteins killing the tumor cells [22].
The past decade brought about the discovery that

many materials used in a variety of industries exhibit
formerly undisplayed catalytic properties, after they have
been powdered to NPs and subsequently exposed to
ultraviolet (UV) radiation or ultrasound (US) wave.
Among such materials, there are titanium dioxide
(TiO2) and zinc oxide (ZnO) [23–25].

Nanoparticles of Titanium and Zinc Oxides
Size, Surface Area/Volume Ratio, and Surface Chemistry
Nanoparticles of titanium dioxide (TiO2 NPs) and zinc
oxide (ZnO NPs) are single elements with a diameter of
1 < φ ≤ 100 nm [4]. Their size is one of their key proper-
ties. The smaller the NP diameter, the bigger becomes
the surface area/volume ratio. A high value of surface
area/volume ratio allows a greater number of constituting
atoms to be located around the surface of the NPs, a
phenomenon making the NPs highly reactive and attribut-
ing them with new, unique physicochemical properties
[26, 27]. Moreover, the smaller the NP diameter, the
longer becomes the blood circulation time [28]. Metal

oxide nanoparticles whose diameter ranges between 10
< φ ≤ 100 nm are considered perfect in respect of their
medical applications. The NPs with φ ≤ 10 nm are able to
deeper penetrate tumors and better accumulate in tumor
cells, but they are also toxic to healthy cells. Bigger NPs,
in the range of 10 < φ ≤ 100 nm, can only hardly be upta-
ken by healthy cells while they can easily penetrate tumor
cells [29]. Nowadays, thanks to the nanoengineering, it is
possible not only to precisely control the size of TiO2 and
ZnO NPs but also to functionalize their surface. The NP
functionalization provides for an easier transport within
tissues, creates the NP ability to cross plasma membranes
and allows them to be delivered to cancer cells in a
targeted manner [30]. Thus, NPs of TiO2 and ZnO have
become a promising tool in medicine [28–30].

Photo and Sonocatalytic Properties
The electronic structure of TiO2 and ZnO, both belonging
to the family of semiconducting metal oxides, determines
their catalytic properties [31]. The semiconductors have a
valence band (VB), which is filled with electrons, and an
electron-free conduction band (CB). The energy difference
(ΔE) between those bands is known as band gap, also re-
ferred to as energy gap. The band gap is an equivalent of
the energy amount necessary to excite an electron from
VB to CB. For nanosized titanium dioxide (nano-TiO2,
anatase polymorph) and nanosized zinc oxide (nano-
ZnO), the width of the energy gap is 3.20 and 3.37 eV, re-
spectively [26, 32]. Both amounts approximate the value
of the electromagnetic radiation photon energy with a
wavelength of λ < 400 nm. In biological trials, semicon-
ducting metal oxides (e.g., TiO2, ZnO) are excited by the
UV radiation (photoexcitation), mainly in the near ultra-
violet range (UV-A, 315 ≤ λ < 400 nm) [33–38]. Less
common is the photoexcitation with a wavelength in the
medium ultraviolet range (UV-B, 280 ≤ λ < 315 nm) [33,
34, 36]. The use of far ultraviolet range (UV-C, 100
< λ < 280 nm) as an agent responsible for advanced
oxidation processes may be hazardous to human health
[37]. Another way to excite semiconductor NPs in aque-
ous solutions is the application of the US wave (sonoexci-
tation). The US wave (20 kHz < f ≤ 1 GHz), while
propagating in the liquid, causes a twofold effect: a
temporary punctual dilution (result of the loss of pres-
sure), facilitating the formation of cavitation bubbles; as
well as liquid’s thickening (result of the rise of pressure)
that facilitates the bubbles’ collapse. This phenomenon is
referred to as acoustic cavitation. It is accompanied by a
number of secondary effects, among them sonolumines-
cence, an emission of sonoluminescent light (mainly UV
light) during the implosion of the cavitation bubbles
suspended in a liquid [39, 40].
The consequence of the semiconductor photo- or

sonoexcitation is that electron (e−) transfers from VB to
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CB, leaving behind a positive hole (h+). Therefore, a spe-
cific “electron-hole” pair (e− + h+) is created [40–42].
This bound state, called exciton, lacks stability and
exhibits redox properties. Charge carriers (e−, h+) can
migrate to the surface of the catalyst (e.g., TiO2 or ZnO)
NPs where they can be trapped by adsorbate molecules,
initiating thereby the formation of reactive oxygen
species (ROS). Excited negative electrons (e−) reduce
molecular oxygen (O2), forming superoxide radical anion
(•O2

−). Generated positive holes (h+) oxidize water mole-
cules (H2O) and hydroxide ions (OH−), producing
hydroxyl radicals (•OH) and hydrogen peroxide

molecules (H2O2) [40–43] (Fig. 1).
The inverse process to the generation of charge

carriers in semiconductor (e.g., TiO2 or ZnO) NPs is the
decay of exciton. The recombination of the electron-
hole pair (e− + h+) is accompanied by the emission of a
photon (radiative recombination). In this process, the
excitation of ground state oxygen (O2) by photon occurs
and singlet oxygen (1O2) is formed [40, 43] (Fig. 1).

Oxidative Stress and its Anticarcinogenic Effects
The oxidative stress is an underlying factor for adverse
biological effects caused by NPs of TiO2 and ZnO. In
the cells, it is reflected by the increase of the level of
ROS and oxidative products, as well as by the depletion

of cellular antioxidants [44]. ROS forming is an inherent
element of the aerobic cellular metabolism. In their
physiological concentrations, ROS perform a series of
important functions. They mediate in the intracellular
signal transduction [45], regulate protein phosphoryl-
ation [46], and control intracellular Ca2+ homeostasis
[47]. Balance disruptions between the ROS formation
and the efficiency of antioxidative systems lead to oxida-
tive stress that poses a serious danger to the integrity of
cells and their correct functioning [48].
Eukaryotic cells, similarly to prokaryotic cells, are

equipped with mechanisms protecting them from ROS.
The first defense line, preventing ROS from forming and
from reactions with cell compounds, are proteins (e.g.,
lactoferrin) that sequestrate metal ions (e.g., Cu, Fe).
Interruption of free radical chain reactions is the task of
the second defense line that consists of a system of three
enzymes: superoxide dismutase (SOD; EC 1.15.1.1), cata-
lase (CAT; EC 1.11.1.6), and glutathione peroxidase
(GPX; EC 1.11.1.9), supported by low molecular weight
antioxidants, such as glutathione (GSH), thioredoxin
(Trx), or coenzyme Q10 (CoQ10). The third defense line
present repair enzymes responsible for nucleic acids
damage overhaul, e.g., DNA ligase (EC 6.5.1.1) [48].
ROS can inflict cell injury as an effect of reaction with

lipids in cellular membranes [49], nucleotides in DNA

Fig. 1 Mechanisms of generating reactive oxygen species (ROS). ROS are generated on the surface of titanium dioxide or zinc oxide nanoparticles
(TiO2 NPs, ZnO NPs), exposed to ultraviolet (UV) radiation or ultrasound (US) wave in aqueous solutions. Semiconductor NPs can be excited by UV
(photoexcitation) or US (sonoexcitation). The acoustic wave, while propagating in the liquid, induces the formation and the subsequent collapse
of cavitation bubbles. During their implosion, the emission of the sonoluminescent light takes place. As a result of the TiO2 NPs or ZnO NPs
photo- or sonoexcitation, electron (e−) transfers from valence band to conduction band, leaving behind hole (h+). The follow-up process can be twofold.
The electrons (e−) together with holes (h+) react with adjacent molecules (O2, H2O, OH

−), generating the formation of ROS (•O2
−, •OH, H2O2). Alternatively,

radiative recombination of electron-hole pair (e−+ h+) results in the emission of photon that transforms the oxygen molecule in the ground state (O2) to
the oxygen molecule’s excited state, singlet oxygen (1O2)
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[50], or sulfhydryl groups in proteins [51]. Depending on
the intensity of the oxidative stress, the cell can undergo
carcinogenesis or enter one of the cell death pathways
[52]. Antunes and Cadenas [53] proved that as the
concentration of certain ROS (e.g., H2O2) increases, the
cell’s viability decreases. In physiological conditions, the
concentration of H2O2 is low and ranges within
5–50 nM. The gradual increase of its quantity in a cell
up to the level of 0.7 μM triggers mechanisms that result
in a cell proliferation and tumor formation. In case the
H2O2 concentration reaches the value of 1–3 μM, the
apoptosis or autophagy (programmed cell death path-
ways) induction occurs. The concentration in excess of
the level of 3 μM becomes toxic for a cell hence
leads to its necrosis (unprogrammed cell death path-
way). Therefore, the phenomenon of the oxidative
stress in tumor cells has recently been used to design
new tumor therapies [54, 55].
Increasingly frequent are the opinions that in near

future, the NPs of semiconductor metal oxides (e.g., TiO2

and ZnO) are going to play the crucial role in medicine as
photo- or sonosensitizers applied in ROS-based cancer
therapy [56, 57], a finding that naturally corroborates the
necessity to study their cyto- and genotoxicity.

Toxicity of Titanium Dioxide and Zinc Oxide
Nanoparticles
Despite the assumption that the microsized titanium
dioxide (micro-TiO2) is harmless to people and animals
[58, 59], the issue of TiO2 toxicity has been a research
subject in many scientific centers. Recent years have
witnessed a dynamic development of nanotechnology.
Along with it, there has been an increased concern,
though that this compound might be toxic in its NPs
form. There are studies proving that NPs (1 < φ ≤
100 nm) of any compound are more harmful to
people and animals than microparticles (MPs) (0.1
< φ ≤ 100 μm) of the same compound [60, 61].

Studies In Vivo
Wang and Fan [62] conducted studies showing that the
level of the rats’ pulmonary cell impairment, inflicted by
the intratracheally instilled TiO2, clearly depended upon
the diameter of its particles. Kobayashi et al. [63]
reported the pulmonary toxicity of TiO2 NPs in rats,
evaluated on the basis of the short-term post-installation
lung injury (up to 7 days after the installation), increased
proportionally to the fragmentation of the TiO2 particles.
Sycheva et al. [64] pointed out the genotoxicity of TiO2

NPs (φ = 30 nm), as measured by the number of DNA
double-strand breaks and the number of micronuclei,
was significantly higher in brain, liver, or bone marrow
cells in mice, compared to the genotoxicity of TiO2 MPs
(φ = 160 nm). Danio rerio, when exposed to TiO2

(50 mg dm−3) in their NPs form, exhibits more serious
oxidative injuries of liver and gill cells, in comparison to
the exposition to the MPs form of those compounds
[65]. The studies by Ma-Hock et al. [66] showed the rats’
exposition to the aerosol of TiO2 NPs (50 mg m−3)
caused lung inflammation, accompanied by the increase
of total neutrophil count in bronchoalveolar lavage
(BAL) fluid. Bermudez et al. [67] examined pulmonary
responses in rats, mice, and hamsters after their expos-
ition to the aerosol of TiO2 NPs (10 mg m−3). They
concluded there was a clear increase of cytotoxicity
markers, i.e., an increase in the total macrophage and
neutrophil count in BAL fluid in rats and mice, while in
hamsters, there were no distinct changes in the cellular
response. Ze et al. [68] proved the TiO2 NPs, adminis-
tered to mice through the nose for 90 days, moved up
and built up in the brain, leading to the oxidative stress,
excessive glial cells proliferation, and tissue necrosis, as
well as inflicting hippocampal cells apoptosis. Lindberg
et al. [69] reported that the intraperitoneal administra-
tion of TiO2 NPs to mice resulted in an increase of
DNA damages in leukocytes and in higher micronuclei
count in peripheral blood polychromatic erythrocytes.
The intratracheal instillation of TiO2 NPs showed the
same effects in BAL cells. The cyto- and genotoxicity
of TiO2 NPs were confirmed by many other authors
[70–73]. Ferin and Oberdörster [74] showed the dust
of TiO2 NPs, introduced into the trachea of a rat in
the amount of 5 mg per animal, caused respiratory
tract cancer within 4 months. Therefore, TiO2 NPs in
the dust form, contrary to the TiO2 MPs in the same
form, were classified in the 2B group by the International
Agency for Research on Cancer (IARC) [75]. The 2B
group assembles compounds that might be carcinogenic
for humans.

Studies In Vitro
One of the main differences between TiO2 MPs and
TiO2 NPs is a much bigger active surface area of TiO2

NPs, a feature resulting in a higher absorption rate of
UV radiation and a greater photocatalytic activity [41].
Gurr et al. [76] prove there is a strong correlation
between the TiO2 NPs genotoxicity and their diameter.
TiO2 NPs (φ < 50 nm) caused the formation of 8-hy-
droxy-2-deoxyguanosine (8-OHdG) adducts and the in-
crease of the micronuclei number in human bronchial
epithelial cells, while TiO2 MPs (φ > 200 nm) in the
same concentration were practically harmless. Kongseng
et al. [77] report TiO2 NPs (φ < 30 nm) were responsible
for the rise of the pro-inflammatory cytokine (IL-1β and
TNFα) level in human peripheral blood mononuclear
cells (PBMCs) in serum-free medium. The in vitro
studies of Long et al. [78, 79], conducted on mouse brain
microglia cells (BV2 line), proved that TiO2 particles
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with 10 ≤ φ ≤ 20 nm stimulated the generation of ROS
and, as a consequence, induced damages of neurons,
whereas UV radiation was not a precondition for gener-
ating ROS. There are, however, numerous contrary opin-
ions. Fujita et al. [80], drawing on DNA microarray
analysis of human keratinocytes (HaCaT line), proved
that the natural (with no UV irradiation) toxicity of
TiO2 NPs was very low. Similar conclusions were
presented by Verves and Jha [81] who examined in vitro
the toxicity of TiO2 NPs (50 mg mL−1) to rainbow trout
(Oncorhynchus mykiss) gonadal tissue cells (RTG-2 line).
They reported cyto- and genotoxic effects of TiO2 NPs
in irradiated cells, only. Saquib et al. [82], while examin-
ing the toxicity of TiO2 NPs (10 μg mL−1) to UV-A
irradiated human amniotic epithelial cells (WISH line),
noted a decrease in the CAT activity, lowering the GSH
level, as well as the arrest of the cellular cycle in the G2/M
phase. In similar studies on human epidermoid carcinoma
cells (A431 line), Shukla et al. [83] observed an increase in
lipid hydroperoxide (LPO) concentration, numerous
oxidative DNA damages, and the formation of many
micronuclei. Vamanu et al. [84] exposed human leukemic
monocyte lymphoma cells (U937 line) in vitro to 0.1%
colloidal nano-TiO2 for 120 min and, subsequently, to
UV-A irradiation. After 30 min of UV-A irradiation,
significant plasma membrane damages and DNA frag-
mentation were noticed. Other studies show that TiO2

powdered to NPs exhibited ROS-dependent cyto- and
genotoxicity towards human HaCaT cells [85], protozoan
(Cryptosporidium parvum) oocysts [86], as well as
towards cysts of Giardia lamblia [87] and Acanthamoeba
castellanii [88], only if the parasites were exposed to UV
radiation. The cytotoxicity was determined on the basis of
the lysosomal membrane stability, using neutral red
retention time (NRRT) assay whereas the genotoxicity was
measured by the number of DNA double-strand breaks,
using the single-cell gel electrophoresis (SCGE).
ZnO toxicity is also dependent on the scale of its

fragmentation [65]. Microsized zinc oxide (micro-ZnO),
similarly to micro-TiO2, is practically harmless to people
and animals [75], contrary to nano-ZnO. Wang et al.
[89] studied the toxicity of ZnO NPs to human HaCaT
cells and discovered the viability of those cells was
clearly reduced, the integrity of their membranes was
disrupted, and numerous oxidative DNA damages
occurred. Those effects significantly increased when the
keratinocytes were exposed to the UV radiation. Similar
cyto- and genotoxicity effects of ZnO NPs were
observed in human monocytes (THP-1 line) [90, 91] and
human lung adenocarcinoma epithelial cells (A549 line)
[92], as well as in fish embryos, e.g., Danio rerio [93].
Cyto- and genotoxicity of TiO2 NPs, as well as of ZnO

NPs have been proved in vitro also with many other
cells, both healthy, e.g., human dermal fibroblasts

[94, 95], human periodontal ligament fibroblasts [96],
human alveolar macrophages [97], human gastric epithe-
lial cells [98]; and malignant, e.g., human colonic mucin-
ous adenocarcinoma cells (Ls-174-t line) [99], human
colon adenocarcinoma cells (LoVo line) [100, 101], human
cervical carcinoma cells (HeLa line) [102–105], human
breast adenocarcinoma cells (MDA-MB-468 line) [106],
human hepatocellular carcinoma cells (Bel 7402 line) [107],
human brain glioblastoma cells (T98G line) [108, 109], or
human bladder carcinoma cells (T-24 line) [110].

Future of Cancer Therapy in View of the Application of
Titanium Dioxide and Zinc Oxide Nanoparticles
In recent years, there has been an increase in cancer
disease prevalence, an issue inducing an acute need to
invent new, effective, and safe therapy methods. In the
past decade, nanotechnology and nanomedicine gained
quite an importance in anticancer therapy. Those two
fields of science joined forces not only to seek
substances that would effectively eradicate cancer cells
but also to find ways of delivering chemotherapeutics to
tumor cells, in a targeted manner [111, 112]. The intro-
duction of nanosized photo- and sonosensitizers to the
medicine gave rise to develop new therapeutic strategies,
photodynamic therapy (PDT) [113] and sonodynamic
therapy (SDT) [114], respectively. Designing of new
ways of NM-based targeted drug delivery into cancer
cells (targeted therapy) lowered side effects inflicted
by many marketed drugs, such as doxorubicin and
daunorubicin [115–117]. Among the scientists, great
hopes to fight cancer more effectively are attributed
to the application of NPs of metal oxides (e.g., TiO2,
ZnO) in PDT [113, 118, 119], a treatment strategy
presenting an alternative to chemo- and radiotherapy.

Photodynamic Therapy
PDT is a treatment in which the administration of
photosensitizer to the tumor tissue is followed by the
excitation of a photosensitizer by electromagnetic radi-
ation with a specific wavelength, e.g., UV-A or UV-B.
Consequently, on the surface of NPs of photoexcited
metal oxides, ROS are formed which then damage
cancer cells [120] (Fig. 2).
Photosensitizers, such as TiO2 or ZnO NPs, can be

delivered to the tumor cells as the result of passive or
active processes [121]. The passive process takes advan-
tage of the enhanced permeability and retention (EPR)
effect. Leaky vasculature in the cancer tissue allows the
NPs to be freely uptaken into the tumor cells, a
phenomenon leading to the cell death. The uptake takes
place also in the inflamed tissue; hence, the passive
process does not provide for the targeted NPs delivery
to the tumor cells [122]. In the active process, the func-
tionalization of NPs occurs; therefore, the NPs can be
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delivered to tumor cells in a targeted manner. The func-
tionalization of NPs means their conjugation with
specific antibodies or ligands. PDT clearly lowers the
cancer therapy side effects, compared to chemo- or
radiotherapy [123]. The way the cellular uptake of nano-
particles takes place, their subcellular position and the
ability to cause toxic effects depend mainly upon the
NPs diameter, their surface area, surface chemistry, and
charge [124]. There are two major ways of the NPs
uptake into the cell: active uptake by endocytosis and
passive uptake by diffusion. Due to their strong hydro-
philic properties, both TiO2 and ZnO NPs are uptaken
into the cells by phagocytosis [125].
It is assumed that TiO2 NPs, if exposed to the UV

radiation, induce, depending on their subcellular
position, one of the cell death pathways: apoptosis
[105, 126], autophagy [127, 128], or necrosis [129, 130],
whereas the mechanism of those processes is still insuffi-
ciently examined (Fig. 3).
Zhang et al. [131], having examined UV-excited TiO2

NPs toxicity towards human hepatocarcinoma cells
(SMMC-7721 line), reported an increase and a decrease
of protein levels that are, correspondingly, pro- (e.g.,
Bax, Bak, tBid) and anti-apoptotic (e.g., Bcl-2, Bcl-xL)
molecules. Zhao et al. [132] point out there is an overex-
pression of the tBid in the TiO2 NPs-treated mouse
epidermal cells (JB6 line), this protein playing a crucial
role in the involvement of mitochondria in oxidative

stress-dependent cell death. PDT-induced mitochondria
damages result in a selective Bcl-2 degradation, with no
effect on the Bax. Therefore, the Bax/Bcl-2 ratio is
increased, and the intrinsic pathway of apoptosis is
promoted [133–135]. Those effects were noticed in
PDT-treated human breast epithelial cells (MCF10A
line) [136], human brain glioblastoma cells (U87MG
line) [137] or human gastric adenocarcinoma cells
(MGC803 line) [138]. Nearly identical changes in levels
of proteins regulating apoptosis were observed by
Ahamed et al. [139] and by Wahab et al. [140] whereby
the purpose of their experiments was to examine the
ZnO NPs toxicity towards human A549 cells, as well as
human breast adenocarcinoma cells (MCF-7 line) and
human hepatocellular liver carcinoma cells (HepG2 line).
The level of Bax and Bcl-2 proteins in ZnO NPs-treated
(50 μg mL−1, 24 h) human HepG2 cells was twofold
higher and threefold lower, respectively, compared to
control cells [140]. The principle function of Bax is the
formation, with the assistance of Bak, of pores in the
outer mitochondrial membrane that enhance its
permeability. Effectively, the release of cytochrome c
(Cyt. c) from the mitochondrial intermembrane space
into the cytosol follows. Cyt. c, along with the apop-
totic protease-activating factor 1 (Apaf-1), contributes
to the formation of the structure called apoptosome.
This structure activates the initiator caspase-9 (CASP-
9; EC 3.4.22.62) that subsequently activates the

Fig. 2 Milestones of photodynamic therapy (PDT) and sonodynamic therapy (SDT) in tumor treatment. Cancer therapies, such as PDT or SDT,
build on the administration of sensitive agents into tumor, followed by their activation by UV radiation or US wave, respectively. Activated photo- or
sonosensitizers generate ROS that lead to cancer cell eradication
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executioner caspase-3 (CASP-3; EC 3.4.22.56). Bcl-2 is
an inhibitor of apoptosis. It associates with the outer
mitochondrial membrane, keeping therefore its integ-
rity [141, 142] (Fig. 3).
According to many authors [139, 140, 143, 144], the

key role in the cell death induced by the UV-excited
NPs of TiO2 or ZnO is played by ROS. They are strong
oxidants but also important agents modulating
ROS-sensitive signaling pathways that lead to the cell
death. Biola-Clier et al. [145] report the ROS-mediated
downregulation of DNA repair processes such as base
excision repair and nucleotide excision repair. Toyooka
et al. [146], when examining toxicity of TiO2 NPs
(15 μg mL−1) to human A549 cells, concluded there was
an increased H2AX histone phosphorylation that
followed the oxidative stress-induced DNA double-
strand breaks. Similar results obtained Premanathan

et al. [147], having examined human HL-60 cells
exposed to ZnO NPs (10 μg mL−1). Phosphorylated
H2AX (γH2AX) histone is considered to be a marker of
DNA damages [148]. Its phosphorylation is caused by
ataxia telangiectasia mutated kinase (ATM; EC 2.7.11.1),
as well as by ataxia telangiectasia and Rad 3-related kinase
(ATR; EC 2.7.11.1), enzymes participating in the DNA
damage response (DDR) pathway. The key effector protein
on this pathway is p53. The importance of the ROS-
induced activation of p53-mediated DNA damage check
point signals in apoptosis of TiO2 NP-treated human per-
ipheral blood lymphocytes (PBL) was stressed by Kang et
al. [143]. Responding to the big scale of the DNA dam-
ages, p53 induces the pro-apoptotic protein gene expres-
sion, followed by the cell death [143] (Fig. 3).
Yoo et al. [144] studied the ROS mediation in the

induction of both intrinsic and extrinsic apoptotic

Fig. 3 Molecular mechanisms of reactive oxygen species (ROS)-mediated cell death pathways. Activated by ultraviolet (UV) radiation or ultrasound
(US) wave, nanoparticles of titanium dioxide (TiO2 NPs) and zinc oxide (ZnO NPs) induce ROS-mediated cell apoptosis, autophagy or necrosis. The
increase of ROS level in cytoplasm results in thioredoxin (Trx) oxidation and apoptosis signal-regulating kinase 1 (ASK1) activation. ASK1 phosphorylates
mitogen-activated protein kinases (ERKs, JNKs, p38 MAPKs) that control the AP-1-mediated synthesis of pro- (Bak, Bax) and anti-apoptotic (Bcl-2, Bcl-xL)
proteins, as well as death ligands (FasL), thus promoting the cell apoptosis. Likewise, ERKs promote the cell apoptosis trough attenuation of activity of
AKT kinase that controls the NF-κB-mediated synthesis of Bcl-2 and Bcl-xL proteins. The oxidative damages of mitochondrion result in dissipation of
mitochondrial membrane potential (ΔΨm), decrease of ATP level and release of cytochrome c (Cyt. c) to the cytosol. Cyt. c, binding with apoptotic
protease activating factor 1 (Apaf-1), induces the caspase-dependent apoptosis. The increase of ROS level in nucleus results in the activation of ataxia
telangiectasia mutated (ATM), as well as ataxia telangiectasia and Rad 3-related (ATR) kinases that induce the p53-mediated apoptosis and account for
the increase of DNA double-strand breaks marker (γH2AX) level. The ROS-induced endoplasmic reticulum stress results in the JNK1-mediated increase
of pro-autophagic protein (Beclin-1) level and the AMPK-mediated inhibition of autophagic inhibitor, mammalian target of rapamycin (mTOR) kinase.
Both processes lead to the cell autophagy. The oxidative injuries of plasma membrane result in the downregulation of plasma membrane calcium
ATPase 1 (PMCA1), in the decrease of ATP level and the increase of Ca2+ level. As a consequence, the cell necrosis follows
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pathways since ROS stimulate the increase of pro-
apoptotic protein (Bax) and death ligand (FasL) levels,
respectively. ROS induce apoptosis in tumor cells also
by modification of the activity of mitogen-activated
protein kinases (MAPKs; EC 2.7.11.24) [149] and of the
nuclear factor kappa B (NF-κB) [150]. Cheng et al. [151]
report that PDT-generated ROS modify the ability of
thioredoxin (Trx), the intracellular sensor of oxidative
stress, to inhibit the apoptosis signal-regulating kinase 1
(ASK1; EC 2.7.11.25). ASK1 forms an inactive structure
with reduced Trx. In the presence of ROS, the oxidation
of Trx takes place and the structure degrades. The free
form of ASK1 phosphorylates MAPKs such as c-Jun
N-terminal protein kinase isoform 1 and 2 (JNK1/2),
p38 mitogen-activated protein kinases (p38 MAPKs),
and extracellular signal-regulated kinase isoform 1 and 2
(ERK1/2) [152]. Phosphorylated MAPKs translocate into
the nucleus, where they induce the formation of the
activator protein 1 (AP-1), a transcription factor regulat-
ing the expression of the AP-1-dependant pro- and anti-
apoptotic genes [153]. JNK1/2 and p38 MAPKs lead to
AP-1-mediated inactivation of anti-apoptotic proteins
(Bcl-2 and Bcl-xL), the result of which is the formation
of apoptosome and the activation of caspases cascade,
both subsequently leading to the proteolysis of inhibitor
of caspase-activated DNase (ICAD) and then, as a
consequence, to the DNA fragmentation [154, 155].
JNK1/2 and p38 MAPKs promote apoptosis in case the
ERK1/2 are inhibited or remain inactive [156, 157]. This
conclusion was confirmed by the studies on the cytotox-
icity of ZnO NPs to human HepG2 cells performed by
Yuan et al. [158]. Nevertheless, in oxidative stress condi-
tions, ERK1/2 might adopt a pro-apoptotic role since
they attenuate the activity of protein kinase B (PKB, EC
2.7.11.1), called also AKT1 [159]. This phenomenon was
observed in renal proximal tubule epithelial cells (LLC-
PK1 line) [160]. AKT1 activates NF-κB through IκB
kinase (IKK; EC 2.7.11.10) phosphorylation [161].
Coupienne et al. [162] suggest that ROS induce the
AKT-mediated inactivation of NF-κB, an inhibitor of
apoptosis. The NF-κB activation occurs in the
cytoplasm and follows the detachment of the κB in-
hibitor (IκB). The active form of NF-κB translocates
into the nucleus, where it initiates expression of
genes that encode anti-apoptotic proteins (Fig. 3).
The studies by Granville et al. [163] revealed PDT-
treated human promyelocytic leukemia cells (HL-60
line) showed no detectable IκB level in the cyto-
plasm. It might constitute an explanation of typical
morphological symptoms of the apoptotic cell death,
as noticed using the confocal laser scanning micro-
scope (CLSM), such as nucleus fragmentation,
cytoplasm shrinkage, apoptotic bodies formation, or
lack of inflammation reaction.

PDT-induced damages of the endoplasmic reticulum
habitually result in the cell death by autophagy [164]
(Fig. 3). In the oxidative stress, the activation of JNK1
that phosphorylates Bcl-2 occurs. Consequently, the
dissociation of Beclin 1/Bcl-2 complex, hence the activa-
tion of Beclin 1, a pro-autophagic protein, takes place
[165–167]. Such effects were noticed in PDT-treated
human prostate adenocarcinoma cells (DU-145 and PC3
lines) [168]. Beclin 1 inhibits apoptosis by the inactiva-
tion of caspase-8 (CASP-8; EC 3.4.22.61), an enzyme
transforming Bid to tBid, a pro-apoptotic protein. Beclin
1 also contributes, along with the phosphatidylinositol
3-kinase class III (PI3K3C; EC 2.7.1.137), towards the
formation of the autophagosome that eliminates
cytoplasmic “waste” material [166]. Autophagosome
fuses with lisosome, leading therefore to the formation
of autophagolisosome, in which lysosomal hydrolases
complete the process of the definite destruction of its
content [169–171]. Among the morphological symptoms
of the autophagic cell death, there are increased number
of autophagic vesicles, the degradation of Golgi appar-
atus, and endoplasmic reticulum, as well as no inflam-
mation reaction [164]. Those symptoms were observed
by Yu et el. [128] in TiO2 NP-treated human bronchial
epithelial cells (16HBE14o-line). High level of ROS in a
cell results in the increase of the AMP/ATP ratio, an
effect stimulating the AMP-activated protein kinase
(AMPK; EC, 2.7.11.31) [172, 173]. AMPK may efficiently
inhibit the mammalian target of rapamycin kinase
(mTOR; EC. 2.7.11.1). mTOR is a key autophagy inhibi-
tor and is frequently overexpressed in miscellaneous
tumor cells [174, 175]. Its PDT-induced inhibition,
leading up to the autophagy, was observed in human
breast adenocarcinoma cells (MDA-MB-231 line) [176].
High level of the PDT-generated ROS, inflicting

pro-apoptotic (Bax, Bak) and pro-autophagic (Beclin 1)
protein damages, as well as plasma membrane disruption,
results in a cell death by necrosis [177, 178] (Fig. 3). Cell
membrane oxidative damages cause the increase of the
cytosolic Ca2+ level (>1 μM) that activates Ca2+-dependent
proteases. Other effects are dissipation of mitochondrial
membrane potential (Δψm) and a dramatic decrease of the
intracellular ATP level [178]. Guo et al. [179, 180] exposed
rat retinal ganglion cells (RGC-5 line) to ZnO NPs and
concluded there was a remarkable increase in Ca2+ level
in cytosol that resulted from the downregulation of
plasma membrane calcium ATPase isoform 1 (PMCA1;
EC 3.6.3.8) activity. Disrupted homeostasis of Ca2+ was
also observed in human lens epithelial cells (HLE-B3 line)
incubated with ZnO NPs and, subsequently, exposed
to UV-B radiation [181]. Typical morphological
symptoms of the necrotic cell death encompass: cell
swelling, destruction of nucleus and of other cell
organelles, plasma membrane disruption–all of them
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resulting in a cell disintegration, followed by the release of
the cell content into the intercellular space hence inflam-
mation reaction [182]. Xu et al. [108] described the
necrosis of human lung adenocarcinoma cells (APC-A1
line), induced by photoexcited TiO2 NPs.
PDT-treatment of tumor cells, using the metal oxide

nanoparticles, results in the cell death, presenting the
consequence of irreversible DNA damage [146], plasma
membrane disintegration [183], intracellular Ca2+ homeo-
stasis disruption [179, 180], strong reduction or complete
exhaustion of the redox compound pool, essential in ATP
synthesis [184]. The main factor of reported damages is
PDT-induced oxidative stress [184–187].
Nanocomposites, e.g., gold-doped TiO2 (Au/TiO2)

[101], silver-doped TiO2 (Ag/TiO2) [102], platinum-doped
TiO2 (Pt/TiO2) [188], or silver-doped ZnO (Ag/ZnO)
[189] are compounds increasingly often applied in
anticancer therapy. The conjugation of NPs of a precious
metal with TiO2 NPs increases the catalytic activity of this
oxide, a phenomenon confirmed in the studies of
Abdulla-al-Mamun et al. [102]. They reported that
Ag/TiO2 nanocomposite showed an 80% higher effect-
iveness in eradication of human HeLa cells than TiO2

NPs. In other studies, TiO2 NPs were conjugated with
folic acid (FA) molecules [190]. Such conjugation
enhanced the ability of human HeLa cells to uptake
FA/TiO2 nanocomposite by FA receptors in plasma
membrane and, therefore, to leverage the efficiency of
cancer cells eradication. Feng et al. [191] confirmed
high biocompatibility of FA/TiO2 nanocomposite and its
incorporation into human nasopharyngeal carcinoma
(KB) cells. Rozhkova et al. [109] designed TiO2-based
nanocomposites that target and eradicate brain carcinoma
cells in vivo with no harm to adjacent healthy cells.
IL13α2R antibodies were conjugated with TiO2 NPs
through 3,4-dihydroxyphenylacetic acid (DOPAC). The
antibodies recognize cancer cells, bind to them and are
eventually uptaken by means of phagocytosis. In the
process of tumor cells exposition to UV-A radiation,
TiO2-based nanoconstructs generate the formation of
ROS that subsequently damage the cancer cells and
induce their apoptosis. The selection of suitable antibodies
can help design nanocomposites able to precisely target
and eradicate many types of cancer cells [82, 83]. Xu et al.
[100] advocate a simultaneous application of conjugates of
TiO2 NPs with monoclonal antibodies, along with revers-
ible plasma membrane injury by means of electric field, so
called electroporation. As the authors suggest, such
combination may increase the accuracy of cancer cell
recognition by TiO2-based nanocomposites and, in conse-
quence, enhance the TiO2-based nanoconstructs penetra-
tion into cytosol. Using that method, it was possible to
eradicate in vitro all human LoVo cells that were subject
to experiment, within merely 90 min.

One of the main disadvantages of PDT is the limited
penetration depth of the tissues by the UV radiation.
Therefore, this method is suitable to eradicate tumor
cells located in superficial depths [192]. This shortcom-
ing might be rectified, and deeper located tumor cells
can still be eradicated using PDT, if NPs of TiO2 and
ZnO are conjugated with upconverting nanoparticles
(UCNPs) [193]. Ytterbium and erbium doped sodium
yttrium fluoride (NaYF4:Yb,Er) is frequently applied as
transducer [194]. UCNPs absorb near infrared (NIR,
700 ≤ λ < 850 nm) radiation and emit UV (λ < 400 nm)
radiation. NIR radiation, compared to UV radiation,
penetrates tissues in bigger depths but is also less
harmful to the organism. Therefore, UCNP-based PDT
gains enhanced effectiveness in the eradication of deeper
depths tumor cells [195]. This finding has been
confirmed both in vitro, in human cancer cells (HeLa
and MCF-7 lines) and in vivo, in female Balb/c nude
mice [196, 197].
Thevenot et al. [198] withdrew from TiO2 NPs

excitation by UV radiation in favor of the chemical
functionalization of their surfaces by binding to them –
OH, –NH2, or –COOH groups. Then, they examined
TiO2 NPs, as modified on their surface, in respect of their
influence on the viability of a number of cancer cell lines
(e.g., B16F10 mouse melanoma cell line, 3T3 mouse
embryonic fibroblast cell line, or PC-3M human prostate
carcinoma cell line) in vitro. According to the authors, the
viability of the examined cancer cell lines was dependent
upon both the concentration of TiO2 NPs in the examined
cells and the type of functional group altering the surface
properties of TiO2 NPs. The highest cyto- and genotoxi-
city exhibited NPs functionalized by –OH groups. The
design of surface properties of NMs and NPs presents a
valuable tool in the targeted cancer therapy.

Sonodynamic Therapy
Limited possibilities to apply PDT in the cancer therapy
gave rise to seek different cancer treatment modalities.
An example of an alternative tumor eradication method
is SDT. This therapy is based on a synergistic effect on a
cancer cell by sonosensitizer and US [199]. US can
activate particles of compounds called sonosensitizers.
In comparison with UV or NIR radiation, US penetrates
tissues much more effectively as it reaches deeper depths
tumor cells. The introduction of sonosensitizers into
cancer cells and their subsequent exposure to US in
order to generate ROS is the underlying factor of SDT
[199, 200] (Fig. 2).
Harada et al. [114] showed in their studies in vitro that

there was a remarkable reduction (in excess of 50%) in
viability of human melanoma cells (C32 line) upon
exposure to the TiO2 NP-based SDT (1 MHz, 30 s).
Moosavi Nejda et al. [200] examined in vitro the influence
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of the US-excited TiO2 NPs (100 μg mL−1) on the viability
of human oral squamous carcinoma cells (HSC-2 line).
The authors proved the increased intensity of US (20, 32,
55, 73 W cm−2) and the prolonged sonication period (0.1,
1.0, 3.0 s) enhanced the damage ratio in the human
HSC-2 cells, finally leading to their necrosis at the condi-
tions of 73 W cm−2 and 3 s. Yamaguchi et al. [183] believe
that TiO2 NP-based cancer therapies will soon become a
valuable tool in fighting malignant gliomas. The authors
compared PDT to SDT in respect of their effectiveness in
eradication of human glioblastoma cells (U251 line). With
PDT, the toxicity effect of TiO2 NPs (20 μg mL−1) was
noticeable after 2-h exposure of single cancer cell layer to
UV-A radiation (5.0 mW cm−2). Moreover, the effect was
fairly restricted by free radical scavengers. Cytotoxicity of
TiO2 NPs (20 μg mL−1) in case of SDT was proportional
to the sonication period, and it was not dependent on
antioxidants concentration, an observation indicating
there must be a different mechanism of intracellular struc-
ture damages. US, propagating in cell, induce the forma-
tion of cavitation bubbles which free energy as they
implode. It is assumed that acoustic cavitation can not
only lead to sonosensitizer excitation, the result of which
is 1O2 formation, but it can also cause—with no ROS
involved—a disruption in plasma membrane integrity.
Saito et al. [201] report that the necrotic death of human
corneal endothelial cells after the US exposure can take
place rapidly and could be attributed to mechanically
induced damage to the plasma membrane. Thanks to
fluorescent dyes, a greater amount of plasma membrane
damages resulting from the TiO2 NP-based SDT could be
noticed than in the TiO2 NP-based PDT.
In SDT, similarly to PDT, TiO2 NPs are also

conjugated with precious metals or antibodies. The
subject of studies conducted by Ogino et al. [202], as
well as Ninomiya et al. [203, 204], was the examination
of TiO2 NP toxicity to human HepG2 cells. To increase
the TiO2 NPs uptake rate by cancer cells, pre-S1/S2, a
model antibody recognizing hepatocytes, was conjugated
with the TiO2 NPs. The ability of such conjugates to
recognize cancer cells was examined using the surface
plasmon resonance and immunofluorescence tech-
niques. Apoptosis of some cells of the human HepG2
cells in vitro was firstly observed after 6 h from the
termination of the TiO2 NP sonication (1 MHz, 30 s),
and after the following 90 h, the number of dividing cells
decreased by 45%. The studies conducted by Ninomiya
et al. [205] revealed the high efficiency of the TiO2

NP-based SDT as a tool to reduce the proliferation of
human MCF-7 cells, too. In this case, avidin was immo-
bilized on the surface of TiO2 NPs in order to enhance
its uptake rate by cancer cells. Within 96 h after the
termination of the TiO2 NP sonication (1 MHz, 30 s),
the number of viable cancer cells was reduced by 30%.

TiO2 and ZnO NPs are excellent sensitizers and
oxidizing agents. The feature of the ROS generated on
their surface is a higher oxidation potential as well as a
short half-life (<0.04 μs) [41]. Therefore, the occurrence
of ROS-induced oxidative injuries is limited to a small
distance (<0.02 μm) from the subcellular position of the
sensitizer NPs [54]. NPs administered into the blood-
stream become covered by a plasma proteins layer,
called protein corona, that lowers their cytotoxicity and,
depending on the type of adsorbed plasma proteins,
modulates their immunotoxicity and the targeted deliv-
ery into tumor cells [206, 207]. Garvas et al. [208]
proved the cytotoxicity of TiO2 NPs in vivo is limited by
serum proteins covering their surface that exhibit a
trapping ability of photogenerated ROS. The knowledge
on the potential application of NPs of TiO2 and ZnO in
therapy and diagnostics of neoplastic maladies is
continuously growing. Nonetheless, further studies are
necessary to improve the tumor targetability of TiO2

and ZnO NPs, as well as to increase the therapeutic win-
dow of PDT using metal oxide NPs [209, 210].

Conclusions
Traditional methods of cancer therapy inflict a series of
side effects, including the impairment of the immune
system. Recent years have witnessed many efforts in
creating alternative cancer therapy methods that would
be less invasive and would exhibit a site-specific activity.
PDT might present a viable solution. Among photosen-
sitizers that have been thoroughly examined in view of
their potential application in cancer therapies, there are
TiO2 and ZnO in their NPs form. UV-excited NPs of
TiO2 and ZnO are a source of ROS that form on their
surfaces. ROS are agents with a high oxidative potential
that damage primarily DNA and cell membranes of
cancer cells. Plasma membrane damages lead to cell
necrosis, nucleus and mitochondria damages induce
apoptotic cell death, and endoplasmic reticulum
damages cause cell death by autophagy. Limited tissue
penetration ability of UV radiation presents a serious
obstacle in the application of UV-sensitizing NPs of
TiO2 and ZnO in cancer therapy. Efforts to apply NIR
radiation, since it is less harmful and can penetrate
deeper depths tissues, have so far not been successful.
Therefore, a new method had to be set up, allowing to
generate ROS in deeper depths tissues. Such a method is
SDT, using US with low tissue attenuation coefficient.
However, SDT exhibits one major disadvantage: insuffi-
cient tumor targetability by NPs of TiO2 and ZnO. The
difficulty in preparation of a drug formula that would
allow the targeted delivery of NPs to cancer cells is an
important factor that restricts the application of photo-
and sonosensitizers in cancer therapy. Thanks to the
development of nanotechnology, various drug delivery
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systems in organisms have been designed. One of them
is compiling conjugates of TiO2 or ZnO in their NPs
form with monoclonal antibodies, a method that allows
targeting the photo- and sonosensitizers on a selected
receptor. The design of modern, more effective cancer
fight methods remains an important challenge to
contemporary medicine. The scientists are still facing
many years of studies on how to optimize cancer therapy
using nanotechnology whereas the results have so far
been fairly promising.
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