Skip to main content
. 2017 Mar 28;7:44997. doi: 10.1038/srep44997

Table 4. The performance of Support vector machine (SVM) and Random Forest (RF) models developed using different sets of features selected via SVM technique on training and independent or external validation dataset.

Features Dataset Technique Performance Measures
Sensitivity Specificity Accuracy (%) MCC ROC
setA-2 (5 genes) Training SVM 68.9 73.94 70.88 0.42 0.75
Validation 65.08 70.73 67.31 0.35 0.75
Training RF 81.5 56.97 71.84 0.4 0.73
Validation 77.78 46.34 65.38 0.25 0.68
setB-2 (5 genes) Training SVM 68.9 70.91 69.69 0.39 0.76
Validation 60.32 70.73 64.42 0.3 0.72
Training RF 71.65 64.85 68.97 0.36 0.71
Validation 69.84 56.1 64.42 0.26 0.70
Combo-2 (10 genes) Training SVM 72.44 72.89 72.62 0.45 0.78
Validation 71.43 68.29 70.19 0.39 0.77
Training RF 76.19 65.85 72.12 0.42 0.76
Validation 70.47 70.3 70.41 0.4 0.76