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SUMMARY

Atherosclerosis is characterized by a proliferation of vascular smooth muscle cells
(VSMCs) and their migration to the intima, which induces thickening of the intima
itself, but the mechanism remains poorly understood. Low molecular weight heparin
(LMWH) inhibits the proliferation of VSMCs. Previous studies have shown that a
LMWH, parnaparin (PNP), acts on the processes of atherogenesis and atheropro-
gression in experimental animal models. The aim of this study was to investigate the
involvement of oxidative stress, inflammation and VSMCs in the regulation of vascu-
lar wall homeostasis. We also considered the possibility of restoring vascular patho-
logical changes using PNP treatment. In order to evaluate vascular remodelling in
this study we have analysed the morphological changes in aortas of an animal model
of atherosclerosis, apolipoprotein E-deficient mice (ApoE—/—) fed with a normal or
a western diet without treatment or treated with PNP. We also analysed, by immu-
nohistochemistry, the expression of proteins linked to atherogenesis and atheropro-
gression — an enzyme involved in oxidative stress, iNOS, examples of inflammatory
mediators, such as tumour necrosis factor alpha (TNF-a), interleukins 1 and 6 (IL-1
and IL-6), and markers of VSMC changes, in particular plasminogen activator inhi-
bitor-1 and thrombospondin-1 (PAI-1 and TSP-1). Our results could suggest that
PNP downregulates VSMC proliferation and migration, mediated by PAI-1 and TSP-
1, and reduces inflammation and oxidative stress in vessels. These data suggested
that LMWH, in particular PNP, could be a theoretically practical tool in the preven-
tion of atherosclerotic vascular modification.
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In recent years, atherosclerosis has become a serious health
challenge. This is a progressive disease that is still consid-
ered a major cause of mortality in the industrialized world.
The genesis and the progression of atherosclerotic plaque
have been well described in morphological studies on arte-
rial wall of genetically modified mice, although the aetiology
and pathophysiological mechanism remain the object for
continuing discussions (Musumeci et al. 2014a). This disease
is a complicated process and not a simple passive accumula-
tion of lipids within the vascular wall. Endothelial dysfunc-
tion, characterized by an increase in adhesion molecules, is
a key early event in plaque genesis that leads to the infiltra-
tion of leucocytes and macrophages into the subendothelial
space. These cells, originating from monocytes, differentiate
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into phagocytes and ingest the accumulated lipoproteins,
forming ‘foam cells’ that promote disease progression (Tian
et al. 2005; Musumeci et al. 2014b). These steps are charac-
terized by inflammation, metabolic alterations and oxidative
stress. Oxidative stress, which is characterized by high levels
of reactive oxygen species (ROS), damages the cellular com-
ponents and leads to a response to damage that involves
inflammation.

Inflammation, if it is not able to neutralize harmful
agents, induces proliferation and migration of vascular
smooth muscle cells (VSMCs) from the media layer into the
intima layer, producing extracellular matrix that acts as a
scaffold of the plaque (Bonomini et al. 2008; Musumeci
et al. 2014b).
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Reactive oxygen species are overproduced in the
atherosclerotic process correlated with alterations of endoge-
nous endothelial nitric oxide synthase (eNOS), which
induces a decrease in available endothelial nitric oxide
(NO). The decrease in NO has several significant effects on
arteries inducing proinflammatory, prothrombotic and pro-
constrictive vascular activities (Bonomini et al. 2008; Breen
et al. 2012). On the other hand, ROS increase inducible
nitric oxide synthase (iNOS) expression in macrophages and
smooth muscle cells in different stages of atherosclerotic
lesions. iNOS plays a role in inflammation through the pro-
duction of prostanoids and NO and is thus also implicated
in the development of atherosclerotic lesions with
proatherosclerotic effects (Napoli et al. 2006).

Recently, it was shown that atherosclerosis is character-
ized by both an increase in the number of smooth muscle
cells (SMCs) and migration of these cells to the intimal
layer, leading to intimal thickening (hyperplasia) (Karki
et al. 2013). The vascular homeostasis alterations, leading
to arterial dysfunction, are still intriguing and poorly under-
stood (Rodella et al. 2007).

The mechanisms of intimal hyperplasia and consequent
restenosis can be described as the complex involvement of
several factors and cytokines including tumour necrosis fac-
tor-o. (TNF-a), interleukin 1 (IL-1) and 6 (IL-6) that induce
proliferation and migration of VSMCs (Takeda er al.
2005).

Our research group demonstrated that during vascular
disease, VSMCs exhibited a phenomenon of dedifferentia-
tion involving the expression of thrombospondin-1 (TSP-1),
a member of a family of related glycoproteins. In particular,
TSP-1 is secreted by numerous cell types, including platelets,
endothelial cells, macrophages, fibroblasts and VSMCs. TSP-
1 expression is elevated with hypercholesterolaemia in vivo.
In the vessel wall of atherosclerotic mice there is an increase
in plasminogen activator inhibitor-1 (PAI-1) that affects on
infiltration of cells into plaque, proliferation, migration and
apoptosis of VSMCs and accumulation and composition of
extracellular matrix in plaque modulating atherogenesis
(Rodella et al. 2012).

Over the past decade apolipoprotein E (ApoE)-deficient
mice (ApoE—/— mice) have been commonly used as a model
for experimental atherosclerosis research and to examine
nutritional and pharmacological interventions. The out-
standing success of this animal model, which exhibits
delayed clearance of lipoproteins, is due to its ready avail-
ability and the rapid development of the full morphological
spectrum of atherosclerotic lesions as detected in humans
(Coleman et al. 2006; Desai et al. 2008).

To date, there are some papers on the potential effects of
low molecular weight heparin (LMWH) as anti-coagulant
medications for the treatment of vascular diseases (Wong &
Giugliano 2003; Hirsh & Raschke 2004; Clark 2008). In
particular, Artico ef al. (2011) demonstrated the possible
influence of LMWH-Parnaparin® (PNP) on atherosclerosis
in laboratory animals (ApoE-deficient mice). These experi-
ments have demonstrated a possible role of the PNP in the

control of atherogenic disease. In fact, in PNP-treated ani-
mals, there is a reduction in number and size of atheroscle-
rotic lesions in the aortic wall.

On the basis of this previous study, our goal was to evalu-
ate the mechanism by which PNP reduces atherosclerotic
alterations in vessels of ApoE—/— mice. Therefore we evalu-
ated the expression of proteins linked to atherogenesis and
atheroprogression, in particular an enzyme involved in
oxidative stress, iNOS, some inflammatory mediators (TNF-
o, IL-1, IL-6) and markers of VSMC alterations (PAI-1 and
TSP-1). These data support further studies on PNP as a ther-
apeutic strategy.

Methods

Parnaparin

Parnaparin® was kindly provided by the manufacturer, Alfa
Wassermann S.p.A. (Macchi & Maggiore 1987; Dettori &
Babbini 1992; Marchi 1992; Frampton & Faulds 1994; Det-
tori 1995). This substance is the sodium salt of a LMWH
derived from heparin of porcine intestinal mucosa by radical-
catalysed depolymerization with hydrogen peroxide and
cupric salt (Artico et al. 2011).

Ethical approval statement

All the experiments were conducted according to the guide-
lines formulated by the European Community for experi-
mental animal use (L358-86/609EEC) and were approved
by the Italian Ministry of Health.

Animals

The deletion of the gene for apolipoprotein E (ApoE-defi-
cient mice) induces severe hypercholesterolaemia and spon-
taneous atherosclerosis development. Male ApoE-deficient
mice (18-20 g) were fed with a standard diet (A1, A2
and A3 groups: 20 animals) or western diet (B1, B2 and
B3 groups: 20 animals) for a period of 18 weeks. The
western-type diet, characterized by 0.2% of cholesterol
and 42% of fat, was purchased from Harlan Teklad, Inc.
(Td 88137, Indianapolis, IN, USA). These two groups of
mice were further divided into six subgroups (three per
group): control mice without treatment (groups Al and
B1, five animals for group) or mice
injected with PBS (groups A2 and B2, five animals for
group) and mice treated for six days/week with subcuta-
neous injection of PNP in PBS at the dose of 5 mg/kg
(groups A3 and B3, 10 animals for group). Animals were
weighed weekly before injecting the optimal PNP concen-
tration. The drug concentration used to treat ApoE—/—
mice was chosen according to preliminary experiments on
ApoE—/— mice (Artico et al. 2011). In the light of the
results of these preliminary experiments, 5 mg/kg PNP
was chosen as the optimal dose used for animal treat-
ment.

subcutaneously
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Morphological evaluation

After dissection, aortas were washed in phosphate-buffered
saline (PBS, 0.1 M, pH 7.4), fixed with 10% buffered for-
malin, embedded in paraffin, using a standard procedure,
and cut in serial sections, with thickness of 5 um, using a
microtome. For morphological evaluation, the sections were
stained with haematoxylin and eosin, Verhoeff’s elastin stain
(Verhoeff 1908) and Sirius Red.

Immunobhistochemical analysis

For immunohistochemical analysis, sections of aortas were
processed according to an avidin complexed with biotiny-
lated peroxidase technique (ABC/HRP). The sections, after
dehydration, were immersed in citrate buffer (pH 6) and
subjected to microwave irradiation twice for 5 mins. Subse-
quently, for quenching endogenous peroxidase activity, all
sections were immersed for 30 mins in 0.3% hydrogen per-
oxide in methanol. To block non-specific binding, the slides
were incubated for 1 h at room temperature with mouse Ig-
blocking reagent (M.O.M.) (Vector Laboratories, Burlin-
game, CA, USA). The sections were then incubated over-
night at 4°C with primary antibodies at concentrations
assessed in preliminary experiments, in particular rabbit
anti-IL-1B polyclonal antibody (1:50, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA); rabbit anti-IL-6 polyclonal
antibody (1:100, Santa Cruz Biotechnology); mouse anti-
TNF-o monoclonal antibody (1:100, Santa Cruz Biotechnol-
ogy); iINOS (1:50, Santa Cruz Biotechnology); PAI-1 (1:50,
Santa Cruz Biotechnology); TSP-1 (1:50, Santa Cruz
Biotechnology). Samples, after incubation with primary anti-
bodies, were rinsed twice in PBS, exposed for 1 h at room
temperature to the appropriate secondary biotinylated goat
anti-mouse or anti-rabbit IgG (Vector Laboratories, BA9200
and BA1000) and then treated with peroxidase-conjugated
avidin (Vectastain Elite ABC Kit Standard* PK 6-100) for
35 mins. After this step, the slides were treated with 0.05%
3,3-diaminobenzidine (DAB) with 0.1% H,O, (DAB sub-
strate kit for peroxidase, Vector Laboratories SK-4100). The
sections were counterstained with Mayer’s haematoxylin
(TSP-1, PAI-1 and iNOS) or with haematoxylin—eosin (IL-
1B, IL-6 and TNF-a) and observed using a light microscope.
Negative control experiments were carried out in different
ways: (i) without the primary antibody incubation; (ii) by
substituting the primary antibody with an equivalent
amount of immunoglobulins; (iii) by preincubating the pri-
mary antibody with the specific blocking peptide (according
to the supplier’s instructions). The staining was evaluated by
two competent observers, and the immunopositivity was
assessed microdensitometrically using an IAS 2000 image
analyzer (Delta Sistemi, Rome, Italy) connected to the
microscope by a camera. The software has a function that
allows quantifying the integrated optical density (IOD) mea-
surements. Briefly, after the grey-scale conversion of the
images, we set the threshold values of black and white and
created the optical density-scale calibration using known
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algorithms. This calibration was then applied for each cap-
ture imported in the software for processing. The back-
ground obtained in sections exposed to non-immune serum
was considered as zero in system calibration. In each sec-
tion, ten 100-um? areas were considered. The quantitative
results regarding the immunopositivity were analysed statis-
tically using analysis of variance (aNova) followed by Dun-
can’s multiple range test.

Results

Morphology

The morphological and biochemical results were considered
without distinction between the ApoE—/— groups without
treatment and PBS-treated animals because they were similar.

Morphological evaluation of samples from ApoE—/— mice
groups without treatment revealed marked damage, with the
presence of atherosclerotic lesions in the vessel wall, in par-
ticular in the aortic root, with elastic fibre disorganization,
increased connective tissue deposition and fibrosis. The inti-
mal layer was commonly characterized by lipid droplets; in
particular, there were lipid-rich macrophages called ‘foam
cells’. The atherosclerotic plaque region was acellular in the
central necrotic lipid core, sometimes protruding into the
lumen and was characterized by a fibrous cap. PNP treat-
ment in ApoE—/— mice reduced plaque formation and
injury-induced remodelling, especially at the level of the aor-
tic root (Figures 1, 2).

Haematoxylin and eosin staining indicated that neo-
intima formation was present in ApoE—/— mice without
treatment (Figure 1a,b). VSMCs had a different morphology
in ApoE—/— mice vessels compared to PNP-treated aorta. In
the tunica media of ApoE—/— mice, VSMCs were slightly
elongated and had cobblestone morphology (Figure 1a,b
insets). Most VSMCs also underwent mitosis, which is
aligned in a circumferential direction. On the contrary in
vessels of mice with PNP administration, VSMCs had a cen-
tral nucleus and were spindle-shaped (Figure 1c,d insets).
Sometimes, VSMCs underwent mitosis.

Verhoeff-Van Gieson staining showed that in ApoE—/—
mice, there is disorganization of elastic fibres, which some-
times appeared discontinuous, with a consequent reduction
in vascular elasticity (Figure 1le,f). The aorta of animals trea-
ted with PNP, instead, had a regular pattern of elastic fibres
(Figure 1g,h).

Sirius Red staining, a method for the determination of
collagen content in the aorta, showed that in ApoE—/—
mice, there are high total collagen levels in aorta (Figure 1i,
j), whereas the administration of PNP reduced the collagen
fibre deposition (Figure 1k,l).

Immunohistochemistry

In the aorta of ApoE—/— mice on a western diet, there
was an appreciable immunoreactivity for inflammatory
markers. In particular, IL-1f was present in VSMCs and
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Figure 1 Histology of aorta of ApoE—/— mice fed with normal diet (a, e, i), western diet (b, f, j), normal diet plus parnaparin (PNP)
treatment (c, g, k) and western diet plus PNP treatment (d, h, 1), stained with haematoxylin and eosin (a—d), Verhoeff’s elastin
staining (e-h) and Sirius Red staining (i-1) (200x). Insets show the morphology of a typical vascular smooth muscle cell in aorta of
ApoE—/— mice fed with normal diet (a), western diet (b), normal diet plus PNP treatment (c) and western diet plus PNP treatment

(d) (1000x).

Figure 2 Histology of aortic root of ApoE—/— mice fed with normal diet (a), western diet (b), normal diet plus parnaparin (PNP)
treatment (c) and western diet plus PNP treatment (d), stained with haematoxylin and eosin (200x).

in the fibrous plaque (Figure 3b). In ApoE—/— mice fed
with normal diet or animals treated with PNP, IL-1 expres-
sion was moderate, in particular in the endothelial layer
(Figure 3a,c,d).

IL-6 immunostaining was observed sporadically in the
endothelial cells of ApoE—/— animals fed with normal diet
(Figure 3e). Strongly positive immunostaining for IL-6 was
observed in endothelial and smooth muscle layers in
atherosclerotic mice fed with a western diet (Figure 3f). In
particular, the immunopositivity was evident in areas char-
acterized by the infiltration of macrophages. The
immunopositivity for IL-6 was significantly lower in the
PNP-treated mice in comparison with non-PNP-treated mice
in particular those on a western diet (Figure 3g,h).

Immunohistochemical analysis showed that TNF-o level
was very low in ApoE—/— mice fed with normal diet (Fig-
ure 3i). In contrast, immunoreactivity showed that TNF-o
was strongly expressed in mice fed with a western diet (Fig-
ure 3j), while in PNP-treated animals, the protein expression
was reduced (Figure 3k,l).

Immunohistochemical analyses of TSP-1 (Figure 4a—d)
and PAI-1 (Figure 4e-h) proteins showed expression in
tunica media of ApoE—/— mice fed with normal diet (Fig-
ure 4a,e); however, its staining was diffuse and it was
markedly increased in vessels of ApoE—/— mice fed with
western diet (Figure 4b,f). The PNP treatment reduced
expression of both these proteins in vessels of ApoE—/—
mice fed with both diets (Figure 4c¢,d,g,h).

International Journal of Experimental Pathology, 2017, 97, 457-464
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Figure 3 Immunolocalization of inflammatory markers IL-1B (a—d), IL-6 (e-h) and TNF-o, (i-1) in aorta of ApoE—/— mice fed with
normal diet (a, e, i), western diet (b, f, j), normal diet plus parnaparin (PNP) treatment (c, g, k) and western diet plus PNP treatment
(d, h, 1). Immunohistochemical negative controls for IL-1f (m), IL-6 (n) and TNF-a (o) (400x).

Figure 4 Immunolocalization of TSP-1 (a—d) and PAI-1 (e-h) in aorta of ApoE—/— mice fed with normal diet (a, €), western diet (b,
f), normal diet plus parnaparin (PNP) treatment (c, g) and western diet plus PNP treatment (d, h). Immunohistochemical negative

controls for TSP-1 (i) and PAI-1 (j) (200x).

International Journal of Experimental Pathology, 2017, 97, 457-464
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Figure 6 Quantitative analyses of inflammatory mediators (a),
of markers of vascular smooth muscle cells alterations (b) and
of an enzyme involved in oxidative stress, iNOS (c) presented in
bar graphs; representative graphs with integrated optical density
(IOD) readings are expressed as arbitrary units

(AU) + standard deviation (SD) (c). *P < 0.05 vs. ApoE—/—
with standard diet.

Augmented expression of iNOS protein was evident in
ApoE—/— mice without PNP treatment, in particular in ani-
mals maintained on western diet. The staining was diffusely

and intracellular and was distributed both in tunica

Figure 5 Immunolocalization of iNOS
in aorta of ApoE—/— mice fed with
normal diet (a), western diet (b),
normal diet plus parnaparin (PNP)
treatment (c) and western diet plus PNP
treatment (d). Immunohistochemical
negative control (e) (200x).

intima and in tunica media (Figure 5a,b). The protein
expression was reduced in ApoE—/— mice after treatment
with PNP either on normal or on western diet (Figure 5c,d).

The results of immunopositivity were confirmed by statis-
tical analysis (Figure 6).

Discussion

From the literature, it is known that in the development of
atherosclerotic plaque there are histopathological alterations
in both tunica intima and tunica media. In particular during
the early stages of lesion formation, there is endothelial dys-
function, appearance and accumulation of lipid-filled macro-
phages in the subendothelium leading to ‘fatty streaks’. In
the tunica media the elastic membranes become disrupted
and discontinuous and the muscle cells appear to proliferate
(Tian et al. 2005; Coleman et al. 2006; Rodella et al. 2007
Musumeci et al. 2014a,b). In early atherosclerosis, there are
also modifications in localization and expression of some
proteins, such as iNOS, VEGF and MMP2 (Rodella et al.
2007).

Previous data from the literature demonstrated that
ApoE is an important protein in the pathology of
atherosclerosis and the generation of ApoE—/— mice has
been one of the most critical advances in the elucidation of
factors affecting atherogenesis (Rodella et al. 2007; Bono-
mini et al. 2010).

Our results showed that PNP treatment in ApoE—/— mice
inhibits injury-induced remodelling of vessels and could be
therapeutic in control of the neo-intimal hyperplasia.

The underlying mechanism responsible for restenosis
during atherosclerotic disease is not completely under-
stood. Previous studies have suggested that LMWH, such
as PNP, could inhibit VSMC proliferation, which is the
major pathologic change in occlusive disease (Zhao et al.
2011).

Low molecular weight heparins, such as PNP, bind to anti-
thrombin (AT) III with a unique pentasaccharide sequence for
performing their main anti-coagulant effect, like heparin, but
have a major bioavailability (Artico et al. 2004).

International Journal of Experimental Pathology, 2017, 97, 457-464



Recent studies have shown that LMWHs inhibited bovine
VSMC growth and pulmonary vascular remodelling induced
by hypoxia in rodents (Yu et al. 2005; Mrabat et al. 2009).
Because vascular atherosclerosis is a typical VSMC prolifera-
tive lesion, it is reasonable to hypothesize that PNP could
ameliorate vascular remodelling in atherosclerosis-prone
mice, such as ApoE—/—.

Some authors have suggested that the protective role of
LMWHs in inhibiting the proliferative lesion in vessels was
not related to its anti-coagulant property in a mouse model
of transluminal injury, but to its anti-proliferative properties
and the consequent reduction in neo-intima formation
(Zhao et al. 2011). Other researchers have demonstrated
that preventing growth factors from binding to their recep-
tors decreases oncogene expression at the injured site of
artery wall (Hibino et al. 2005; Ariyoshi et al. 2008; Relini
et al. 2008). However, mechanisms by which LMWHs work
as an inhibitor against arterial remodelling still remain
unknown.

The passage into the pathological intimal thickening,
that is the initial recognized form of an atherosclerotic
lesion, is correlated with modifications in the morphologi-
cal and biochemical features of the VSMCs and of their
extracellular matrix, which leads to the release of hydrolytic
enzymes, cytokines, chemokines and inflammatory factors
such as tumour necrosis factor-o (TNF-a), which is the princi-
pal factor involved in the pathogenesis of atherosclerosis (Cao
et al. 2015). Therefore, the use of molecules, such as PNP,
that may inhibit TNF-o-induced proliferation and migration
of VSMCs could be advantageous in discovering drugs full in
treatment that could be use for vascular disease, such as
atherosclerosis.

Critical players in regulating VSMC proliferation and
migration are TSP-1 and PAI-1 which may represent targets
for clinical therapeutic interventions.

On the basis of the experimental and clinical findings,
increased levels of PAI-1 could be related to repair processes
that modulate the local proteolytic potential, resulting in cell
migration, and then could be a marker of a tissue prolifera-
tive repair processes and of atherosclerosis progression
(Schiffrin et al. 2007). PAI-1 can also have a role in the reg-
ulation of the local inflammation.

Some authors have demonstrated the involvement of TSP-
1 in plaque progression and, in particular, that this protein
expression may be regulated by inflammatory cells. Indeed,
TSP-1 demonstrated in the wall of
atherosclerosis-prone vessels and not in vessels in physio-
logic conditions.

Our findings could demonstrate that LMWHs, in particu-
lar PNP, exert an anti-inflammatory effect, by regulating
cytokine expression and monocyte recruitment to endothe-
lium (Christopherson et al. 2002; Kereiakes 2003).

Collectively, our data could suggest that PNP reduced
higher levels of TSP-1, PAI-1, inflammatory markers and
iNOS expression in atherosclerotic vessels and that PNP
might play a previously unrecognized role in preventing
neo-intima formation in atherosclerosis-prone mice vessels.

expression was
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This is the first evidence that PNP prevents the develop-
ment of advanced atherosclerotic plaques. If PNP does
inhibit abnormal vascular remodelling, and alter oxidative
stress and inflammation, then its protective effect may be
useful not only in advancing our understanding of mechan-
ism but also as an adjunct in therapy. Even if PNP itself
does not prove to be the therapeutic modality, technologi-
cal advances structural modifications of
heparin, and it may be possible to synthesise variants
which have stronger anti-proliferative and less anti-coagu-
lant activity.

Thus the present research has clinical significance, and
suggests that more work in vitro be performed to elucidate
the underlying mechanism by which heparin, and in particu-
lar PNP, could prohibit VSMC proliferation.

now permit
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