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Abstract

Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding 

these proteins are usually at widely scattered loci and have distinctive promoters with certain 

common features. This minireview discusses the means by which cells manage to balance the 

production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. 

Regulation at all levels of gene expression, from transcription to protein turnover, is considered.
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Ribosomes are vital organelles that catalyze protein synthesis in all living organisms. In 

eukaryotes, the ribosomes are composed of four RNA molecules and one molecule each of 

79 different proteins. In vertebrates, the genes encoding the ribosomal proteins (RP genes) 

are at widely scattered loci and have distinctive promoters with certain common features 

(Perry, 2005). A similar situation occurs in yeast (Zhao et al., 2006).

An important issue, which has yet to be fully resolved, concerns the means by which cells 

manage to balance RP production so as to end up with equimolar quantities in the ribosome. 

Since a large proportion of a cell’s energy is expended in ribosome production (Warner, 

1999), one might expect RP synthesis to be tightly regulated at various levels of gene 

expression.

Transcription of the RP genes, processing of the transcripts, and mRNA turnover usually 

result in similar, but not identical, amounts of the different RP-mRNAs. In the yeast 

Sacchromyces cerevisiae, where there are one or two copies of each RP gene, a difference in 

RP-mRNA abundance of up to five-fold in exponentially growing cultures has been reported, 

although most RP-mRNAs are within a two-fold range (Holstege et al., 1998). In these cells, 

transcription of the RP genes is continually required owing to the relatively short half-life of 

the RP-mRNAs (Warner, 1999). In mammalian cells, where there is a single expressed copy 

of each RP gene, the RP-mRNA abundance values are also narrowly distributed with some 

notable exceptions that are apparently cell-type specific (Bortoluzzi et al., 2001; Angelastro 

et al., 2002; Ishii, 2006). Although there is some uncertainty about the accuracy of 
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abundance measurements when comparing one mRNA species to another (Quackenbush, 

2006), it seems reasonable to conclude that the structure of various RP genes has evolved so 

as to keep variations in mRNA abundance within a fairly narrow range.

In Drosophila and mammals, there is evidence that for some RPs, a decrease in mRNA 

abundance by a factor of two, as occurs in either naturally occurring or experimentally 

produced haploinsufficiencies, leads to a ribosome deficit with a consequential decrease in 

the capacity for protein synthesis (Saeboe-Larssen et al., 1998; Oliver et al., 2004; Gazda 

and Sieff, 2006; Panic et al., 2006; Choesmel et al., 2007) and references cited therein}. 

Such deficits are associated with a growth-restricted phenotype, termed minute in 

Drosophila, and with abnormalities in certain cell lineages in mammals. An analysis of the 

diverse effects of these haploinsufficiencies has led to the idea that there is a threshold value 

in mRNA abundance, which varies among the different RPs and in different cell types 

(Enerly et al., 2003). The variation among different RPs may reflect their relative importance 

for the maturation and assembly of the ribosome or possible involvements in nonribosomal 

functions. In Zebrafish, haploinsufficiency of some, but not all, RP genes leads to 

tumorigenesis by an as yet unknown mechanism (Amsterdam et al., 2004). 

Haploinsufficiency of RP genes has also been observed in yeast (Deutschbauer et al., 2005). 

In this study, different sensitivities to the diminution of particular RP-mRNAs were also 

indicated by variable reductions in growth rate when either one of the duplicated or 

nonduplicated RP genes was deleted.

Are differences in RP-mRNA abundance compensated for by reciprocal differences in 

translation efficiency? In vertebrate cells, the RP-mRNAs are relatively stable and the 

overall regulation of RP synthesis is primarily at the level of translation. The 5′ terminal 

oligopyrimidine (TOP) sequence, which is a ubiquitous feature of all vertebrate RP-mRNAs, 

is required for modulating the efficiency of their translation (Meyuhas, 2000). The 

translation efficiency in vivo of a particular RP-mRNA can be estimated from two 

parameters: the proportion of the mRNA that is engaged with ribosomes (ribosome 

occupancy) and the spacing of ribosomes on a translating mRNA (ribosome density). 

Measurements of these parameters in cultured mammalian cells have been made for six RP-

mRNAs (Meyuhas et al., 1987). These measurements revealed an interesting behavior, 

typified by a bimodal distribution of RP-mRNAs superimposed on polyribosome profiles, 

with a ribosome occupancy of only 59 to 76% under ideal growth conditions and a near 

maximum ribosome density of the translated fraction (about 33 codons per ribosome). 

Similar bimodal distributions of RP-mRNA were also observed in Xenopus embryos 

(Amaldi and Pierandrei-Amaldi, 1990) and growing mouse myoblasts (Agrawal and 

Bowman, 1987). Although no large difference in translation efficiency was observed in the 

limited study of six RP-mRNAs, it would be interesting to evaluate these parameters for RP-

mRNAs that are believed to differ significantly in abundance.

Experiments with S. cerevisiae have attempted to estimate the translation status of various 

mRNAs in a genome-wide analysis using the two parameters described above (Arava et al., 

2003). A comparison of RP-mRNAs previously reported to differ by four- to five-fold in 

abundance (Holstege et al., 1998) did not appear to have any significant differences in 

translation rates. Despite a caveat about the uncertain accuracy of these measurements 
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(Arava et al., 2003), they would tend to argue against compensatory effects at the level of 

translation.

The use of feedback mechanisms to regulate RP-mRNA translation, which are a mainstay in 

prokaryotes, are apparently not operative in eukaryotes, although a few feedback 

mechanisms at the levels of processing and turnover of RP-mRNA have been described in 

both yeast and vertebrates (Dabeva et al., 1986; Presutti et al., 1995; Tasheva and Roufa, 

1995; Fewell and Woolford, 1999; Badis et al., 2004).

The turnover of RPs that are not assembled into ribosomes is the final level at which 

stoichiometry can be achieved, but, of course, this represents a mechanism of last resort 

because it is energetically wasteful for the cell. Evidence for efficient degradation of 

unassembled RPs has been found in both yeast and mammalian cells when excess proteins 

are produced by amplification of particular RP genes (Agrawal and Bowman, 1987; Maicas 

et al., 1988) or when ribosomal RNA synthesis is inhibited (Craig and Perry, 1971; Craig, 

1971; Warner, 1977).

In summary, ribosome biogenesis is a highly resources-consuming process and therefore 

requires tight regulation and balanced synthesis of all of its constituents. Despite this 

demand, some RP mRNAs seem to escape from this tight regulation and accumulate in 

excess. For those RP-mRNAs whose abundance is above the optimal threshold that satisfies 

the growth requirements of the cell, there is as yet no compelling evidence for a 

compensatory diminution in translation efficiency. The excess proteins encoded by these 

mRNAs may be used for other purposes (Wool, 1996; Schroder and Moore, 2005; Komili 

and Roth, 2007) or simply turned over by normal degradation mechanisms. There is 

evidence that certain unassembled RPs can signal cells to enter the apoptosis pathway by 

directly binding to MDM2 and consequently stabilizing p53 (Rudra and Warner, 2004).
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