Skip to main content
. 2017 Mar 28;7:45250. doi: 10.1038/srep45250

Table 1. Variation in the number of large carnivore attacks on humans over time and among species.

COMPETING MODELS   β SE p AICc ΔAICc Weighted AICc
1a
Year + Species + Year: Species         850.5   0.52
  Intercept −0.333 0.453 0.462      
  Year 0.024 0.010 0.016      
  Grizzly 0.737 0.527 0.162      
  Black bear 0.472 0.539 0.381      
  Cougar 0.499 0.517 0.335      
  Wolf 0.514 0.639 0.421      
  Coyote 0.115 0.599 0.848      
  Polar bear −0.398 1.093 0.716      
  Year: Grizzly −0.009 0.012 0.458      
  Year: Black bear −0.008 0.012 0.530      
  Year: Cougar 0.006 0.011 0.609      
  Year: Wolf −0.016 0.016 0.326      
  Year: Coyote 0.023 0.013 0.071      
  Year: Polar bear 0.002 0.023 0.930      
Year + Species         850.6 0.2 0.48
Species         908.1 57.6 0.00
Year         933.5 83.0 0.00
Null model         996.3 145.8 0.00
1b
Year + Species + Year: Species         508.6   0.88
  Intercept 0.411 0.284 0.148      
  Year 0.015 0.007 0.035      
  Cougar −0.264 0.391 0.500      
  Coyote −0.706 0.524 0.178      
  Year: Cougar 0.015 0.009 0.104      
  Year: Coyote 0.034 0.012 0.004      
Year + Species         512.6 4.0 0.12
Year         529.4 20.8 0.00
Species         549.7 41.1 0.00
Null model         575.3 66.7 0.00

(1a) Comparison of the five competing models built to study variation in the number of large carnivore attacks on humans over time and among species (n = 231). Summary of fitted parameters is shown for the most parsimonious candidate model (the selected model was the one with the lowest AICc score). Competitive models are ranked from the lowest AICc value (best model) to the highest one. (1b) We present the same analysis, but removed those species showing some patterns in the residuals of 1a. It is worth mentioning that in both cases we obtained the same results. European brown bear is included in the intercept. Negative binomial distribution error was selected over a Poisson distribution error, considering the output of the function odTest from the “pscl” package in R, which compares the log-likelihood ratios of a Negative Binomial regression to the restriction of a Poisson regression (critical value of test statistic at the alpha = 0.05 level: 2.7055; Chi–Square Test Statistic = 10.661, P < 0.001)