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Abstract Introduction: We tested the latent variable “d” (for “dementia”)’s ability to predict conversion to
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“mild cognitive impairment” (MCI) and Alzheimer’s disease (AD).
Methods: An ethnicity equivalent d homolog (“dEQ”) was constructed in n 5 1113 Mexican-
American (MA) and n 5 1958 non-Hispanic white (NHW) participants in the Texas Alzheimer’s
Research and Care Consortium. “Normal Controls” (NC) (n 5 1276) and MCI cases (n 5 611)
were followed annually for up to 6 years [m 5 4.7(0.6)].
Results: 22.0% (n5 281) of NC converted to “MCI” or “AD”. 17.3%( n5 106) of MCI converted to
“AD.” Independently of covariates, each quintile increase in the dEQ scores of NC increased the odds
of conversion by 52%. Each quintile increase in the dEQ scores of MCI cases increased the odds of
conversion to AD almost three-fold.
Discussion: Baseline d scores predict MCI and AD conversions from nondemented states in MA and
NHW.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

We have proposed a latent variable phenotype for de-
mentia itself, as distinct from impairment(s) in domain-
specific cognitive performance [1]. Our intent has been to
identify dementia’s essential cognitive features and to
distinguish them from an illness’ nondementing cognitive
changes. Our approach has been to explicitly extract the
fraction of variance that is shared between cognitive per-
formance and measures of functional status, that is, in a
structural equation model framework. We accomplish this
by a novel confirmatory bifactor model. Both factors are
indicated by all observed cognitive measures. However,
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only one, “d” (for “dementia”), is allowed to also be indi-
cated by one or more functional status “target” indicators.
The resulting latent d variable is relatively free of measure-
ment error, continuously distributed, strongly related to
instrumental activities of daily living (IADL) [1], agnostic
to dementia etiology [2], and “indifferent” to its cognitive
indicators.

d’s indifference to its cognitive indicators suggests that it
can be modeled in almost any cognitive battery that also
includes a measure of IADL. Thus, we further distinguish
between d, that is, “the cognitive correlates of functional
status,” and “d,” that is, d’s operationalization in a specific
cognitive battery or analysis. d’s extraction from multiple
batteries results in a set of d homologs, all of which appear
to share similar psychometric properties.

d homologs have been constructed in multiple data sets.
They accurately diagnose dementia [1,3] and have been
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associated with atrophy in the default mode network [4],
Alzheimer’s disease (AD) neuropathology [5], AD-specific
cerebrospinal fluid (CSF) biomarkers [6], certain serum
inflammatory proteins [7], hippocampal atrophy [6],
prospective change, and future clinical dementia rating
(CDR) scores [2,8]. Here, we examine d’s ability to
predict prospective conversion to mild cognitive
impairment (MCI) and AD from nondemented states using
a homolog [i.e., “dEQ”] that exhibits factor equivalence
across ethnicity [3].
2. Methods

2.1. Subjects

Subjects included N 5 3072 Texas Alzheimer’s
Research and Care Consortium (TARCC) participants.
TARCC is a longitudinally followed convenience sample
of elderly persons with Alzheimer’s disease (AD;
n 5 1182), MCI (n 5 611), or normal controls (NC;
n 5 1276) and three “others” recruited from five Texas
medical schools. Each participant underwent a standard-
ized annual examination that included a medical evalua-
tion, neuropsychological testing, and clinical interview.
Categorical clinical diagnoses of “AD,” “MCI,” and
“NC” were established through consensus. The diagnosis
of AD was based on National Institute for Neurological
Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association criteria [9]. The diag-
nosis of MCI was based on site-specific consensus-based
clinical diagnoses derived from all available information
but without reliance on specific neurocognitive tests and/
or cut scores. “All available information” included the re-
sults of TARCC’s entire neuropsychological battery, clin-
ical evaluations, informant interviews, and any available
outside medical records. We could not easily use cut scores
because Mexican-American (MA) norms are not available
for many measures. Institutional review board approval
was obtained at each site, and written informed consent
was obtained for all participants.
2.2. Transitions

Categorical clinical diagnoses were updated annually.
Transitions across categorical boundaries were determined
by incident conversion at any visit relative to themodeled non-
demented state(s) at visit 1. Only 10 individuals converted to
AD from baseline control status. Because this is too small to
model, we combined them with MCI conversions.
2.3. Clinical variables

The Clinical Dementia Rating Scale sum of boxes (CDR-
SB) [10]: The CDR is used to evaluate dementia severity.
The information necessary to those ratings is collected dur-
ing an interview with the patient and their caregiver. Each
CDR domain is rated on a scale of 0.0–3.0. A total CDR-
SB score is calculated as the sum of all six domains.

The Geriatric Depression Rating Scale (GDS) [11,12]:
GDS scores range from 0–30. Higher scores are worse.
The GDS is valid in demented persons [13].

The Mini–Mental Status Examination (MMSE) [14]: The
MMSE is a well known and widely used test for screening
cognitive impairment. Scores range from 0 to 30.
2.4. dEQ’s construction and validation

dEQ’s construction and validation in this sample has been
previously described [3]. Briefly, dEQ’s cognitive indicators
included the Controlled OralWord Association [15], Logical
Memory II [16], the Digit Span Test [16], and Wechsler
Memory Scale Visual Reproduction I [16]. dEQ’s target in-
dicator was IADL [17]: IADLs were assessed using care-
giver ratings. The resulting latent variables g0 and dEQ
were adjusted for age, education, and gender before reifica-
tion as composite scores. This dEQ homolog has previously
been reported to have acceptable factor determinacy by Gri-
ce’s method [18], to be factor equivalent across ethnicity in
this sample with respect to all indicator loadings and several
residuals, to be strongly associated with its IADL target
(r 5 0.89, P , .001), and to correlate strongly with CDR-
SB (r 5 0.99, P , .001). The dEQ composite accurately
distinguished NC from AD (area under the receiver oper-
ating characteristic curve [AUC]5 0.95; 95% confidence in-
terval [CI] 5 0.94–0.96) [3].
2.5. Statistical analyses
2.5.1. Analysis sequence
As previously described [3], this analysis was performed

using Analysis of Moment Structures software [19]. The
maximum likelihood estimator was chosen for these models.
All observed indicators were adjusted for age, education,
gender, GDS, and apolipoprotein E (APOE) ε4 burden. Co-
variances between the residuals were allowed to be esti-
mated if they were significant and improved model fit.

We used multivariate logistic regression to test baseline
dEQ and g0 as independent predictors of prospective conver-
sion over up to six annual waves. NC conversion to MCI or
AD and MCI conversion to AD were modeled separately.
Baseline dEQ and g0 scores were divided into quintiles.
Age, education, GDS scores, gender, and APOE ε4 burden
were dichotomized and added to these models as additional
independent predictors. Age was split at 680 years, educa-
tion at 612 years, GDS scores at 610/30, and APOE
at 6 any ε4 allele.

2.5.2. Missing data
We used the newest instance of TARCC’s data set (circa

2015). The entire data set was used. Clinical diagnoses were
available at visit 1 for 3072 subjects, 2113 of whom had
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complete data for d’s cognitive indicators and covariates.
The logistic regression and receiver operating characteristic
(ROC) analyses were performed in Statistical Package for
the Social Sciences (SPSS) [20] and therefore limited to
complete cases (N 5 2113).

2.5.3. ROC curves
The diagnostic performance or accuracy of a test to

discriminate diseased from normal cases can be evaluated
using ROC curve analysis [21,22]. Briefly, the true positive
rate (sensitivity) is plotted as a function of the false
positive rate (100 2 specificity) for different cutoff points
of a parameter. Each point of the ROC curve represents a
sensitivity/specificity pairing corresponding to a particular
decision threshold. The AUC is a measure of how well a
parameter can distinguish between two diagnostic groups
(diseased/normal). The ROC analysis was performed in
SPSS.
Fig. 1. The latent variable dEQ’s construction. All loadings are significant

at P, .001. Abbreviations: COWA, Controlled OralWord Association Test;

dEQ, ethnicity equivalent d homolog; DIS, Digit Span Test; IADL, instru-

mental activities of daily living; LM II, Delayed Logical Memory; VR I, Im-

mediate Visual Reproduction.
3. Results

Descriptive statistics are presented in Table 1. dEQ’s
factor weights have been previously reported [3] and are
presented in Fig. 1. Our approach results in two latent
variables, dEQ, and “g0,” which is d’s residual in Spearman’s
g (Fig. 1; [1]).

Fig. 2 presents the dEQ distributions by categorical diag-
noses. dEQ scores in Fig. 2 were referenced to the entire co-
hort’s standardized mean (i.e., dEQ 5 0.0). The optimal
threshold for AD’s discrimination from NC was found to
Table 1

Descriptive statistics

Variable N Mean (SD)

Age (observed) 3072 70.92 (9.66)

(1 5 �80 years, n 5 644) 3072 0.21 (0.41)

APOE alleles (observed) 2881

(1 5 e41, n 5 1133) 2877 0.39 (0.48)

CDR (Sum of Boxes) 3066 2.5 (3.4)

COWA 2982 8.4 (3.6)

DIS 2915 8.8 (3.1)

EDUC (observed) 3072 13.19 (4.32)

(1 5 .12, n 5 1767) 3072 0.58 (0.49)

Ethnicity (1 5 MA, n 5 1113) 3071 0.36 (0.48)

GDS30 (observed) 2765 5.62 (5.26)

(1 �10, n 5 500) 2765 0.18 (0.38)

Gender (_ 5 1, n 5 1196) 3067 0.39 (0.48)

IADL (Summed) 2556 10.1 (4.8)

MMSE 3071 25.4 (4.9)

WMS LM II 2529 8.2 (4.6)

WMS VR I 2480 8.1 (4.0)

Complete cases 2113

Abbreviations: SD, standard deviation; APOE, apolipoprotein E; CDR,

clinical dementia rating; COWA, Controlled Oral Word Association Test;

DIS, Digit Span Test; GDS, Geriatric Depression Scale; IADL, instrumental

activities of daily living; MMSE, Mini–Mental State Examination; WMS

LM II, Wechsler Memory Scale Delayed Logical Memory; WMS VR I,

Wechsler Memory Scale Immediate Visual Reproduction.
be 0.088 (sensitivity 5 0.872, specificity 5 0.870), that is,
very close to the mean for MCI cases.

Visual inspection reveals substantial overlap in the dEQ
scores of MCI cases and both AD and NC, in contrast to
the distinct distributions of the latter two groups. This is
consistent with dEQ’s relatively weak AUCs for both NC
versus MCI, and MCI versus AD [(NC vs. MCI 5 0.74;
95% CI 5 0.72–0.77); (MCI vs. AD 5 0.86; 95%
CI 5 0.84–0.88)].

Table 2 presents results of the logistic regressions. Over 6
years [ _m 5 4.7(0.6)], n 5 281 (22.0%) of NC converted to
“MCI” or “AD.” n 5 106 (17.4%) of MCI converted to
“AD.” dEQ, APOE ε4 burden, age, education, and ethnicity
contributed independently to NC conversion to a more
advanced state (i.e., MCI or AD). Education, gender, and
g0 did not enter. Independently of the covariates, each quin-
tile increase in the dEQ scores of NC increased the odds of
conversion by 52% [OR 5 1.52 (1.13–2.04); Table 2].

Each quintile increase in the dEQ scores of MCI cases
increased the odds of conversion to AD almost three-fold
[OR 5 2.75 (1.97–3.83)], independently of g0, APOE, age,
gender, and ethnicity (Table 2). Education and GDS scores
did not enter. Each quintile increase in the g0 scores of
MCI increased the odds of conversion to AD by 50%
[OR 5 1.50 (1.13–1.98)]. MA ethnicity had a protective ef-
fect, independent of dEQ and g0 [OR 5 0.50 (0.26–0.96)].

The baseline dEQ scores ofMCI cases had anAUC5 0.86
for the prediction of prospective conversion to AD (95%
CI 5 0.819–0.891). The mean dEQ score of AD converters



Fig. 2. dEQ histograms by wave 1 diagnosis*. *dEQ scores are referenced to the entire cohort’s standardized mean (i.e., dEQ5 0.0). Abbreviations: AD, Alz-

heimer’s disease; dEQ, ethnicity equivalent d homolog; MCI, mild cognitive impairment.
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is 0.100. N.b. this is very near the optimal dEQ threshold for
AD’s discrimination from NC in TARCC (i.e., 0.088). The
optimal dEQ threshold to predict conversion was 20.14
(sensitivity5 0.75, specificity 5 0.76) (Fig. 3).
4. Discussion

Change in d scores is strongly associated with change in
dementia severity, as measured by CDR [2,3]. Additionally,
Koppara et al. [6] have shown that d homologs outperform
the Alzheimer’s Disease Cooperative Study ADAS–Cogni-
tive (ADAS-COG) [23] and the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) [24] as predic-
tors of MCI’s conversion to AD over 3 years. This analysis
builds on their work by demonstrating that d predicts
MCI’s conversion in a second cohort, in both non-Hispanic
white (NHW) and MA, with a larger sample size, and a
Table 2

Conversion predictors

Parameter Estimate SE c2 (d

NC Conversion to “MCI” or “AD”

Intercept 211.57 1.26 83.1

dEQ 0.42 0.15 7.7

g0 0.09 0.11 0.6

APOE ε4 0.69 0.22 9.5

GDS 20.57 0.34 2.8

Age 0.11 0.01 69.2

Gender 0.25 0.20 1.5

Education 0.64 0.25 6.3

Ethnicity 1.60 0.27 34.5

MCI conversion to “AD”

Intercept 211.65 1.70 46.6

dEQ 1.01 0.16 35.6

g0 0.40 0.14 7.9

APOE ε4 0.60 0.29 4.1

GDS 0.17 0.32 0.2

Age 0.07 0.01 17.0

Gender 0.62 0.27 5.0

Education 0.22 0.31 0.4

Ethnicity 20.69 0.33 4.3

Abbreviations: SE, standard error; OR, odds ratio; CI, confidence interval; MCI,

alent d homolog; APOE, apolipoprotein E; GDS, Geriatric Depression Rating Sca
longer period of follow-up. Moreover, we have extended
this finding to NCs’ conversion to MCI or AD, at an even
earlier stage of cognitive decline.

TARCC does not collect autopsy or biomarker data
needed to confirm its clinical diagnoses. However, TARCC
is a highly selected convenience sample enriched with clin-
ical AD. In similar highly selected samples, d is associated
with AD pathology [5] and outperforms the CERAD and
the ADAS-COG as a predictor of both hippocampal volume
and AD-specific CSF biomarkers [6].

Regardless, d has also been shown to be “agnostic” to
dementia’s etiology in two recent studies [2,25]. Both
were conducted in the NACC’s Unified Dataset (UDS) (N
y 26,000). Gavett et al. [2] found d’s AUC 5 0.96 for the
discrimination between dementia of any etiology versus
nondemented cases (MCI and controls). John et al. [25]
demonstrated that d scores are unable to distinguish between
f) P OR 95% CI

1 ,.001

6 .005 1.52 1.13–2.04

3 .42 1.10 0.87–1.38

2 .002 2.00 1.28–3.11

3 .09 0.56 0.28–1.09

1 ,.001 1.12 1.08–1.14

0 .22 1.28 0.86–1.92

5 .01 1.89 1.15–3.12

1 ,.001 4.98 2.91–8.51

1 ,.0001

8 ,.0001 2.75 1.97–3.83

2 .01 1.50 1.13–1.98

2 .04 1.83 1.02–3.28

7 .59 1.19 0.62–2.61

9 ,.0001 1.08 1.03–1.11

6 .02 1.87 1.08–3.26

7 .49 1.24 0.66–2.32

3 .03 0.50 0.26–0.96

mild cognitive impairment; AD, Alzheimer’s disease; dEQ, ethnicity equiv-

le.



Fig. 3. Mean dEQ score for MCI2AD converters and “optimal” dEQ threshold for prediction of conversion*. *The optimal threshold of 20.14 has an

AUC 5 0.86 for MCI2AD. The mean dEQ score of MCI2AD converters (0.10) is near the optimal threshold for AD versus NC (0.09; AUC 5 0.953). Abbre-

viations: AD, Alzheimer’s disease; AUC, area under the receiver operating characteristic curve; dEQ, ethnicity equivalent d homolog.
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any combination of dementing conditions. Instead, only
“unique” (i.e., “domain-specific”) variance, residual to d,
was able to make such discriminations.

These findings have important implications for dementia
case finding. First, they suggest that the dEQ scores of
TARCC participants could have been influenced by any and
all dementing processes afflicting TARCC’s cohort. Clinical
dementia seems increasingly likely to be “overdetermined”
by multiple independent and competing processes [26].
Age, the APOE ε4 allele, (subsyndromal) depressive symp-
toms, and gender are independent predictors of d in TARCC.
They have unique serum protein biomarkers [27]. These risk
factors need not contribute to dementia severity through a
common AD-specific neurodegeneration. Thus, although
TARCC purports to be a study of AD, an estimated 20% of
cases diagnosedwith clinical “AD” by experienced clinicians
may be without beta-amyloid by positron emission tomogra-
phy [28,29]. Moreover, d’s biomarkers have been found to
differ by ethnicity in TARCC [7]. That also suggests biolog-
ical heterogeneity within the demented fraction of TARCC
participants. Therefore, our demonstration of d’s ability to
predict dementia conversion from nondemented states may
be but partially explained by AD-specific biological pro-
cesses. Instead, clinical dementia in TARCC is likely to arise
from the sum of independent d-related processes.
On the other hand, d is essentially the sole cognitive
determinant of dementia severity, both cross-sectionally
(e.g., r 5 0.99 vs. the CDR-SB in this sample) and longitu-
dinally (e.g., r 5 0.94 ! DCDR-SB) [2,8]. A d homolog
composite score might therefore be applied to individuals
as an omnibus dementia severity metric. The d-score is
both highly accurate in distinguishing demented from
nondemented persons across diagnoses [2] and is indepen-
dently associated with well recognized dementia risk factors
(e.g., APOE ε4 burden). Correcting any d-related pathophys-
iology might improve overall dementia status.

Second, John et al.’s [25] finding suggests that the cogni-
tive differences that distinguish dementing illnesses may be
orthogonal to d and therefore unrelated to dementia severity.
This includes domain-specific variance, by definition.
Domain-specific variance is thought to be attributable to
localized regional structures/networks and the connectivity
of those networks. Like domain-specific variance, network
connectivity has been shown to distinguish dementing
illnesses [30,31]. However, to the extent that these changes
mediate truly domain-specific differences in cognitive
performance (i.e., in g/d-adjusted models), they will be
unrelated to (1) g/d, and therefore (2) IADL, (3) CDR, and
(4) categorical dementia. This explains how even
successful interventions against domain-specific cognitive
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performance and its disease-specific biomarkers could have
limited impact on dementia severity.

Furthermore, d’s bifactor model’s design also ensures
that all d homologs (and similar “paralogs” directed at
targets other than IADL) represent subsets of the variance
in Spearman’s general intelligence factor, g. This is impor-
tant because it may restrict d’s biomarkers to those of g,
and thereby restrict dementia’s biology to that of intelli-
gence. Because g contributes to a multiplicity of brain-
related measures, this constraint undermines the dementia
salience of any regional pathology. Hippocampal volume
may be an AD-specific biomarker related to domain-
specific memory performance, but it is a relatively poor
predictor (vs. d) of dementia severity [32]. Similarly, d is
unrelated to ischemic pathology (the quintessential
regional pathology) in the NACC [5]. The dementing
aspect of “vascular cognitive impairment” must therefore
be mediated by other mechanisms.

The clinical diagnosis of “MCI” does not ensure demen-
tia conversion in the near term, as evidenced by its relatively
low 17.4% 6-year conversion rate in TARCC. In contrast,
each quintile increase in the dEQ scores of MCI cases nearly
tripled conversion risk. This suggests that the categorization
of MCI (or “minor neurodegenerative disorder”) [33] may
provide little information about conversion risk, above and
beyond the d-score.

Moreover, visual inspection of dEQ’s distribution sug-
gests substantial overlap in the d scores of MCI, NC, and
AD (Fig. 2). Although “MCI” cases do occupy the middle
ground of TARCC’s dEQ distribution, the cross-group over-
lap in dEQ scores does not support three discriminable en-
tities. That hypothesis could be easily confirmed by a
latent class analysis of dEQ scores.

The optimal dEQ threshold for AD’s discrimination from
NC appears to be near the middle of MCI’s distribution and
near the mean for MCI to AD converters (MCI2AD). This
suggests that a high fraction of MCI cases, and specifically
MCI2AD converters, might have already been demented
(i.e., misdiagnosed) at their baseline assessment. That is
consistent with the high fraction of IADL impaired “MCI”
cases in other cohorts [34]. “MCI” cases at the highest risk
of AD conversion (i.e., dEQ’s top two MCI quintiles) are
certain to have been above the optimal dEQ threshold,
despite their MCI designations. Conversely, the MCI cases
least likely to convert (i.e., in dEQ’s bottom two MCI
quintiles) are likely to have been below the optimal AD
versus NC diagnostic threshold. Such cases may be at no
increased near-term conversion risk relative to NC, or at
least relative to the fraction of NC presenting above the
NC dEQ-score mean.

The optimal dEQ score threshold to predict MCI2AD
conversion appeared to be moderately sensitive and specific
to that outcome. Its AUC of 0.86 is as good [35] or better
than previous psychometric and neuroimaging biomarkers
[36–38]. The combination of psychometrics and
biomarkers may have incremental advantages over our
approach [39,40], but ours is obtainable with much less
expense and effort. Moreover, d’s accuracy for the
prospective prediction of MCI conversion has now been
independently replicated in two large language and
ethnically diverse samples, and with different sets of
psychometric indicators [6]. The prospective ability of this
dEQ threshold to predict AD conversion remains to be
demonstrated.

Regardless, g0 did contribute independently of dEQ to
MCI’s AD conversion risk (Table 2). It is possible then
that TARCC clinicians may be biased in their diagnostic de-
liberations by changes in observed cognitive performance
that empirically have no functional salience. Even were it
to be proven that g0 is mediated by AD-specific neurodegen-
eration (as d can be shown to be) [5], a g0-specific diagnostic
bias has the potential to undermine the validity of categorical
dementia case finding. Clinicians working from observed
cognitive performance measures risk to diagnose “demen-
tia” at lesser levels of disability, and/or to attribute function-
ally trivial cognitive gains as evidence of “dementia’s”
remediation. This bias also risks to introduce measurement
error into studies that associate AD’s clinical diagnosis
with specific genes or biomarkers. They might identify
biomarkers that are merely associated with g0’s clinically
trivial variance. In contrast, any change in d scores would
be functionally salient by definition and d’s predictors and
biomarkers should offer targets for dementia’s specific
remediation.

APOE ε4 allele burden, gender, age, and ethnicity
predicted MCI conversion independently of dEQ and g0.
APOE ε4 allele burden is significantly associated with d,
and AD pathology fully mediates their association in
autopsy-proven AD cases [5]. Similarly, age’s effect on
cognitive performance can be shown to be largely mediated
by d [41]. Each year of increasing age is associated with a
0.02 SD increase in dEQ. 1.0 SD in dEQ scores might be
traversed over TARCC’s 50-year age range. The current
analysis shows that this is not trivial. Even small changes
in the dEQ scores of nondemented persons impose a consid-
erable conversion risk. Those findings suggest that APOE ε4
allele burden and age’s specific dementia risks may be medi-
ated by d and therefore also by intelligence.

Finally, MA ethnicity increased the risk of NC to MCI
or AD almost fivefold but decreased the risk of MCI2AD
conversion, independently of dEQ scores. This cannot be
easily attributed to cognitive assessment bias, as the dEQ
homolog exhibits factor equivalence across ethnicity.
There is no ethnicity effect on the mean d scores of
MCI and AD in TARCC, either cross-sectionally or
longitudinally [7,8].

These findings could reflect an ethnicity bias in demen-
tia’s categorical clinical diagnosis. That might arise from
the use of inadequate cognitive performance norms among
MA, or from clinical obstacles to the recognition of
cognitive decline across linguistic, cultural, and/or
educational boundaries. The mean d scores of MA controls
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in TARCC are nearer to the mean for MCI cases of either
ethnicity [7]. Alternatively, MA may be experiencing a
modified disease process(es), as evidenced by distinct AD
biomarker profiles in MA versus NHW TARCC
participants [3,7,42–44]. This finding deserves more
investigation.

In summary, baseline d scores are associated with MCI
and AD conversions from nondemented states in MA and
NHW. Independent of d, g0 is also associated with AD
conversion risk. This suggests clinician bias in their
assessments of functionally salient cognitive changes.
The substantial overlap in the d scores of MCI cases
and both AD and NC, in contrast to the distinct distribu-
tions of the latter two groups, undermines the validity
and utility of categorical “MCI” as a diagnostic entity.
d-scores may offer a more parsimonious, transparent,
and reproducible way of assessing near-term dementia
conversion risk.
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O’Bryant PhD, James R. Hall PhD, Leigh Johnson PhD,
Robert C. Barber PhD, Douglas Mains DrPH, Lisa Alvarez,
Adriana Gamboa; University of Texas Southwestern Medi-
cal Center: Perrie Adams PhD, Munro Cullum PhD, Roger
Rosenberg MD, Benjamin Williams MD, PhD, Mary Qui-
ceno MD, Joan Reisch PhD, Linda S. Hynan PhD, Ryan
Huebinger PhD, Janet Smith BS, Barb Davis MA, Trung
Nguyen MD, PhD; University of Texas Health Science
Center – San Antonio: Donald Royall MD, Raymond Palmer
PhD, Marsha Polk; Texas A&M University Health Science
Center: Alan Stevens PhD, Marcia Ory PhD/MPH;
University of Texas at Austin/Dell Medical School: David
Paydarfar MD, John Bertelson MD, Martin Woon PhD,
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Tilson PhD, Scott Chasse, PhD.
D.R.R. designed the study, interpreted the analysis, drafted
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revised the article for intellectual content.
RESEARCH IN CONTEXT

1. Systematic review: Cognitive measures and clinical
diagnoses are prone to measurement error. Attempts
have been made to develop “intermediate pheno-
types” for use as outcomes in clinical trials. Recently
proposed phenotypes include indices and latent vari-
ables constructed from cognitive measures and/or
biomarkers. The latent variable “d” (for dementia)
is constructed from cognitive performance and func-
tional status measures by a novel confirmatory bifac-
tor model in a structural equation model framework.
Here we show that d predicts dementia conversion
from nondemented states.

2. Interpretation: Each quintile increase in the d scores
of nondemented persons increased dementia conver-
sion risk by 50%. Each quintile in the d scores of
cases with Mild Cognitive Impairment (MCI)
increased conversion almost three-fold.

3. Future directions: d homologs offer a more parsimo-
nious and transparent “omnibus” measure of demen-
tia severity than categorical clinical diagnoses of
“MCI”.
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