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ABSTRACT For Pseudomonas aeruginosa, levels of cyclic di-GMP (c-di-GMP) govern
the transition from the planktonic state to biofilm formation. Type IV pili (T4P) are
crucial determinants of biofilm structure and dynamics, but it is unknown how levels
of c-di-GMP affect pilus dynamics. Here, we scrutinized how c-di-GMP affects molec-
ular motor properties and adhesive behavior of T4P. By means of retraction, T4P
generated forces of �30 pN. Deletion mutants in the proteins with known roles in
biofilm formation, swarming motility, and exopolysaccharide (EPS) production (spe-
cifically, the diguanylate cyclases sadC and roeA or the c-di-GMP phosphodiesterase
bifA) showed only modest effects on velocity or force of T4P retraction. At high lev-
els of c-di-GMP, the production of exopolysaccharides, particularly of Pel, is upregu-
lated. We found that Pel production strongly enhances T4P-mediated surface adhe-
sion of P. aeruginosa, suggesting that T4P-matrix interactions may be involved in
biofilm formation by P. aeruginosa. Finally, our data support the previously proposed
model of slingshot-like “twitching” motility of P. aeruginosa.

IMPORTANCE Type IV pili (T4P) play various important roles in the transition of bac-
teria from the planktonic state to the biofilm state, including surface attachment
and surface sensing. Here, we investigate adhesion, dynamics, and force generation
of T4P after bacteria engage a surface. Our studies showed that two critical compo-
nents of biofilm formation by Pseudomonas aeruginosa, T4P and exopolysaccharides,
contribute to enhanced T4P-mediated force generation by attached bacteria. These
data indicate a crucial role for the coordinated impact of multiple biofilm-promoting
factors during the early stages of attachment to a surface. Our data are also consis-
tent with a previous model explaining why pilus-mediated motility in P. aeruginosa
results in characteristic “twitching” behavior.

KEYWORDS Pseudomonas aeruginosa, pili, biofilm, cyclic di-GMP, exopolysaccharide,
molecular motor

Type IV pili (T4P) are crucial factors in bacterial biofilm formation, as they mediate
initial surface attachment and govern the structure of biofilms (1). For Pseudomonas

aeruginosa, a role for T4P as surface sensors is emerging (2); in particular, active T4P
retraction has been proposed to be required (3, 4). It is currently unclear, however, how
T4P dynamics affect the earliest stages of biofilm formation.

Bacterial T4P are extracellular polymeric cell appendages required for initial attach-
ment to biotic and abiotic surfaces, host cell signaling, microcolony formation, and
natural transformation. The polymer incorporates major pilins (PilA) and a variety of
minor pilins (5). The pilus polymer is anchored within the cell envelope by a membrane-
spanning complex (6). Importantly, the length of the T4P is dynamic; elongation of T4P
requires a cytoplasmic ATPase formed by PilB, and retraction requires its antagonist PilT
(7). For Neisseria gonorrhoeae and Myxococcus xanthus, retraction of T4P generates a
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high mechanical force exceeding 100 pN (8, 9). Considering that T4P-related surface
motility (also known as twitching motility) requires force generation (10, 11) and that
P. aeruginosa is capable of twitching motility (12), it is reasonable to assume that the
T4P of P. aeruginosa generate mechanical force by retraction. However, the motor
properties in the species have not been addressed.

For P. aeruginosa, the current understanding of transition from the planktonic
lifestyle to life within biofilms involves surface sensing and subsequent upregulation of
second messengers (2). When grown in liquid culture, the T4P level is low compared to
that of its growth on solid surfaces (13–15). The T4P participate in an uncharacterized
surface engagement process that upregulates cyclic AMP (cAMP) in response to surface
contact through the Pil-Chp chemosensory system (3, 4, 16, 17). As a consequence, the
T4P-associated protein PilY1 is upregulated, leading to a subsequent increase in the
level of the second messenger cyclic di-GMP (c-di-GMP) (3, 18). C-di-GMP, in turn,
mediates the transition to biofilm formation, including downregulation of flagellar
machinery and the production of exopolysaccharides (EPS) (19–23). The levels of
c-di-GMP depend on diguanylate cyclases and phosphodiesterases. Different diguany-
late cyclases govern different functions; for example, RoeA promotes the production of
EPS, whereas SadC controls flagellar motility (21). Deletion of either sadC or roeA
reduces the c-di-GMP level approximately 2-fold. The phosphodiesterase BifA modu-
lates Pel production and flagellar motility (23), and deleting the gene that codes for BifA
increases the c-di-GMP level approximately 5- to 10-fold. Thus, while there is evidence
that T4P retraction induces upregulation of c-di-GMP, the effect of c-di-GMP levels on
T4P dynamics remains elusive.

Various roles of EPS in biofilm initiation have been proposed. For P. aeruginosa strain
PA14, used in this study, Pel is the dominant EPS, while P. aeruginosa strain PAO1
produces Psl (24–27). EPS is required for stable attachment (27). Interestingly, EPS
secretion favors microcolony formation through a positive feedback loop; P. aeruginosa
PAO1 cells secrete trails of EPS, and other cells tend to follow these tracks (28), which
suggests that EPS enhances surface adhesion (29).

T4P are involved in biofilm initiation through mediating surface attachment, surface
motility, and ultimately surface sensing. Here, we address the question of how T4P
dynamics evolve once bacteria have committed themselves to a surface. Since motor
properties are best analyzed at the single-molecule level, we used mutants with
different levels of c-di-GMP and distinct defects in early biofilm formation that resulted
from the deletion of two diguanylate cyclases (SadC and RoeA) and a phosphodies-
terase (BifA) with known roles in early biofilm formation (21–23). Using laser tweezers
to examine these mutant strains, we found no strong dependence of c-di-GMP on T4P
velocity and force generation. Finally, our data are consistent with those from a model
wherein T4P, together with Pel (an exopolysaccharide controlled by the diguanylate
cyclase RoeA), enhance surface adhesion.

RESULTS
P. aeruginosa T4P retraction generates force. Type IV pili can generate consid-

erable mechanical force by retraction (10). For example, the force generated by a single
T4P of Neisseria gonorrhoeae or Myxococcus xanthus amounts to more than 100 pN
under normal laboratory conditions (8, 9). Since T4P are responsible for the twitching
motility of P. aeruginosa, it was conceivable that the T4P of P. aeruginosa likewise
generate force. Here, we confirmed this assumption. To this end, the P. aeruginosa PA14
ΔflgK strain was inoculated on glass coverslides, and polystyrene beads were placed
close to the bacterial cell poles using laser tweezers. When T4P bind to the bead and
retract, they deflect the bead from the center of the trap (Fig. 1a). We used the force
clamp mode to measure the velocity of T4P retraction at various forces. In this mode,
the force is kept constant through feedback between the deflection of the bead (d) and
the optical table (30). We found that at a force (F) of 8 pN, the average (�standard error)
velocity (v) was as follows: v(8 pN) � 1,187 nm/s � 13 nm/s (Fig. 1b). The distribution
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of velocities shifted lower at F of 15 pN, and T4P retraction stalled at F of approximately
30 pN (Fig. 1b).

The position clamp mode of the laser trap was used for characterizing the stalling
forces. In this mode, the force acting on the T4P increases linearly with the deflection
of the bead (d). Some T4P retraction events showed a single stalling event and
subsequent rupture between T4P and the bead (Fig. 2a). In contrast to earlier experi-
ments that characterized T4P retraction in N. gonorrhoeae (11), detachment of T4P from
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FIG 1 Velocity of P. aeruginosa PA14 T4P retraction. (a) Sketch of the experimental setup. (b) Distribution
of T4P retraction speeds at clamped forces (F) of 8 pN, 15 pN, and 30 pN (n, �950 retraction intervals of
100 ms for each condition). In these experiments, the P. aeruginosa PA14 ΔflgK mutant was used to
eliminate any contribution of the flagellum to the adhesion or movement of the cell.
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FIG 2 Stalling forces of P. aeruginosa PA14 T4P retraction. (a and b) Typical examples for T4P retraction events in position
clamp mode. Deflections (d) of the bead from the center of the laser trap (compare with Fig. 1a) and the corresponding
forces (F) are shown. (c) Distribution of stalling forces (force at which the velocity was less than 250 nm/s for at least 500
ms) (n � 103). (d) Distribution of stalling forces. First, second, and third stalling events of single pilus retractions are plotted
(n � 21 for each condition). In these experiments, the P. aeruginosa PA14 ΔflgK mutant was used to eliminate any
contribution of the flagellum to the adhesion or movement of the cell.
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the bead was an unlikely event at forces less than the stalling force. As a consequence,
transient pausing was often observed (Fig. 2b); T4P retraction stalled but resumed after
a pause. We assume that the resumption of T4P retraction was caused by binding and
retraction of a second or multiple T4P. The stalling force was defined as the force at
which the velocity (v) was less than 250 nm/s for at least 500 ms; its distribution showed
a maximum at F of 37 pN and a pronounced tail (Fig. 2c). Thus, we plotted the stalling
forces of the first, second, and third stalling events independently (Fig. 2d). The force
distribution of the first stalling event does not show the tail found when all stalling
events were pooled. This observation strongly suggests that we observed the
stalling force distribution of single T4P retractions. Thus, the average (�standard
error) stalling force (Fstall) of a single T4P retraction was as follows: Fstall � 31 pN �

1 pN. We conclude that T4P retraction of P. aeruginosa generates mechanical force
on the order of �30 pN under the laboratory conditions used in this study.

Impact of oxygen availability on T4P function in P. aeruginosa PA14. N. gon-
orrhoeae T4P switch their retraction speed from 2 �m/s under aerobic conditions to
1 �m/s under anaerobic conditions, while M. xanthus is not motile under anaerobic
conditions (31, 32). We assessed whether T4P retraction was active in P. aeruginosa
under conditions that mimic low-oxygen environments. The T4P retraction assay was
performed under aerobic conditions and in the presence of an oxygen scavenger and
carbonyl cyanide m-chlorophenylhydrazone (CCCP), which disrupts the function of the
electron transport chain. While 25% of the sampled bacteria actively retracted their pili
under aerobic conditions, no T4P retraction activity was observed when the oxygen
scavenger or CCCP was added (see Fig. S1 in the supplemental material), indicating that
P. aeruginosa shows no T4P retraction in microoxic or anoxic growth conditions and/or
when electron transport chain function is impaired. In a control experiment, we found
that the addition of CCCP did not alter the viability of P. aeruginosa over the experi-
mental period (data not shown).

The force-dependent velocity of T4P retraction is only weakly dependent on
the presence of the diguanylate cyclases SadC and RoeA and on the phosphodi-
esterase BifA. We addressed the question of whether the level of c-di-GMP affects
velocity or force generation by T4P. To this end, we measured the velocity of T4P
retraction at F of 8 pN in mutants with deletions of diguanylate cyclases and a
phosphodiesterase that play important roles in the early stages of biofilm formation by
P. aeruginosa. The measured force distributions were in good agreement with Gaussian
distributions. Neither deletion of sadC nor deletion of bifA resulted in a significant effect on
the distribution of T4P retraction velocities (Fig. 3). Deletion of the roeA gene resulted in a
very modest but significant increase in velocity from that for the wild type (vwt), as follows:
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FIG 3 Speed of T4P retraction for diguanylate cyclase and c-di-GMP phosphodiesterase deletion strains. (a) Distribution of T4P retraction speeds
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vwt(8 pN) � 1,187 nm/s � 13 nm/s to vroeA(8 pN) � 1,346 nm/s � 28 nm/s, where vroeA

is the velocity for the roeA mutant. The double deletion of sadC and roeA reduced
the average speed of T4P retraction slightly but significantly: vsadCroeA(8 pN) � 1,037
nm/s � 19 nm/s, where vsadCroeA is the velocity for the sadC roeA double mutant. Similar
to the distribution of stalling forces in the wild-type background, the stalling force
distributions of the deletion mutants were non-Gaussian. Deletion of sadC, roeA, or bifA
did not significantly affect the stalling force of T4P retraction, and the sadC roeA strain
showed a slightly but significantly reduced stalling force (Fig. 4). In summary, deletion
of the diguanylate cyclase genes sadC and roeA or the phosphodiesterase gene bifA
showed only minor and nonsystematic effects on the motor properties of T4P, indicat-
ing that the motor properties are not systematically dependent on the levels of
c-di-GMP.

Coating the surface with the exopolysaccharide PelA enhances T4P-mediated
surface interaction. In response to high c-di-GMP levels, P. aeruginosa PA14 upregu-
lates production of the Pel exopolysaccharide (EPS) (23, 33, 34). Here, we studied
whether the presence of EPS impacts T4P function. Glass coverslides were incubated
with a high concentration of P. aeruginosa cells for 1 h, allowing these microbes the
opportunity to produce surface-associated EPS, as reported (28). Subsequently, most
bacteria were rinsed off the surface. From the remaining bacteria, single bacteria were
trapped in the laser trap. P. aeruginosa assumes an upright position in the laser trap,
reminiscent of other rod-shaped bacterial species (35, 36). When T4P retraction is active,
the bacteria actively move away from the center of the laser trap (Fig. 5a). While we
were unable to determine the force generated by the rod-like bacteria, the probability
that the bacteria escape from the trap was determined. In these experiments, increased
escape from the trap was associated with increased force generation. An escape event
was defined as an event where the distance between the center of the trap and the
bacterium was greater than 300 nm.

The probability (P) (�standard deviation) of escaping from the trap within 30 s was
47% � 5% for P. aeruginosa PA14 after preincubation with the wild-type EPS-producing
strain of this microbe (Fig. 5b). The escape probability was not sampled for longer
periods of time, because the bacteria tended to lose activity after 30 s of trapping.
When the glass coverslide was not preincubated with bacteria (and thus lacked any
deposited EPS), the escape probability was significantly reduced to 13% � 5% (Fig. 5b).

The experiments discussed above are consistent with a model wherein, during
preincubation, bacteria deposit EPS onto the coverslide; T4P can exert a force that is
higher on the EPS-coated surface than on a plain glass surface. To test whether EPS
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secretion was indeed responsible for the different observed adhesion forces, we
repeated the experiment with preincubation of the coverslide using a ΔpelA mutant
strain. PelA is essential for production of the Pel exopolysaccharide (24, 25). We found
that the escape probability of the pelA mutant was severely reduced to 20% � 3% (Fig.
5b). Furthermore, for the cases where the bacterium escaped, the distribution of escape
times was shifted toward considerably higher values (Fig. 5c, red line), indicating that
T4P retraction confers a stronger interaction to Pel than to the glass surface.

The diguanylate cyclase RoeA upregulates Pel production (21). Correspondingly,
deletion of roeA reduces the escape probability to 18% � 3% (Fig. 5b) and shifts the
escape time to higher values on par with what was observed for the pelA mutant (Fig.
5c). Finally, we confirmed that T4P were responsible for bacterial escape from the laser
trap. No escape was observed when the gene encoding the major pilin subunit, pilA,
was deleted (Fig. 5b). Together, our data indicate that the presence of EPS enhances the
adhesion mediated by T4P.

DISCUSSION
Force generation by P. aeruginosa T4P. By direct force measurements, we con-

firmed that T4P in P. aeruginosa are force-generating molecular motors. The speed of
T4P retraction was previously determined by direct visualization of T4P retraction to be
0.5 �m/s at 29°C (12). Here, we measured 2-fold-higher velocities at 37°C (a physio-
logically relevant temperature) in the presence of low external force. With the different
temperatures taken into account, the results are in reasonable agreement. Interestingly,
the forces generated by T4P retraction in P. aeruginosa are considerably lower than
those generated in N. gonorrhoeae and M. xanthus, where forces exceeding 100 pN
were observed (9, 11). Replacing the gene encoding major pilin subunit pilE in N.
gonorrhoeae by the major pilin of P. aeruginosa, PAK, supported high force generation
in the range of 100 pN (37), suggesting that the difference is unrelated to the structure
of the major pilin. We note that our experiments were conducted in standard lysogeny
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broth (LB) medium. We cannot exclude that other nutritional conditions support higher
force generation in P. aeruginosa.

The twitching motility phenotypes of P. aeruginosa and N. gonorrhoeae show remark-
able differences (38). The motility of P. aeruginosa has been described as slingshot-like, with
periods of low velocity (0.3 �m/s) lasting for several seconds followed by short translations
at velocities of 1 �m/s (39). In contrast, N. gonorrhoeae performs a random walk with
directional persistence at a speed comparable to that of single T4P retraction (40). Since
the motor forces (100 pN) are considerably higher than the detachment forces (on the
order of 10 pN), the movement can be explained by a tug-of-war between multiple pili
emanating in random directions (11). When the ratio between motor force and de-
tachment force is decreased, trapping is observed for N. gonorrhoeae (41). As shown in
this report, for P. aeruginosa, the motor forces are considerably lower, and therefore the
prerequisite for a tug-of-war-like movement (motor forces much larger than detach-
ment force) is most likely not fulfilled. In fact, detachment of T4P from the beads used
for probing the motor properties was an unlikely process, indicating that the detach-
ment forces were higher than the motor forces. Therefore, it was impossible to assess
the force-dependent detachment force systematically.

The data presented here lead to a better understanding of the molecular mecha-
nisms generating slingshot-like motility of P. aeruginosa. During the periods of slow
movement, multiple T4P are likely attached and pulling in different directions, gener-
ating a force balance and resulting in only slow movement. Eventually, a T4P ruptures
and perturbs the balance. As a result, the dominating T4P retracts at its typical speed
of �1 �m/s, generating a rapid “twitching” movement.

The role of c-di-GMP in motor properties of T4P. The level of c-di-GMP is an
important determinant of the transition from the planktonic lifestyle to the biofilm
state. For Escherichia coli, a direct connection between c-di-GMP levels and the speed
of flagellar rotation has been identified through the role of a molecular brake that binds
to the flagellar rotor in a c-di-GMP-dependent way (42). For P. aeruginosa, it is known
that reversal frequencies of flagellar rotation are affected by the c-di-GMP level, but the
molecular mechanism has not been identified (22, 23, 43). In terms of T4P, earlier
reports showed that the level of piliation changes during biofilm formation through
cAMP-dependent upregulation of the pilus machinery (3), but how the c-di-GMP level
impacts T4P function had not been explored. Here, we modulated the levels of
c-di-GMP by deleting genes that play roles in early biofilm formation and investigated
their effect on T4P motor properties. We found no major changes in velocity or force
generation when we decreased the production level of c-di-GMP by deleting diguanylate
cyclase SadC or RoeA. The velocity was slightly increased (12%) by deleting roeA and
decreased (by 14%) when roeA and sadC were deleted. The stalling force was decreased by
22% in a ΔroeA ΔsadC strain. While these effects were statistically significant, we consider
them modest and unlikely to have a large impact on the function of T4P. Likewise, when
the degradation of c-di-GMP was impaired by mutation of the BifA phosphodiesterase, the
motor properties of T4P were unaffected. Mutations in sadC and bifA caused a defect in
twitching motility (44). While the motor properties are largely unchanged, as shown in
this study, the density of T4P may be affected, causing the defect in twitching motility.
However, approximately 30 other proteins in P. aeruginosa are involved in the synthesis
and/or degradation of c-di-GMP, including some which impact twitching motility (44).
It is formally possible that one or more of these proteins impact motor function in a
manner analogous to the molecular brake described above (42).

Putative role of EPS in T4P-mediated adhesion. T4P mediate attachment of bacteria
to abiotic surfaces (17, 41, 45, 46) and to host cells (17, 47). Moreover, T4P-T4P–
mediated attractive forces control the shape, fusion, and sorting in microcolonies
formed by N. gonorrhoeae (1, 48–51). Here, we provide evidence that the exopolysac-
charide Pel enhances the surface adhesion mediated by T4P. The deposition of exopo-
lysaccharides can influence the interaction between P. aeruginosa and surfaces in at
least two ways. First, it has been reported that Pel is involved in surface attachment of
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P. aeruginosa PAO1 by generating short-ranged attractive forces (52). Thus, the pres-
ence of Pel might directly enhance bacterial interaction with a surface. Second, T4P may
bind to EPS, thus enhancing the strength of attachment between the T4P and the
surface. Consistent with this idea, for Myxococcus xanthus, direct interaction between
T4P and its secreted slime material has been observed (53).

MATERIALS AND METHODS
Bacterial strains. All strains used in this study were isogenic with the flagellum-defective mutant P.

aeruginosa PA14 ΔflgK (Table 1). This mutant was used to eliminate any contribution of the flagellum to
adhesion or the other assays performed here. As such, the ΔflgK mutant served as the positive control
in all studies. All the strains were grown on lysogeny broth (LB) at 37°C. All the mutants used in this study
contained a deletion of the coding region of the indicated gene, and they carried no antibiotic marker.

Construction of �flgK mutants. In-frame deletion mutants of P. aeruginosa were constructed via
allelic exchange as previously described (54). DNA fragments were amplified from P. aeruginosa PA14
genomic DNA by PCR to generate upstream and downstream fragments of the flgK gene with nucleotide
tails complementary to plasmid pMQ30. The primer pairs flgK KO P1 (tgtaaaacgacggccagtgccaagcttgca
tgcctgTCATGAACAGCCAGACCACC) and flgK KO P2 (TCTCTCGGTTAAGGCGCTCACATGGGTCAGTTCCTCC
TTG) (upstream fragments) and flgK KO P3 (CAAGGAGGAACTGACCCATGTGAGCGCCTTAACCGAGAGA)
and flgK KO P4 (ccatgattacgaattcgagctcggtacccggggatccACGGTATTGAGCAAGCTGCG) (downstream frag-
ments) were used to generate the PCR fragments. The lowercase letters mark sequences complementary
to the cloning vector pMQ30.

PCR products were cloned into pMQ30 by in vivo homologous recombination in Saccharomyces
cerevisiae INVSc1 (Invitrogen) as previously described (54). The pMQ30-flgK deletion construct was
transformed by electroporation into E. coli strain S17 and introduced into P. aeruginosa ΔsadC (strain SMC
4465), ΔbifA (SMC 3351), ΔroeA (SMC 3812), ΔsadC ΔroeA (SMC 3809), ΔpilA (SMC 3782), and ΔpelA (SMC
2893) mutants by conjugation. The ΔpilA ΔflgK ΔpelA mutant was built by introducing the pMQ30-pelA
knockout construct (SMC 6955) into P. aeruginosa ΔpilA ΔflgK by conjugation. Integrants were isolated on
gentamicin (20 �g/ml) and nalidixic acid (20 �g/ml), followed by sucrose counterselection. Resolved
integrants were confirmed by PCR and sequencing.

T4P retraction assay. Prior to laser tweezer experiments, bacteria were cultivated on agar plates (BD
Bacto Agar; Fisher Scientific) containing LB (lysogeny broth; Roth) at 37°C for at least 8 h and then diluted
in LB medium to an optical density (OD) of 0.002. Fifty microliters of the vortexed cell suspension was
applied to polystyrene-coated coverslides. The diluted cells were incubated on the coverslides for an
additional 30 min at 37°C. Subsequently, the medium was exchanged by a microsphere suspension of
2-�m carboxylated polystyrene beads (Invitrogen) before the sample was sealed. The observation time
was limited to 20 min to avoid potential oxygen depletion.

Single pilus retraction events were measured with optical tweezers in position clamp and force clamp
modes (30). In short, in position clamp mode, the T4P pulls the bead out of the center of the laser trap,
and the optical restoring force increases linearly with the deflection. This mode is useful for determining
the stall force but less convenient for determining speed, since the elastic properties of the T4P are
nonlinear. In force clamp mode, software-based feedback clamps the deflection of the bead from the
center of the trap at a constant position, thus keeping the force acting on the T4P constant. Pilus
retraction events were analyzed in Matlab as previously described (31), but the parameters were adjusted
to account for lower retraction velocities and stronger force dependence. In particular, a stalling event
was detected when the velocity was lower than 250 nm/s for at least 500 ms. Prior to analysis, the data
were down-sampled from 20 kHz to 10 Hz.

Oxygen depletion studies. The effects of depletion of oxygen and proton motive force on T4P
dynamics were assessed using the oxygen scavenger system protocatechuic acid (PCA)–protocatechuate-3,4-
dioxygenase (PCD) and CCCP (carbonyl cyanide m-chlorophenylhydrazone), respectively, as described
previously (32). To ensure that CCCP treatment did not affect the survival of P. aeruginosa, we treated
cells with 50 �M CCCP for 15 min and subsequently plated them on agar plates. The number of CFU was
comparable to the number of untreated cells.

Escape assay. Prior to laser tweezer experiments, bacteria were cultivated overnight on agar plates
containing LB at 37°C. Subsequently, bacteria were suspended in LB medium to an OD of 0.2 and

TABLE 1 Bacterial strains used in this study

Strain Relevant genotypea Source or reference

SMC5845 ΔflgK 52
SMC6591 ΔsadC ΔflgK This study
SMC6592 ΔroeA ΔflgK This study
SMC6593 ΔsadC ΔroeA ΔflgK This study
SMC6594 ΔbifA ΔflgK This study
SMC7296 ΔpelA ΔflgK This study
SMC7297 ΔpelA ΔpilA ΔflgK This study
aAll strains are mutants of P. aeruginosa PA14. Mutants bear a deletion of the coding region of the indicated
gene(s), and these strains do not carry an antibiotic marker.
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incubated on coverslides for 70 to 80 min to ensure the secretion of exopolysaccharides onto the surface
of the cover slides. Subsequently, the cells sitting on the cover slides were washed repeatedly (10 to 20
times) using a pipette and fresh medium to ensure cell densities feasible for the experimental procedure.

The characterization of bacterium-surface interaction followed a previously established protocol for
N. gonorrhoeae (48, 49). While for N. gonorrhoeae it was possible to select for spherical monococci and
thus measure the escape force (49), P. aeruginosa bacteria are rod shaped and thus align vertically within
the laser trap. As their T4P reside at the cell pole, retraction causes tilting of the bacterial body with
respect to the major axis of the laser trap; therefore, quantification of escape forces was not possible.
Instead, we characterized the frequencies at which P. aeruginosa escaped for the laser trap. In short,
bacteria moving close to the surface were trapped in the optical trap and placed 2 to 3 �m above the
surface. A single bacterium was sampled for 30 s, since photodamage became obvious at longer periods
of time. Time-lapse movies were recorded at 0.1 Hz. An escape event was defined as a displacement (d)
of �300 nm from the center of the laser trap.
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