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Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative
stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the
signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and
senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in
the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause
oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is
accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various
antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production
in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However,
there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further
investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.

1. Introduction

Intervertebral disc (IVD) degeneration (IDD) is a widely
known contributor to low back pain (LBP) that is one of
the most prevalent musculoskeletal disorders worldwide and
results in a massive socioeconomic burden [I-4]. Degen-
erative discs show the structural failure that is character-
ized by disc height collapse, annulus fibrosus (AF) fissures,
loss of proteoglycans (PGs) and water in nucleus pulposus
(NP), and cartilage endplate (CEP) calcification. IDD is a
multifactorial disorder. Its etiological factors include aging,
smoking, infection, abnormal mechanical stress, diabetes,
trauma, and genetic predisposition [5-11]. The pathogenesis
of IDD involves a complex signaling network and various
effector molecules [12, 13]. However, our understanding of
the pathogenesis of IDD is limited. Elucidating the molecular
mechanism of IDD in detail will contribute to developing new
measures for the prevention and treatment of IDD.

Recent studies have reported that the establishment
and progression of IDD are tightly associated with reactive

oxygen species (ROS) and oxidative stress [14-16]. Although
the roles of ROS and oxidative stress in various diseases have
been widely investigated, including cardiovascular diseases,
diabetes, and osteoarthritis [17-19], little attention has been
paid to the effect of oxidative stress on the structure and
function of IVDs until now. This review provides an overview
of the involvement of oxidative stress in the pathogenesis
of IDD. ROS are essential mediators of the occurrence and
progression of IDD. Thus, antioxidation has been proposed
as a promising therapeutic strategy of IDD. The abbreviations
used in this review are listed in the Abbreviations section.

2. The Microenvironment of Healthy IVDs

The IVD is composed of three distinct anatomical regions,
including the central NP, the peripheral AF enclosing the NP,
and the CEPs located superiorly and inferiorly. The IVD is
the largest avascular structure in human body [45]. Although
the cells located at outer AF take nutrients and eliminate
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FIGURE I: The redox homeostasis of intervertebral disc (IVD) cells. The role of the mitochondrion in reactive oxygen species (ROS) generation
of disc cells has been well established. During the transportation of electrons, a small proportion of electrons (1%-3%) leak to produce
ROS. However, the nonmitochondrial ROS generation through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or xanthine
oxidase in disc cells remains unknown. Thus, “?” is labeled in these pathways. ROS scavenging is performed by antioxidants and detoxicating

enzymes.

metabolites through the capillaries in the soft tissues sur-
rounding IVDs, the nutrient-metabolite homeostasis in discs
mainly depends on the exchange of nutrient solutes and
metabolites between the capillaries in the adjacent vertebral
bodies and the remaining disc cells (inner AF cells, NP cells,
and CEP cells) via the diffusion pathway constituted by CEPs
and the dense extracellular matrix (ECM) of NP and AF
[46, 47]. Therefore, the concentration of oxygen, glucose, and
some other nutrients in discs is low while the concentration of
metabolites is high. The microenvironment of healthy discs is
characterized by hypoxia (1-2% O,), low nutrition, and acidic
PH due to lactic acid accumulation [48].

3. ROS Production in Healthy IVDs

ROS are a family of unstable and highly reactive molecules
with or without free radicals, including superoxide anion
(0,7), hydroxyl radical (OH"), hydrogen peroxide (H,0O,),
and hypochlorite ion (OCI"). Also, reactive nitrogen species,
such as nitric oxide (NO), are regarded as a member of the
ROS superfamily due to their similar effects to ROS. ROS
are inevitably produced through the oxygen-using metabolic
processes of cells. In other words, ROS production is a

price paid for the aerobic metabolism. While the microen-
vironment of IVDs is characterized by hypoxia due to poor
vascularization, all resident disc cells (NP cells, AF cells,
and CEP cells) have been demonstrated to be not anaerobic
and to have oxygen-utilizing metabolic processes in vivo
[49, 50]. Therefore, disc cells are expected to produce ROS
in the microenvironment of discs. Actually, H,O, has been
identified in human NP tissues [51]. Peroxisomes have been
detected in human AF cells in vitro [52], suggesting that disc
cells are the ROS generator in the microenvironment of discs.

Mitochondrion is a major site of ROS generation. During
the transportation of electrons, a small proportion of elec-
trons (1%-3%) leak and reduce O, to O,  rather than H,O
[53, 54]. The mitochondrion-dependent ROS production has
been reported in various disc cells derived from different
species (Figure 1), including human NP cells, human AF cells,
rat AF cells, rat notochordal cells, and rabbit NP cells [55-
60]. Nonmitochondrial oxygen consumption through nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) or xanthine oxidase (XO) is one other main ROS
production site (Figure 1) [61, 62]. NOX consists of a catalytic
subunit gp91P"** and its partner p22P"* as well as three
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TABLE 1: Reactive oxygen species (ROS) sensitive signaling proteins in disc cells.
ROS sensitive signaling .
Experimental models Cellular processes regulated by the molecules Reference

molecules

ERK, JNK, and p38 Rat AF cells (in vitro)

ERK, JNK, p38, Akt, p65

Nrf2, ATM, Chk2, and p53 Human NP cells (in vitro)

p65 Human NP cells (in vitro)
JNK and p38 Bovine NP cells (in vitro)
ERK Rat NP cells (in vitro)

Matrix metabolism

14

Proinflammatory phenotype [14]
Cell cycle progression

Matrix metabolism [15]

Proinflammatory phenotype

Antioxidative system

Proinflammatory phenotype [20]

Matrix catabolic phenotype [21]

Autophagy [22]

AF: annulus fibrosus; NP: nucleus pulposus.

regulatory subunits (p40P™, p47Ph°* and p67P"°%). NOX is
a professional ROS-generating enzyme that is responsible for
the respiratory burst and phagocytosis of phagocytic cells.
Besides, NOX is also expressed by nonphagocytic cells [63].
XO oxidizes hypoxanthine to xanthine to generate H,O,.
The nonmitochondrial oxidative stress has been documented
in various diseases, including cardiovascular diseases, lung
injury, and central nervous system diseases [17, 62, 64].
However, the expression of NOX and XO in disc cells remains
unknown (Figure 1). The nonmitochondrial ROS production
of disc cells should be investigated in further studies.

The intracellular redox homeostasis depends on a balance
between ROS generation and ROS scavenging performed by
nonenzymatic and enzymatic antioxidants (Figure 1), includ-
ing glutathione (GSH), superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase, ascorbic acid (vitamin C),
a-tocopherol (vitamin E), and carotenoids [65, 66]. The
disturbance of this balance causes oxidative stress that is
detrimental to the function and viability of cells [65, 67].

4. ROS: Critical Signaling Molecules in
Disc Cells

ROS serve as signaling messengers in various signaling
pathways, including the nuclear factor-«B (NF-xB) pathway,
the mitogen-activated protein kinases (MAPKSs) pathway,
and the lipid pathways (phospholipases, protein kinase C
(PKC), and the phosphatidylinositol-3-kinase (PI3K)/Akt
pathway) [68, 69]. However, the signaling response to ROS
is cell-type-dependent. In human and bovine NP cells, ROS
activated signaling molecules, such as p38, ERKs, JNKs, p65,
Akt, and Nrf2, to induce the upregulation of ECM proteases
and proinflammatory genes along with the downregulation of
ECM genes and anticatabolic genes [15, 20, 21, 57]. Similarly,
ROS activated the MAPKs pathway to induce the autophagy
of rat NP cells [22] and to regulate the expression of tumor
necrosis factor-alpha (TNF-alpha), matrix metalloprotease-
3 (MMP-3), cyclooxygenase-2 (COX-2), and aggrecan in rat
AF cells [14]. Thus, it can be speculated that ROS regulate
the phenotype of disc cells through a complicated signaling
network. ROS-sensitive signaling molecules in disc cells are
summarized in Table 1. However, our understating of the
function of ROS in disc cells is limited. More signaling

pathways regulated by ROS in disc cells are required to be
elucidated further in depth.

5. Disturbed Redox Homeostasis in the
Microenvironment of Degenerative IVDs

5.1. Excessive ROS Production in Degenerative Discs. In fact,
excessive ROS production in degenerative discs has been
reported. The level of NO in rat degenerative discs was shown
to increase dramatically [16]. Peroxynitrite, a potent oxidative
agent derived from the interaction of O, and NO in vivo,
can cause tyrosine nitrosylation that is a marker of exces-
sive ROS production [70]. Noticeably, tyrosine nitrosylation
was identified in human NP specimens. The percentage of
nitrotyrosine-positive cells in human NP tissues increased
with IDD advancing [14, 20]. In summary, ROS production
in discs increases with IDD progression. With respect to
the trigger of excessive ROS production in discs, it is
attributed to the harsh microenvironment of degenerative
discs in which the availability of nutrients to disc cells and
the clearance of metabolites are markedly suppressed due
to CEP calcification [46, 71]. In this microenvironment,
various exogenous stimuli, such as mechanical loading, high
oxygen tension, high glucose stress, and proinflammatory
cytokines, increase ROS production in disc cells (Figure 2).
Furthermore, ROS themselves also enhance ROS production
in disc cells, forming a positive feedback loop [14, 15, 20-
24, 36, 44, 56-60)].

Mitochondrion dysfunction is a main cause of exces-
sive ROS production (Figure 2). It is characterized by loss
of mitochondrial mass, respiratory chain defect, opening
of mitochondrial permeability transition pore (MPTP),
and decreased mitochondrial membrane potential (MTMP).
Dysfunctional mitochondrion leaks more electrons to pro-
duce ROS. Previous studies have reported the decreased
mitochondrial mass and the reinforced mitochondria res-
piration in human AF cells with IDD progression. Also,
mitochondrion dysfunction-associated genes, such as BCL2-
like 11, mitochondrion-associated 1, and programmed cell
death 6, were shown to be upregulated in human AF cells
isolated from degenerative discs [55, 72]. Structurally, the
mitochondrion of human AF cells from degenerative discs
showed an abnormal morphology with small cristae, dark
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FIGURE 2: Disturbed redox homeostasis in the microenvironment
of degenerative IVDs. Excessive reactive oxygen species (ROS)
production and impaired antioxidative system exist in degenerative
discs.

colour, and dense inclusion bodies [55]. Moreover, various
stimuli have been shown to cause mitochondrion dysfunction
in human, rat, and rabbit disc cells, including high oxygen
tension, high glucose stress, and abnormal mechanical load-
ing [56-60]. Compression induced the opening of MPTP
and decreased MTMP in rabbit NP cells [56]. High glucose
disrupted the MTMP of rat disc cells [58-60]. Interestingly,
these stimuli also are risk factors of IDD, suggesting that
mitochondrion dysfunction is involved in the pathogenesis of
IDD. On the other hand, mitochondrion is a primary attack
target of ROS. Mitochondrial DNA and respiratory enzymes
undergoing oxidative damage cause mitochondrion dysfunc-
tion further. As a result, a vicious cycle is formed [22, 73]. A
better understanding of the essential role of mitochondrion
dysfunction in the establishment and progression of IDD will
give a novel insight into the pathogenesis of IDD. Moreover,
the contribution of NOX and XO to ROS overproduction in
degenerative discs remains to be elucidated.

5.2. Antioxidant Decline in Degenerative Discs. Our knowl-
edge about antioxidants in degenerative discs is limited.
The activity of SOD in rat lumber discs declined with IDD
advancing [16]. Methionine sulfoxide reductase (Msr), a
repair enzyme scavenging ROS through reducing methio-
nine residues in oxidation proteins, was downregulated in
human senescent AF cells [72], which makes disc cells
more susceptive to oxidative damage. These limited lines
of evidence suggest an antioxidant decline in degenerative
discs that results in the accumulation of ROS in degenerative
discs (Figure 2). However, more investigations should be
performed to obtain an elaborate picture of the antioxidant
status in degenerative discs.

5.3. Oxidative Stress in Degenerative Discs. As mentioned
above, a disturbed balance between ROS generation and
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ROS scavenging has been identified in degenerative discs
(Figure 2). Therefore, oxidative stress is aroused in the
microenvironment of degenerative discs. ROS are able to
cause the oxidative damage of DNA, lipids, and proteins.
Concomitantly, the by-products of oxidative stress accumu-
late in degenerative discs. Malondialdehyde (MDA), a prod-
uct of the peroxidation of polyunsaturated fatty acid residues,
was shown to accumulate in rat degenerative discs [16].
Advanced glycation end products (AGEs) are the products
of oxidative modifications of glycated proteins, including
carboxymethyl-lysine (CML) and pentosidine. They are a
marker of oxidative stress [74]. Noticeably, CML and pen-
tosidine were found to accumulate in human degenerative
discs, and the level of CML in discs was positively correlated
with the degree of IDD [75-77]. Moreover, the levels of car-
bonylated proteins and advanced oxidation protein products
(AOPP) increased significantly in rat and mouse degenerative
discs. The protein constituents of discs from aging mice
contained more oxidized amino acids than those from young
mice [16, 78]. Interestingly, IDD was also reported to be asso-
ciated with systemic oxidative stress. In the plasma of patients
or rats with IDD, SOD activity decreased markedly, and the
level of several oxidative stress biomarkers increased dra-
matically, including phospholipase A, fructoselysine, MDA,
peroxidation potential (PP), total hydroperoxides, AOPP, and
NO [16, 79]. In short, both systemic oxidative stress and
local oxidative stress are reinforced during the process of
IDD, indicating the critical role of oxidative stress in the
pathogenesis of IDD.

6. The Roles of Oxidative Stress in the
Pathogenesis of IDD

6.1. ROS and Disc Cell Apoptosis. Apoptosis is a programmed
cell death characterized by apoptotic body formation, DNA
fragmentation, chromosomal condensation, and caspase
activation. Apoptosis decreases the number of functional and
viable disc cells, which is one of the triggers of IDD [80, 81].
ROS have been determined as a potent proapoptotic factor for
human, rat, and rabbit NP cells in vitro [38, 40, 41, 44]. H,O,
increased lysosome membrane permeability and decreased
MTMP in rat NP cells. As a result, ROS were overproduced
to induce NP cell apoptosis through the mitochondrial
apoptosis pathway [22, 41]. Notochordal cell apoptosis is
recognized as the starting point of IDD. Noticeably, H,O,
induced the apoptosis of rat notochordal cells via both the
mitochondrial apoptosis pathway and the death receptor
pathway [82]. Besides, ROS mediate the proapoptotic effect
of various external stimuli on disc cells, including mechanical
loading, nutrition deprivation, proinflammatory cytokines,
and local anesthetics (LAs). These stimuli promoted ROS
production in rabbit NP and AF cells to induce apoptosis
through the mitochondrial apoptosis pathway [23, 56]. Based
on the findings, antioxidation is proposed as a potential
measure to prevent disc cell apoptosis and to increase the
number of functional and viable cells in discs.

6.2. ROS and Disc Cell Autophagy. Autophagy is char-
acterized by autophagosome formation. It is a lysosomal
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catabolism that degrades dysfunctional organelles and dam-
aged proteins to provide recycled metabolic substrates. Thus,
autophagy provides energy through self-digestion to protect
cells from various external stresses. Recent studies have
demonstrated the presence of autophagy in rat and human
degenerative disc cells [26, 83, 84]. Noticeably, ROS are
a crucial regulator of disc cell autophagy in vitro. H,O,
promoted the autophagy of rat NP cells via the ERK/mTOR
signaling pathway [22]. ROS overproduction induced by
mechanical compression was involved in the compression-
induced autophagy of rat NP cells [25]. High glucose stress
increased ROS production to upregulate the expression
of autophagy-related genes in rat notochordal cells [58].
Furthermore, excessive ROS production caused by serum
deprivation reinforced the autophagy of rat NP cells through
the AMPK/mTOR signaling pathway [24]. However, more
lines of evidence based on in vivo studies and human disc
cells are still needed to elucidate the role of ROS in regulating
disc cell autophagy. With regard to the roles of autophagy
in the pathogenesis of IDD, appropriate autophagy promotes
disc cell survival. Autophagy helps disc cells scavenge ROS
through self-digestion to protect disc cells from oxidative
damage. However, cell death caused by excessive autophagy
probably decreases the number of viable and functional cells
in discs further [24, 85, 86]. Therefore, the dual roles of disc
cell autophagy should be investigated in further researches.

6.3. ROS and Disc Cell Senescence. Cell senescence is an irre-
versible cell-cycle arrest resulting from DNA damage, telom-
ere uncapping, oxidative stress, proinflammatory cytokines,
and so forth. Senescent cells are viable and manifest a proin-
flammatory and catabolic phenotype defined as senescence-
associated secretory phenotype (SASP). Previous studies have
demonstrated the accumulation of senescent disc cells in
human and rat degenerative discs [87, 88]. On the one hand,
disc cell senescence promotes the loss of viable and functional
disc cells due to replicative exhaustion. On the other hand,
senescent disc cells secrete matrix proteases, cytokines, and
chemokines to deteriorate the microenvironment of discs.
Thus, cell senescence is a potential therapeutic target for IDD
[89, 90]. However, the mechanism of disc cell senescence
is very complex. ROS are an essential trigger of disc cell
senescence. H,0, resulted in a rapid increase in ROS pro-
duction and DNA damage in human NP cells. Consequently,
the ATM-Chk2-p53-p21-Rb pathway and the p16-Rb pathway
were activated to induce premature senescence of human
NP cells [15, 34]. H,0, also induced premature senescence
of human CEP cells through the p53-p21-Rb pathway [91].
Moreover, ROS overproduction induced by high glucose
stress accelerated the senescence of rat AF and notochordal
cells through the pl6-Rb pathway [59, 60]. Taking these
findings into account, recovering the redox homeostasis
of disc cells is an effective measure to retard disc cells
senescence.

6.4. ROS and Matrix Structure. The ECM of discs mainly
comprises PGs and collagens that form a matrix network.
This dynamic network is crucial to disc function as a shock
absorber to resist mechanical loadings exerted on the spine.

However, the structural failure of matrix network triggers
IDD under abnormal mechanical loadings. As mentioned
above, the structural components of disc matrix are vulner-
able to oxidative damage. Posttranslational oxidative modi-
fication of the disc matrix components occurred during the
process of IDD. The levels of AGEs and protein carbonylation
increased significantly in human and mouse degenerative
discs [74-78]. The oxidative modifications of collagens led
to the crosslink and aggregation of collagens in discs and
also induced the conformational changes of oxidized pro-
teins, disrupting the primary, secondary, and triple-helical
structure of collagens and causing collagen unfolding [78, 92].
As a consequence, the anatomic integrity and biomechanical
property of disc matrix network altered [93].

6.5. ROS and ECM Metabolism. An imbalance between
matrix anabolism and catabolism is an essential event during
the process of IDD. Actually, the metabolism of ECM is
tightly associated with the redox state in discs. Numerous
studies have shown that H,O, significantly downregulated
the expression of collagen type II and aggrecan in human
and rat disc cells [14, 15, 36, 38, 41, 44]. ROS overproduc-
tion induced by proinflammatory cytokines or high oxygen
tension prominently suppressed the matrix synthesis and
upregulated the expression of matrix degradation proteases
in human and rat disc cells [14, 15, 21, 36, 44, 57]. ROS also
caused a dramatic loss of PGs, collagens, and fibronectin
in mouse discs [78]. Moreover, oxidized collagens in mouse
discs were identified [78]. They are susceptive to proteolytic
attack resulting from matrix proteases [94]. Generally, oxida-
tive stress disturbs the balance between matrix anabolism and
catabolism, resulting in a significant decrease in the matrix
content of discs.

To sum up, oxidative stress induces the damage of matrix
structure and promotes matrix degradation in IVDs. As
a consequence, a significant loss of the elasticity and an
increased stiffness of discs impair the mechanical function of
discs, triggering IDD.

6.6. Comprehensive Effects of Oxidative Stress in the Estab-
lishment and Progression of IDD. Numerous lines of evi-
dence indicate that ROS are widely involved in the signal
transduction, metabolic regulation, programmed cell death,
senescence, and phenotypic shift of disc cells. In fact, IDD is
a disc cell-mediated pathological process. Disc degeneration
is strongly associated with the viability and function of disc
cells. Thus, ROS regulate the viability and function of disc
cells affect the progression of IDD. Excessive ROS cause
oxidative stress to activate various signaling pathways in
disc cells, including the NF-«B pathway and the MAPK
pathway. Consequently, the phenotype of disc cells changes
from a matrix anabolic phenotype into a matrix catabolic and
proinflammatory phenotype. This phenotypic shift causes
a dramatic matrix loss and enhances inflammation in
the microenvironment of discs. Furthermore, chemokines
secreted by disc cells recruit more immune cells into discs
to enhance inflammation further. These immune cells secrete
more cytokines and chemokines to deteriorate the viability
and function of disc cells, forming a vicious circle [13].
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FIGURE 3: The involvement of reactive oxygen species (ROS)/oxidative stress in the pathogenesis of intervertebral disc (IVD) degeneration
(IDD). ROS activate various signaling pathways in IVD cells and consequently regulate the phenotype, apoptosis, autophagy, and senescence
of disc cells. Sustained oxidative stress induced by ROS overproduction reinforces matrix degradation and inflammation and enhances the
decrease in the number of viable and functional disc cells in IVDs. Furthermore, ROS alter the extracellular matrix (ECM) structure of
IVDs through oxidative modification, impairing the mechanical function of IVDs. As a result, the progression of IDD is accelerated. SASP:

senescence-associated secretory phenotype.

Oxidative stress is a potent trigger of disc cell autophagy;,
apoptosis, and senescence. Autophagy provides recycled
metabolic substrates to disc cells under oxidative stress,
which protects disc cells from oxidative damage. However,
excessive autophagy induced by sustained oxidative stress
will lead to autophagic death of disc cells. Also, oxidative
stress can directly induce disc cell apoptosis. Therefore, the
number of viable and functional disc cells decreases markedly
under sustained oxidative stress. More than that, this decrease
cannot be compensated through cell proliferation due to
disc cell senescence. More seriously, senescent disc cells
secrete proinflammatory cytokines to promote the death
or senescence of neighbouring disc cells, reinforcing the
decrease in the number of viable and functional disc cells.

Degenerative discs show a significant structure failure.
This is partially attributed to oxidative stress. ROS react with
matrix components of discs, inducing oxidative modifica-
tions of matrix components. Modified components undergo
structural changes, impairing the mechanical function of
IVDs. As a result, IVDs gradually manifest degenerative
changes under mechanical stimulation.

In conclusion, oxidative stress plays a crucial role in the
pathogenesis of IDD. It not only regulates the viability and
function of disc cells, but also affects the ECM structure
of discs. We illustrate the involvement of ROS/oxidative
stress in the pathogenesis of IDD in Figure 3. Regulating
the redox balance of disc cells to ameliorate oxidative stress
is a promising therapeutic measure for IDD. Recent studies

provide support to this idea. Broad complex-Tramtrack-Bric-
a-brac and cap‘ncollar homology 1 deficient (Bach 1-/-) mice
highly express heme oxygenase-1 (HO-1). HO-1is an antiox-
idant enzyme that converts toxic hemes into antioxidants.
It protects living cells from oxidative stress [95]. Notably,
the expression of HO-1 in the punctured discs of Bach 1-/-
mice was significantly higher than that in the punctured
discs of wild-type mice. Concomitantly, the progression of
IDD in Bach 1-/— mice was slower than that in wild-type
mice [96]. AGEs were found to accumulate in the discs of
diabetic mice or rats that manifest accelerated degenerative
changes. However, the oral treatment of pyridoxamine (AGE
inhibitor) ameliorated ROS production and inflammation
in the discs of diabetic mice and consequently decelerated
the progression of IDD [97, 98]. Moreover, the ERCCI-
deficient mice manifest accelerated disc degeneration with
aging due to DNA repair deficiency. However, the systematic
treatment of XJB-5-131 (a mitochondrial-targeted ROS scav-
enger) potently delayed the progression of IDD in ERCCI-
deficient mice [57]. Therefore, antioxidation is a new effective
therapeutic strategy for IDD.

7. Therapeutic Implications

Oxidative stress is detrimental to the structural and func-
tional homeostasis of discs. Thus, antioxidant supplementa-
tion is proposed as a promising measure for IDD treatment
(Table 2). In this section, we will discuss the effect of various
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antioxidants on retarding the progression of disc degenera-
tion.

7.1. Nonenzymatic Antioxidants. GSH is a major antioxidant
in living cells. It was shown to reduce the IL-1$-induced ROS
generation in human NP cells and to suppress the H,O,-
induced apoptosis and matrix catabolism of human NP cells
in vitro [44]. N-Acetylcysteine (NAC) is a precursor of GSH.
NAC has been reported to decrease the level of ROS and
consequently to suppress the activation of MAPK pathway
and AMPK/mTOR pathway in human and rat disc cells in
vitro [14, 15, 24, 25]. As a result, the inductive effect of ROS
on the catabolic and proinflammatory phenotype of disc
cells was suppressed. The autophagy and apoptosis of disc
cells were attenuated. The premature senescence of disc cells
caused by oxidative stress also was ameliorated [15, 23-25].
Moreover, the oral administration of NAC inhibited oxidative
stress, matrix catabolism, and inflammation in rat discs to
retard disc degeneration induced by needle puncture [14].

7.2. Polyphenols. Polyphenols are natural compounds found
in vegetables, fruits, tea, wine, and chocolate. Their antiox-
idative and anti-inflammatory properties have been widely
investigated [99, 100]. Resveratrol (RSV) is a polyphenol
compound identified in plants. Previous studies have inves-
tigated the effects of RSV on human, rat, and bovine NP
cells in vitro. RSV suppressed NP cell death as well as
senescence and promoted NP cell proliferation through acti-
vating silent information regulator 2 ortholog 1 (SIRT1) and
PI3K/Akt/caspase-3 pathway [26-32]. SIRTI is a longevity
gene. It stimulates the expression of antioxidants and sup-
presses the activation of NF-«B pathway in cells. The acti-
vation of SIRT1 was shown to attenuate the H,O,-induced
senescence of human CEP cells in vitro [91]. In addition, RSV
suppressed the activation of various transcriptional factors
in NP cells, including AP-1 and AP-2, CREB, Etsl/PEA3,
E2F1, estrogen RE, NF-«B, Spl, and STATs. As a conse-
quence, the PG synthesis of NP cells was enhanced. The
expression of matrix proteases and cytokines by NP cells was
downregulated [28, 31-33]. Noticeably, in vivo studies have
documented that RSV upregulates the expression of aggrecan
and SIRT1 and downregulates the expression of MMP-3 and
pl6 to retard the degeneration of rodent punctured discs [29].
Polyphenol epigallocatechin 3-gallate is a polyphenol redox
scavenger. In vitro investigations have found that polyphenol
epigallocatechin 3-gallate not only suppresses the senescence
and apoptosis of human NP cells under oxidative stress, but
also inhibits the expression of cytokines and MMPs in human
NP cells through regulating the MAPK pathway and the NF-
xB pathway [34, 35].

73. ROS Scavengers. Pyrroloquinoline quinone (PQQ) is
a critical cofactor of mitochondrial dehydrogenases and a
ROS scavenger [101, 102]. For disc cells, PQQ suppressed
the H,0,-induced ROS overproduction in rat NP cells and
subsequently protected rat NP cells from H,O,-induced
apoptosis in vitro. It also antagonized the downregulation
of collagen type II and aggrecan in rat NP cells induced by
H,0, [41]. Fullerenes are powerful ROS scavengers due to
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their sustained activity, unique nanostructures, and great cell
membrane-penetrating ability [103, 104]. Fullerol, a polyhy-
droxylated derivative of fullerenes, has a potent scavenging
ability against ROS compared with SOD and mannitol. It was
found to reduce ROS production in human NP cells in vitro.
At the same time, it attenuated the upregulation of matrix
proteases as well as the downregulation of collagen type II
induced by H,O, in cultured human NP cells. Moreover,
intradiscal injection of fullerol protected the punctured rabbit
discs from degeneration through promoting matrix synthesis
and suppressing ectopic ossification [36].

7.4. Herbal Components. Ferulic acid (4-hydroxy-3-methoxy
cinnamic acid, FA) is a phenolic antioxidant found in
Chinese herb medicine. It has been reported to have anti-
inflammation, antiapoptosis, anticancer, and antiaging prop-
erties [105, 106]. FA suppressed ROS accumulation in cul-
tured rabbit NP cells and consequently retarded apoptosis.
It also upregulated the expression of aggrecan and collagen
type II and downregulated the expression of MMP-3 in
cultured rabbit NP cells under oxidative stress [42, 43]. Cordy-
ceps militaris is a Chinese herb medicine. Cordycepin (3'-
deoxyadenosine) is one of the bioactive components isolated
from Cordyceps militaris. Recently, the anti-inflammatory,
antiaging, antioxidative, and anticancer effects of cordycepin
have been documented [107, 108]. Cordycepin suppressed
the lipopolysaccharide- (LPS-) induced ROS production
and NF-«xB pathway activation to prevent the LPS-induced
phenotypic shift of rat NP cells from an anabolic phenotype
to a catabolic phenotype. Furthermore, cordycepin protected
organ-cultured rat IVDs from LPS-induced degeneration ex
vivo [37].

75. Growth Factors. Several growth factors have been
reported to protect disc cells from oxidative damage. Bone
morphogenetic protein-7 inhibited the proapoptotic effect
of H,0, on human NP cells in vitro, which helps human
NP cells maintain the ability of matrix synthesis under
oxidative stress [38]. Insulin-like growth factor-1 ameliorated
premature senescence of human AF cells induced by H,O,
in vitro [39]. Besides, hepatocyte growth factor protected
rabbit NP cells from H,O,-induced apoptosis in vitro. It
also downregulated the expression of matrix proteases and
proinflammatory cytokines in rabbit NP cells [40].

8. Conclusion

The contributions of oxidative stress to the pathophysiology
of IDD are complicated. More and more researchers devote
themselves to elucidating the association between oxidative
stress and disc degeneration. However, our knowledge of this
issue is limited. Further investigations are required urgently.
Antioxidative therapy is suggested as a promising therapeutic
approach for IDD. Various antioxidants, such as NAC, food
polyphenols, ROS scavengers, and growth factors, have been
demonstrated to prevent the deleterious effects of ROS on
disc cells in vitro (Table 2). However, there are not enough
in vivo lines of evidence to support the effectiveness of
antioxidants on preventing or retarding the establishment
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and progression of IDD. Furthermore, the effect of antiox-
idants on relieving IDD-associated LBP remains unknown.
Thus, further studies based on in vivo preclinical studies
and clinical studies will be needed to develop an effective
antioxidative therapy for IDD.
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