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Transcranial electric stimulation
seen from within the brain
Computer models can make transcranial electric stimulation a better tool

for research and therapy.

ANGEL V PETERCHEV

T
he human brain seems well protected,

encased within the skull. Yet something

as simple as placing a pair of wet

sponges onto someone’s head and sending a

weak electric current between them can actually

alter the brain’s activity. A refined version of this

method – known as transcranial electric stimula-

tion – has attracted considerable interest and is

now being used to probe the workings of the

brain and develop treatments for medical condi-

tions such as depression, epilepsy or stroke.

Transcranial electric stimulation (or TES for

short) has parallels with conventional drug treat-

ments in the sense that delivering an electric

field to the brain is analogous to delivering drug

molecules into the body. So, just as it is impor-

tant to know how the human body affects an

administered drug (a field of research that is

known as pharmacokinetics), in TES we need to

know how much of the current applied to the

scalp actually enters the brain, and where this

current goes.

The ’pharmacokinetics of TES’ remains con-

tentious (Underwood, 2016), but is important

for several reasons. First, it allows us to relate

findings from experiments in which brain tissue

from animals is stimulated directly to findings

obtained via noninvasive applications in people.

Second, it helps researchers optimize the pro-

cess in order to target specific regions of the

brain. Third, it enables researchers to compen-

sate for the differences between individuals,

and to standardize the exposure that they

receive.

The only established approach for estimating

the dose of TES delivered to an individual relies

on a three-dimensional model of the subject’s

head that includes its different tissues and the

attached electrodes, which is fed into a com-

puter simulation (Figure 1). Such models have

been available for some time (Datta et al.,

2009), but they had been validated only partially

and indirectly in humans or other primates

(Edwards et al., 2013; Lee et al., 2015). More-

over, there are uncertainties about the electric

properties of the tissues in these models.

Now, in eLife, Lucas Parra and colleagues –

including Yu Huang and Anli Liu as joint first

authors – report how they have addressed these

issues by combining elaborate computational

modeling with recordings taken within the brains

of ten people undergoing surgery for epilepsy

(Huang et al., 2017). This sample size markedly

exceeds that of other similar measurements

(Opitz et al., 2016), and the three-dimensional

models used are highly sophisticated too.

Leveraging this setup, Huang et al. provide the

most extensive and direct estimates of the TES

electric field to date. They also confirm that

computational models of TES can accurately rec-

reate the electric field generated in a real brain.
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Huang et al. – who are based at City College

of the City University of New York, New York

University School of Medicine and the Mayo

Clinic – provide practical insights that should

help others to implement the models as well.

For accurate results, the individual scan should

capture the entire head, from neck to crown.

This is not the convention in clinical imaging,

which currently only focuses on the brain, but

Huang et al. get round this limitation by splicing

the bottom portion of a standard model of a

head onto the individual scans. To do this, the

images must be properly cropped and morphed,

though this feature has yet to be added to pub-

licly available electric field modeling software.

Including a compartment for the cerebrospi-

nal fluid (the colorless liquid that surrounds the

brain) also makes the models more accurate.

Appropriate imaging and image analysis meth-

ods are required to capture this layer as well as
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Figure 1. Computational model of the electric field and current produced in an individual’s head during

transcranial electric stimulation. (A) Electrodes (white and orange rectangles) are attached to the scalp and

electric current is applied; the model of the head shown here is derived from a structural MRI scan. (B) Simulation

showing the electric current per unit area (current density) in a section of the brain during transcranial stimulation:

this image shows the scalp (outermost layer), skull, cerebrospinal fluid, gray matter and white matter. The highest

current density values in the brain (blue) are 100-fold lower than those in the scalp (red). The high resistance of the

skull means that the majority of the current is shunted in the scalp. The cerebrospinal fluid is highly conductive and

this takes current away from the brain too. (C) Simulation showing the electric field on the surface of the brain. For

this configuration, the electric field is strongest between the two electrodes. The model was created and

visualized with the free SimNIBS software package (http://simnibs.de; Windhoff et al., 2013).
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the skull, which are both quite thin (see

Figure 1B). However, modelers can breathe a

sigh of relief, because the data suggest that the

different layers within the skull can be omitted

from the models without significantly impacting

their accuracy. The way that conductivity

changes depending on the orientation of the

current in the brain’s white matter can similarly

be ignored, at least for the mostly outer regions

of the brain explored so far by Huang et al.

This work also underscores the present limita-

tions of modeling. It is still uncertain exactly

what values for tissue conductivity should be

used, and whether it is acceptable to use the

same values for everyone. Addressing this ques-

tion requires further studies likely involving a

range of techniques. For example, there are

promising efforts to measure tissue conductivi-

ties directly during surgery (Koessler et al.,

2017), or with other noninvasive techniques

(Chauhan et al., 2017).

Even without making the absolute electric

field estimates more accurate, existing modeling

approaches and software appear suitable for

measuring the relative strength of stimulation

across brain regions, and predicting how an indi-

vidual’s anatomy might affect this. Indeed, the

National Institutes of Health now requires that

researchers applying for certain grants "use real-

istic head modeling" to characterize what elec-

tric field is delivered across the brain

(NIH, 2017). All in all, it seems that the time is

now right for wider adoption of ’pharmacokinet-

ics’ of transcranial brain stimulation.
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