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Abstract

Using microarray and bioinformatics, we examined the gene expression profiles in transgenic 

mouse hearts expressing mutations in the myosin regulatory light chain shown to cause 

hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 

58→Glutamine (R58Q) and Aspartic Acid 166 → Valine (D166V), and one benign, Lysine 104 

→ Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three 

mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. 

WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, 

we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-

HCM phenotypes. The correlations between different genotypes were also studied using network-

based algorithms. Genes with strong correlations were clustered into one group and the central 

gene networks were identified for each HCM mutant. The overall gene expression patterns in all 

mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of 

genes that were up or downregulated, but most similarities were noted between D166V and K104E 

mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three 

HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through 

diverse mechanisms.
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1. Introduction

Dominant mutations in the MYL2 gene encoding for the human ventricular myosin 

regulatory light chain (RLC) are recognized to cause hypertrophic cardiomyopathy (HCM), 

a genetic and complex disorder known to be highly heterogeneous with respect to the course 

of the disease, age of onset, severity of symptoms and risk for sudden cardiac death (SCD) 

[1,2]. HCM is the most common cause of SCD among young individuals and competitive 

athletes [3]. The latest genetic studies on MYL2 associated heart disease have revealed that 

mutations in MYL2 are more frequent than previously reported (for review see Refs. [4,5]) 

and in just the past few years, new mutations were identified [6–8], with some particular 

MYL2 variants demonstrating multiple occurrences in different ethnic populations [9,10]. 

Mutated patients have often no symptoms and live an uneventful life; however, some specific 

RLC mutations have been associated with heart failure and SCD [10–14]. Despite many 

studies on the mutated proteins and animal models of HCM, the molecular mechanisms 

underlying the specific disease phenotypes remain not fully understood. To elucidate the 

molecular basis of HCM-RLC phenotypes, we have applied the RNA microarray analysis 

used by many to identify the mechanisms of various genetic diseases [15]. The study was 

focused on two RLC mutations, Arginine 58 → Glutamine (R58Q) and Aspartic Acid 166 

→ Valine (D166V), both reported to cause malignant outcomes in humans [11–14], and one 

benign HCM-RLC mutation, Lysine 104 → Glutamic acid (K104E) [9,16]. Previously 

generated transgenic (Tg) mice expressing these HCM-RLC mutations in the heart were 

used and the results were compared with Tg wild-type (WT) mice, expressing the non-

mutated human ventricular RLC [17–19]. In particular, we aimed to study the mechanisms 

that trigger development of malignant vs. benign RLC-HCM phenotypes in humans. In 

functional studies on Tg mice, the two malignant RLC mutations (R58Q and D166V) were 

shown to exert similar effects on force generation in skinned and intact papillary muscle 

fibers, i.e. both significantly increased the Ca2+-sensitivity of contraction, diminished 

maximal tension and delayed muscle relaxation suggesting the possibility of diastolic 

dysfunction [18–21], which was in fact confirmed by echocardiography and invasive 

hemodynamics in Tg mice [22,23]. On the other hand, the K104E RLC mutation, did not 

significantly alter the Ca2+-sensitivity of force but did cause changes in maximal force 

generation (reduced) and the ATPase activity (enhanced) [17]. Our histopathology data 

demonstrated HCM-related changes including myofibrillar disarray and fibrotic lesions in 5–

9 month-old female and male K104E, D166V and R58Q animals, and these changes were 

significantly intensified in senescent (>13 month-old) mutant vs. WT mice [17–19,23,24]. 

Hypertrophy and significant systolic and/or diastolic abnormalities in D166V and R58Q 

mice, observed by echocardiography, Doppler and invasive hemodynamics were evident in 

5–9 month-old and senescent mice [22,23]. However, the phenotype associated with the 

K104E mutation was mild in young (3-5 month-old) and intermediate aged (~8 month-old) 

animals but evident in mice >13 months of age compared to age matched Tg-WT mice [17]. 

It is worth mentioning that no phenotypic differences were noted between Tg-WT mice 

expressing the human isoform of ventricular RLC compared with non-transgenic (NTg) 

mice containing the mouse cardiac RLC [18,19,21,22].
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The microarray and bioinformatics analyses of gene expression profiles were performed on 

the hearts of 5–8.5 month-old mice expressing R58Q, K104E and D166V HCM-RLC 

mutations (three hearts per group) and the results were compared to Tg-WT mice (Table 1). 

The data demonstrated that the overall gene expression patterns differed between all mutant 

samples and WT mice. Interestingly, both malignant mutations (R58Q and D166V) shared 

certain classes of genes that were up or downregulated, but more similarities were noted 

between D166V and K104E hearts, with R58Q showing a distinct gene expression profile. 

We then applied bioinformatics tools (based on network theory) on the gene co-expression 

network (GCN) to infer the most central (i.e., potentially the most influential) genes altered 

in these three disease phenotypes compared to WT hearts [25–29]. The most common one is 

building co-occurrence or co-expression networks. A gene co-expression network is a 

network, where each node corresponds to a gene, and a pair of nodes is connected by an 

edge if there is a significant co-expression relationship between them [30]. Central nodes in 

GCNs have been proposed as candidate driver genes [28,29,31]. A network-based approach 

to perform clustering and centrality analysis of differentially expressed genes in GCNs 

showed varying expression patterns in the three RLC mutant mice across different HCM 

phenotypes. We also identified central or the most influential genes that were altered in 

R58Q, D166V and K104E hearts.

2. Materials and methods

2.1. RNA preparation and microarray assay

All animal studies were conducted in accordance with institutional guidelines. The 

University of Miami has an Animal Welfare Assurance (A-3224-01, effective November 23, 

2011) on file with the Office of Laboratory Animal Welfare (OLAW), National Institutes of 

Health.

Wild-type or HCM B6SJL mice (listed in Table 1) were euthanized, left ventricles were 

rapidly harvested and immediately submerged in 25 vol of room-temperature RNAlater 

RNA stabilization reagent (Qiagen) [32]. After overnight incubation at 4 °C, the samples 

were stored frozen at −20 °C until used. Total RNA was isolated from RNAlater stabilized 

tissues using an RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia, CA) after being 

homogenized in a Mixer-Mill MM301 (Retsch) according to the manufacturer's protocol. 

Total RNA samples were hybridized to GeneChip® Mouse Gene 2.0 ST Array 

(Affymetrix®) at the Center for Genome Technology at the University of Miami Miller 

School of Medicine. The raw data were stored in CEL format files.

2.2. Principle Component Analysis (PCA) for multiple comparisons of gene expression 
patterns across datasets

The Principle Component Analysis (PCA) is a common statistical analysis technique that 

aims to reduce the number of dimensions of the high-dimensional data by extracting key 

features and their contributions to the variations. Each principal component is a linear 

combination of the original variables that are usually sorted based on the percentage of 

variance of the original data that they represent. By performing a linear transformation based 

on the top three principal components, we effectively map the original data points to points 
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in 3D space, making it convenient to visualize the clustering and grouping of the high-

dimensional original data. All 12 raw datasets (three WT, three R58Q, three D166V and 

three K104E) were imported into the Partek Genomics Suite and the 3D PCA plot was 

generated by selecting the “Principle Component Analysis” tag in the QA/QC section (Fig. 

1). Each PC1, PC2 and PC3 of the plot is labeled with % of explained variance with each dot 

representing a transformed original data point. Clusters of points in this plot represent 

groups with similar gene expression patterns.

2.3. Bioinformatic analysis of gene expression data

Using bioinformatics analyses, we have examined the gene expression profiles in Tg mouse 

hearts expressing mutations in the myosin RLC shown by population studies to cause HCM. 

Raw data (CEL. files) were uploaded into Partek Genomics Suite for normalization and 

statistical analysis. The CEL files, containing the probe-level data from all arrays were 

imported into Partek® Genomics Suite™ software (Partek Inc., St. Louis, MO, USA). 

Robust multichip analysis normalization was applied to yield log2-transformed expression 

intensities. One-way analysis of variance (ANOVA) was performed on the genes across the 

four groups (R58Q, D166V, K104E and WT). Pairwise comparisons were performed 

between mutations providing fold-change (FC) values. The list of FC of all genes were 

exported into excel file for further processing. Since during the calculation process, the WT 

samples were used for normalization, the processed FC results only contain the data of three 

mutations: R58Q, D166V and K104E.

2.4. Scatter plot of gene expression and comparison between groups

The scatter plots (Fig. 2) were created using SigmaPlot 11.0 software with each dot in the 

figure representing the FC of one gene with respect to the WT compared under two different 

conditions. The complete list of 29,726 genes were compared in pairs: R58Q vs. D166V, 

R58Q vs. K104E and K104E vs. D166V. Each quadrant in the x-y coordinates was divided 

into two parts (a and b) and divided by a 45° line generating eight parts 1-a, 1-b, 2-a, 2-b, 3-

a, 3-b, 4-a and 4-b, indicating an upregulation or downregulation of a gene and the amount 

of upregulated/downregulated genes in one mutant vs. second compared mutant. The final 

3D scatter plot was also generated with the FC in all three R58Q, D166V and K104E 

mutants as compared to WT.

2.5. Gene ontology analysis

The differentially expressed gene lists with at least a 2-fold change (in either direction) vs. 

WT were generated and sorted for further analysis. The molecular function and biological 

processes for each differentially expressed gene were annotated and categorized using the 

“mygene” package from the statistical software suite R [33]. Pie charts (Fig. 3) of biological 

processes and molecular functions with at least two differentially expressed genes in each 

category were plotted as a percentage of the total number of altered genes.

2.6. Signaling pathway analyses

The functional pathway analyses were performed using the Partek® Pathway™ software. 

Gene set enrichment analysis (GSEA) was carried out for interpreting microarray data to 
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detect disrupted or influential pathways and genes based on their FC and a biological 

mechanism. The gene expression results from two comparisons (mutant vs. WT) were 

ranked by absolute FC (Table 2), and the statistical enrichment of curated pathways was 

determined from known gene sets. The results of the analysis generated a list of the most 

significantly enriched pathways ranked by enrichment p value with significance defined as p 
≤ 0.05 (Table 3). The number of differentially expressed genes and total number of genes 

were also listed for each pathway.

2.7. Applying network-based analysis for gene cluster and centrality analysis

We used normalized expression data from all 12 microarray datasets [(3 mutants+WT) × 3 

per group] with rows corresponding to genes and 12 columns for the 12 datasets. The matrix 

was then separated into four sub matrices including only D166V and R58Q, only D166V 

and K104E, only R58Q and K104E, and one final group containing all three mutants. 

Intersections were performed among groups in such a way that only common differentially 

expressed genes (|FC| ≥ 2-fold) were maintained in the matrices. The following steps were 

then pursued: (a) calculate the correlation among genes; (b) build co-occurrence or co-

expression networks; (c) cluster genes that show strong correlations with each other; and (d) 

identify “central” genes among each group. The details of the above steps can be found in 

Fernandez et al. [34] (co-occurrence networks) and Cickovski et al. [25] (centrality).

3. Results

To quantitatively assess the effects of HCM mutations on gene expression in three different 

RLC disease phenotypes, we used a microarray analysis to profile the mRNA expression 

patterns in transgenic mouse hearts bearing the R58Q, K104E and D166V mutations in the 

human ventricular RLC (GenBank accession no. P10916) and the results were compared to 

those obtained for WT hearts expressing full length, non-mutated human ventricular RLC. 

Three WT hearts and three hearts from each mutant mice (males and females) were used and 

they closely represented the population of R58Q, K104E or D166V mice studied previously 

[17–19,23,24]. With the exception of 7–8.5 month-old K104E animals, the age of D166V, 

R58Q and WT mice was 5–6 months (Table 1). The reason for the chosen age of the mice 

subjected to microarray analyses was to assess the gene expression patterns in mutants that 

were thoroughly characterized earlier including the histopathology data on 8 month-old 

K104E mice [17], and 5–6 month-old D166V [23] and R58Q [19,22] animals. At the age of 

microarray analysis, all mice demonstrated hypertrophy and diastolic dysfunction but the 

severity of the phenotype significantly intensified in senescent mice (>13 month-old) 

compared with age matched WT animals [17–19,23,24]. No phenotypic differences were 

noted between Tg-WT mice expressing the human isoform of ventricular RLC compared 

with non-transgenic (NTg) mice containing the mouse cardiac RLC [18,19,21,22], and 

therefore no NTg samples were included in the current study.

3.1. Comparisons between R58Q, D166V and K104E vs. WT hearts

The principal component analysis (PCA) plots were used to demonstrate the overall gene 

expression patterns of all three HCM mutated samples [35] (Fig. 1). The three axes in the 

PCA plots represent the three principle components (PC1, PC2, PC3) calculated from the 
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samples with each dot representing the expression profile of a single gene. The plot 

demonstrates that the overall gene expression profile in WT hearts was distinct from the 

ones with one of the three mutations (Fig. 1). Surprisingly, the K104E and D166V profiles 

were similar to each other while the R58Q mutant hearts clearly differed from WT and the 

other two mutants (Fig. 1). The plots of the fold change (FC) in each mutant vs. WT of 

29,726 genes are presented in Fig. 2. Each dot in the figure represents one gene, and its 

position is determined by the FC on x-axis and y-axis. Note that the genes located in 1-a 

region are more upregulated in D166V than R58Q hearts, while those located in 1-b are 

more upregulated in R58Q vs. D166V (Fig. 2A). In region 2-a, genes are upregulated in 

D166V but downregulated in R58Q.while in region 2-b genes are upregulated in D166V but 

downregulated in R58Q. Similar analysis of mutant pair's comparisons can be done for other 

x-y quadrants (Fig. 2B and C). The proximity of a gene to the 45° line indicated the degree 

of similarity between two mutants. All three FC values were combined in Fig. 2D in the 3D 

plot. Genes that were highly dysregulated are farther to the left or right, while the highly 

significant changes appear higher on the plot. Note the largest FC between R58Q and 

K104E with the majority on the x-axis ranging from −4 to 4. K104E and D166V showed the 

least FC but were most significant compared with R58Q.

3.2. Regulation of structural genes in three models of cardiac hypertrophy

Table 2 presents a list of differentially expressed genes in the three RLC HCM phenotypes 

vs. WT hearts. The positive FC values indicate upregulated genes, while the negative values 

indicate downregulated genes. The * symbol denotes FC ≥ 1.5, and ** denotes FC ≥ 2.0. 

Genes were categorized based on the biological properties/molecular functions of the 

corresponding proteins. Among structural genes/proteins, the β-myosin heavy chain (MHC) 

encoded by Myh7 was largely upregulated in R58Q vs. WT hearts with an FC value of 2.38. 

Less upregulated Myh7 was observed in D166V vs. WT hearts (FC = 1.27), while no 

changes in β-MHC expression were noted in K104E mice. The upregulation of the β-MHC 

in mouse myocardium and the switch from the α-MHC to β-MHC has been reported in 

mouse models of HCM [36] and observed to occur in response to a wide variety of 

pathological insults (reviewed in Ref. [37]). Similar to upregulated β-MHC in both 

malignant HCM models, collagen VIII encoded by the Col8a1 gene was also significantly 

upregulated in R58Q vs. WT hearts (FC = 2.01) and in D166V vs. WT hearts (FC = 1.57), 

while no changes were found in the benign K104E mouse model of HCM (Table 2). Due to 

transgenic overexpression of the human cardiac RLC in the hearts of mice, the Myl7 gene 

encoding the atrial isoform of mouse RLC was down-regulated in R58Q and K104E mice, 

while it did not change in D166V compared with WT hearts (Table 2). Consistently with a 

largely reduced phosphorylation of the RLC in the hearts of D166V and R58Q mice 

[18,22,24], the level of cardiac myosin light chain kinase (encoded by Mylk3) expression 

was lower in D166V (FC = −2.13) and in R58Q (FC = −1.40) compared with WT hearts 

Table 2). It was also reduced in K104E hearts (FC = −1.21), consistently with decreased 

RLC phosphorylation reported in K104E mice [17]. Likewise, the expression of the Mylk4 
gene, which encodes for the myosin light chain kinase family, was significantly 

downregulated in R58Q hearts and to a lesser degree in K104E vs. WT hearts (Table 2). The 

other sarcomere structural related genes, such as Ttn (titin), Mybpc3 (MyBP-C), Tnnc1 
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(TnC) and Tnni3 (TnI) showed no significant changes in any of HCM heart models 

compared with WT hearts (Table 2).

3.3. Regulation of cytoskeletal, Ca2+ handling and HCM-related genes

Abnormalities were found in genes encoding for non-contractile proteins and these may be 

related to the specific cardiomyopathy phenotypes underlying R58Q, D166V and K104E 

induced HCM. For example, all three mutations significantly upregulated the Myot gene 

encoding the Z-disc protein myotilin (Table 2), Myotilin location and interactions with other 

Z-disc proteins are known, but its role in the regulation of muscle structure and function 

remains unknown [38]. Its upregulation in the three cardiomyopathy models may be related 

to myofibrillar myopathies characterized by an abnormal accumulation of intrasarcoplasmic 

proteins and disorganization of the inter-myofibrillar network of the Z-discs [38]. 

Furthermore, R58Q increased the expression of another Z-disc associated gene, Pdlim3 
encoding the actinin-binding LIM Protein (ALP) (FC = 1.62). Alp is highly expressed in the 

heart and localizes to Z-discs and intercalated discs. It functions to enhance the crosslinking 

of actin by alpha actinin-2 and is important for right ventricular chamber formation and 

contractile function. Its upregulation in R58Q and to a lesser extent in D166V hearts could 

be compensatory to the left ventricular dysfunction in these mice [22,23]. Strikingly, histone 

demethylase encoded by the Uty gene was largely downregulated in all three 

cardiomyopathy phenotypes with FC = −2.95, −4.02 and −8.53 in R58Q, D144V and K104E 

hearts, respectively (Table 2). Histone modifications are known to regulate chromatin 

structure, transcription and various nuclear processes [39]. Histone demethylases are also 

important for normal development and are involved in various diseases [39]. Genetic studies 

have shown that deletion or mutation of several different demethylases can lead to 

developmental defects in model organisms [40]. Downregulation of Uty in our HCM mice 

may therefore be directly associated with the development of cardiomyopathy phenotypes 

(Table 2). Interestingly, cysteine dioxygenase 1, cytosolic encoded by Cdo1 was 

significantly upregulated in D166V (FC = 2.49) and K104E (FC = 2.39) compared with WT 

hearts (Table 2). Cysteine dioxygenase 1 initiates several important metabolic pathways and 

is a critical regulator of cellular cysteine concentrations. Control of cysteine levels by 

upregulation of Cdo1 may be necessary to maintain cardiac function in D166V and K104E 

mice. Cdo1 is also involved in the biosynthesis of taurine, which is an antioxidant and serves 

the protective role in the heart during hypoxia [41]. Its increased expression in these hearts 

may suggest a potential compensatory effect in the heart during hypertrophy/ ischemia. In 

the group of Ca2+ handling genes, Sln encoding sarcolipin was significantly downregulated 

in R58Q vs. WT hearts (FC = −2.25) and even more so in the K104E hearts (FC = −3.68) 

(Table 2). Sarcolipin is a key regulator of sarco (endo)- plasmic reticulum Ca2+-ATPase and 

its expression has been found to be altered in diseased atrial myocardium [42]. 

Downregulation of Sln in these mice is most likely associated with increased activity of 

Ca2+-ATPase pump and abnormal intracellular Ca2+ handling.

On the other hand, no abnormalities were found in genes responsible for metabolism (Table 

2). As expected, the levels of HCM biomarkers, e.g. atrial natriuretic peptide (ANP) were 

upregulated in models of malignant HCM (FC = 2.54 in R58Q vs. WT and 2.43 in D166V 

vs. WT). Brain natriuretic peptide was also upregulated in D166V mice (FC = 1.54). Cardiac 
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TnI interacting kinase (Tnni3k) and potassium channel, voltage gated subfamily E 

regulatory beta subunit 1 (Kcne1) were significantly upregulated in the K104E heart model 

(FC = 3.58 and 2.19, respectively) and to lesser extent in R58Q mice (FC = 1.62 and 1.70, 

respectively) compared with WT (Table 2).

3.4. Gene ontology analysis of biological process and molecular functions in R58Q, D166V 
and K104E mutant heart models

The differentially expressed genes defined as those with an absolute fold change ≥2 in the 

mutant vs. WT expression levels were identified and subjected to enrichment analyses of 

Gene Ontology (GO) terms (Fig. 3). Each differentially expressed gene was categorized into 

corresponding biological processes/molecular functions and only these processes containing 

at least two differentially expressed genes were included in the pie plots. As shown in Fig. 

3A, fewer processes were implicated in D166V when compared to the R58Q and K104E 

mutants. In the latter two, differentially expressed genes were dispersed in more processes 

suggesting that they may be less correlated with each other compared with genes involved in 

biological processes in D166V hearts, which seem to be more strongly correlated with each 

other (Fig. 3A). All three mutations showed involvement in transcription regulations and 

oxidation-reduction processes. R58Q and D166V shared involvement in processes such as 

transport and cell adhesion while R58Q and K104E shared connection in immune response 

processes (Fig. 3A). It is also worth noting that R58Q hearts were involved in processes such 

as G-protein coupled receptor signaling pathway, proteolysis and lipid metabolism 

processes. The processes that were special for the K104E mutation included protein 

phosphorylation, regulation of heart rate and cardiac conduction and negative regulation of 

cell growth/proliferation. D166V was clearly the most different among all three mutations 

and showed the most number of enriched biological process terms related to oxidation-

reduction with 29% of all differentially expressed genes. This suggests that the disease-

causing mechanism in D166V mice could be largely associated with oxidative stress and/or 

hypoxia. The other major processes involved in D166V hearts were transcription related 

(14%), dosage compensation by inactivation of X chromosome (14%) and cell adhesion 

(11%) processes (Fig. 3A).

Fig 3B shows the involvement of the three HCM mutations, R58Q, D166V and K104E in 

the regulation of genes responsible for molecular functions. All three mutations shared few 

major functions including protein binding, nucleotide binding, DNA/RNA binding, metal 

ion binding and dioxygenase activity. They also shared oxidoreductase activity function with 

the higher involvement noticed in D166V (14%, Fig. 3B), supporting the notion that D166V 

may be associated with oxidative stress and/or hypoxia (Fig. 3A). The molecular functions 

of collagen binding and hydrolase activity were shared by two malignant R58Q and D166V 

mutations, while protein dimerization was shared by R58Q and K104E hearts (Fig. 3B). 

Distinct features of R58Q mutation included ATPase (2%) and GTPase (6%) activities, as 

well as chemokine (2%) and cytokine (4%) activities. The pattern of molecular functions 

observed across the three HCM mutations suggests that R58Q might be involved in a higher 

number of different molecular functions than D166V and K104E mutations (Fig. 3B).
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3.5. The signaling pathways in three HCM mouse models

The differentially expressed genes (absolute FC ≥ 2) in three HCM models vs. WT were 

further subjected to the pathway enrichment analysis. All pathways with p ≤ 0.05 were 

considered significant and are listed in Table 3. The R58Q mutation was observed to be 

involved in the most number of pathways compared with D166V and K104E, and they are 

directly correlated with hypertrophy and/or the heart (Table 3). The dominant pathway 

observed in R58Q hearts that involved 261 genes was the mitogen-activated protein kinase 

(MAPK) signaling pathway that consists of a sequence of acting kinases that ultimately 

results in phosphorylation and activation of terminal kinases, such as c-Jun N-terminal 

kinases (JNKs) as well as extracellular signal-regulated kinases (ERK) [43]. The MAPK 

signaling pathway is one of the major pathways in the heart and plays a pivotal role in the 

development and/or progression of HCM [44]. Other pathways that may be involved in the 

R58Q mediated hypertrophy include the Toll-like receptor signaling pathway and the Focal 

adhesion pathway (Table 3). In particular, the Toll-like receptor signaling pathway was 

found to be critical in ischemia inflammation and injury [45], while any deficiency in the 

Focal adhesion pathway might be involved in the development of cardiac hypertrophy 

through the activation of the Focal adhesion kinase [46].

Among seven significantly affected pathways identified in D166V, there were the ECM-

receptor interaction pathway (p = 0.021), TGF-beta signaling pathway (p = 0.023), and the 

Taurine and hypotaurine metabolism pathway (p = 0.030) (Table 3). The ECM-receptor 

interaction is considered essential in cardiac development and activation may occur in 

response to pathological signals such as hypertrophic cardiomyopathy [47]. The TGF-beta 

signaling pathway is associated with cardiac remodeling, fibrosis and thus could be linked to 

myocardial inflammation and infarction [48]. The Taurine and hypotaurine metabolism 

pathway that might be related to the compensatory effects of the heart during ischemia was 

also observed in D166V hearts. Similarly, the latter pathway was significant in K104E hearts 

(p = 0.027) (Table 3). In addition, the tight junction signaling pathway was observed in 

K104E hearts (p = 0.042) and it may be related to cardiac conduction and cell-cell 

communication [49] in K104E mice (Table 3).

3.6. Cluster and centrality analysis on differentially expressed genes

The gene eco-expression network was computed from the differentially expressed genes lists 

between two groups or among all three mutants, after which cluster and centrality analyses 

were performed on the network. Fig. 4A demonstrates how differentially expressed genes 

that are shared by all three mutants grouped into clusters. There are only ten differentially 

expressed genes shared by all three mutations, and they are divided into two clusters. The 

only central node (marked with *) identified was the node: Xist (X-chromosome inactive 

specific transcript). The gene Xist (node colored light green) has a strongly negative 

correlation in its co-expression relationship with the rest of the cluster, which consists of the 

following four genes (depicted in orange): Kdm5d, Ddx3y, Eif2s3y and Uty. Surprisingly, 

these four nodes do not belong to the same pathway. The other smaller cluster (showed in 

cyan) between Cdo1 and Mir505, depicts a positive correlation between their expression 

levels (Fig. 4A). It is of great interest to note that Mir505 is a microRNA, it cannot be 

inferred whether or not Cdo1 induces Mir505 expression or vice versa. The three isolated 
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nodes: Slc6a16, Ifi204 and Lgi1 were not correlated with any other genes shown in the 

graph (Fig. 4A).

Fig. 4B demonstrates the comparison of two malignant mutations: D166V and R58Q. More 

shared differentially expressed genes were observed, and more clusters were formed. The 

cluster with Xist has one extra node: Nmrk2, which is strongly (negatively) correlated with 

the previously mentioned Cdo1 and another central node Mylk4, which acts as a “bridge” 

connecting two clusters (orange and yellow clusters). Three out of four genes (Ltbp2, Comp 
and Thbs4) in the yellow cluster are associated with TGF-beta signaling pathway. Besides a 

mutually inimical pair of genes (Prg4 and Hsph1), eight isolated nodes were seen, including 

Lgi1 and Ifi204, which are differentially expressed genes shared by all three mutants. The 

central nodes identified were: Nmrk2, Xist, Mylk4 and Ltbp2. Fig. 4C shows the results for 

D166V vs. K104E. The pattern is similar to the pattern seen in the group of all three mutants 

in Fig. 4A, but with two different clusters: the cyan clusters with Slc6a16 correlated with a 

new gene Akr1e1, and the purple cluster with Mir505 correlated with Ifi204 and Lgi1, but 

surprisingly without Cdo1, presumably due to the interference of R58Q: in which the 

Mir505 is no longer positively correlated with Ifi204 and Lgi1, but it is positively correlated 

with Cdo1, and the variance is so large that the algorithm clustered Cdo1 with Mir505 rather 

than Ifi204 and Lgi1. The central nodes identified in this group are Xist and Ifi204. Fig. 4D 

shows the comparison of results between K104E and R58Q. The large amount of isolated 

nodes and smaller clusters suggested the possibility of a different mechanism for the action 

of the shared differentially expressed genes. The whole gene expression profile between 

K104E and R58Q that showed the majority of the genes located in the second and fourth 

quadrant (Fig. 2B), also provided some indirect evidence to support this hypothesis. In 

addition, except for the common cluster that have been consistently seen through Fig. 4A–C, 

other clusters are small in size and are not related to any major pathways. This result may 

indicate distinct gene expression patterns between the K104E and R58Q mutations.

4. Discussion

Different clinical [9,11–14,16] and functional [17–19,22,23] phenotypes of HCM associated 

with the R58Q, D166V and K104E mutations in the RLC have been previously reported. 

The HCM is an autosomal dominant disease that can be caused by single or multisite 

mutations in all major sarcomeric proteins; however, the molecular mechanisms, severity of 

HCM and progression to heart failure are not known. In particular, overall gene expression 

patterns and potential signaling pathways are still to be elucidated. In this report we utilized 

microarray and related bioinformatics analyses to examine the gene expression profiles 

among two malignant (R58Q and D166V) and one benign (K104E) HCM-causing mutations 

in the myosin RLC. We have already conducted substantial research on all three mutations 

using traditional molecular biology, biochemistry and biophysics techniques and provided a 

detailed characterization of the hypertrophic state of the heart in all tested animals [17–

19,23,24]. Histopathological characterization showed hypertrophy and diastolic dysfunction 

in all mutant mice compared to WT [22,23,50], but the study on senescent animals (not used 

in the microarray experiments) revealed the progressive nature of the HCM phenotype in all 

mutant vs. age matched WT mice [17,22,23,50]. The major contractile findings on two 

malignant R58Q and D166V mutations included a mutation-induced decrease in maximal 
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pCa 4 force and abnormally increased calcium sensitivity of contraction. Both mutations 

resulted in largely reduced RLC phosphorylation and these changes subsequently led to 

systolic and diastolic dysfunction in vivo [18,22–24,51,52]. On the other hand, studies on 

Tg-K104E mice showed that the K104E mutation also led to decreased force generation and 

reduced RLC phosphorylation; however, myofilament calcium sensitivity was not affected 

and the phenotype was relatively benign in younger mice [17,50]. However, mice older than 

13 months of age showed a wide range of HCM abnormalities in vitro and in vivo [17,50]. 

These findings suggested that the K104E mutation may display a distinct pattern of 

differentially expressed genes compared to the other two mutations, D166V and R58Q. The 

patterns of differentially expressed genes in D166V and R58Q hearts may be similar but it is 

also possible that changes in different genes/pathways may result in similar changes in 

phenotypes.

To our surprise, as shown in the PCA plot in Fig. 1, the absolute gene expression pattern of 

D166V was more similar to the K104E mutation, while the profile of R58Q was distinct. 

However, after normalizing to WT control, the relative gene expression distribution across 

all three mutations showed that the major contribution to the difference between D166V and 

R58Q was in genes that simultaneously increased or decreased in both phenotypes but with 

different FC, while expression of genes in K104E did not change compared to WT. This was 

true for an upregulated β-MHC in both malignant HCM models and collagen VIII, while no 

changes were found in the benign K104E mouse model of HCM (Table 2). Likewise, the 

level of HCM biomarkers were significantly upregulated in malignant HCM models vs. WT 

while no change vs. WT was observed in benign K104E hearts (Table 2). These results 

suggested that the potential molecular mechanisms underlying the D166V and R58Q 

phenotypes lie in the number of shared gene clusters or pathways that are upregulated or 

downregulated simultaneously, while for K104E, fewer clusters or significantly affected 

pathways are present (Fig. 4). Interestingly, in biological processes, 29% of genes in D166V 

were related to oxidation-reduction processes, taking 29% of total differentially expressed 

genes (Fig. 3). This suggested that the disease causing mechanism of D166V could be 

largely associated with oxidative stress. The molecular functions of collagen binding and 

hydrolase activity were shared by two malignant R58Q and D166V mutations (Fig. 3B). The 

pathway analysis based on differentially expressed gene lists (Table 3) showed a few 

cardiovascular related pathways in R58Q that are important in ischemia injury and 

myocardial inflammation (Toll-like receptors signaling pathway) [53], in regulating 

development of eccentric hypertrophy under hypertrophic stimulation (Focal adhesion 

pathway) [54], and in the development and/or progression of HCM through the MAPK 

signaling pathway. The MAPK signaling pathway is one of the major pathways in the heart 

playing a pivotal role in HCM-dependent heart remodeling [44]. For D166V, two pathways 

were of potential interest, the TGF-beta signaling pathway and Taurine and hypotaurine 

metabolism. The TGF-beta plays an important role in the development of cardiac fibrosis 

and its expression is enhanced during hypertrophy [55]. Consistently, the TGF-beta 

signaling pathway, which is associated with cardiac remodeling in response to myocardial 

inflammation and infarction [48] may contribute to D166V induced HCM. Likewise, the 

Taurine and hypotaurine metabolism pathway may be related to the compensatory effects of 
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the heart during ischemic episodes in D166V hearts. This pathway was also significant in 

K104E hearts (Table 3).

The clustering and centrality analysis [29,31] applied to the three mutations together, 

showed that the common clusters are scarce and that each of the three phenotypes may have 

its own distinct disease causing mechanism. The only related information is for the Cdo1 
gene, which positively correlated with an unknown microRNA: Mir505, suggesting hypoxia 

conditions may occur in all three mutants. The cluster with Uty, Eif2s, Ddx3y and Kdm5d is 

linked with its antagonistic gene Xist and may be to some extent associated with Down 

syndrome; however, its potential effects in HCM remain unknown. Mir505 was also 

upregulated in comparison of K104E and D166V, regulating another gene Ifi204 (old name: 

P204, interferon activated gene 204), which may be involved in cardiomyocyte proliferation 

and differentiation [56]. The analysis of the results for two malignant mutations, D166V and 

R58Q agrees with what was shown in Fig 2A, where many genes were positively correlated 

suggesting substantial shared gene clusters in these two mutant hearts (Fig. 4B). It is also 

worth noting that the central node that represents the Mylk4 gene forms a bridge between 

the TGF-beta cluster and Nmrk2 (Nicotinamide Riboside Kinase 2), which contributes to 

NAD+ salvage and regulates skeletal muscle adaption. This may also imply that Mylk4 does 

not only phosphorylate targets during skeletal muscle adaption, but may also affect TGF-

beta signaling pathway in a direct or indirect manner. The results for D166V vs. K104E 

(Fig. 4C) showed a pattern similar to one seen in the group of all three mutants (Fig. 4A), 

while the results for K104E and R58Q group indicated a large amount of unconnected 

differentially expressed genes (Fig. 4D). This could be due to the same direction of changes 

observed for genes in K104E and in R58Q hearts, where potential “positive” or “negative” 

correlations between the gene clusters have been canceled.

5. Conclusions

The comparison of differentially expressed gene patterns for all analyzed RLC hearts 

showed that all three HCM-RLC heart models were clearly distinct from WT hearts. Each 

mutation displayed distinctive gene expression profiles indicating mutation-specific disease 

mechanisms. The R58Q mutation was observed to be involved in the most number of 

signaling pathways compared with D166V and K104E, and they were directly correlated 

with the development and progression of cardiomyopathy disease. The most abundant 

biological processes observed in D166V hearts were related to the oxidation-reduction 

pathways important in hypoxia and/or myocardial inflammation/infarction. The effect of 

K104E on the signaling pathways was least pronounced, which agrees with its benign 

phenotype in humans. Our results suggest that the potential molecular mechanisms 

underlying two malignant D166V and R58Q phenotypes lie in the number of shared gene 

clusters or pathways that are upregulated or downregulated simultaneously, while for 

K104E, fewer clusters or significantly affected pathways were present.

5.1. Limitations of the microarray study

One has to acknowledge the limitations of the current microarray study in drawing 

conclusions on the disease mechanisms. Even though genes with high FC values were 
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considered, more than 3 mice per group, as used in this study, would admittedly lead to 

inferences with higher statistical power. Note that Partek® Genomics Suite™ software uses 

ANOVA with Least Square means to compute fold change values. Future studies with a 

larger sample size should also include separate groups of male and female animals to assess 

potential gender related mechanisms. Although phenotype differences between the different 

models were taken into consideration, animal age, sex, transgenic line and potentially other 

contributing disease factors (such as inflammation) could also play a role in differential gene 

expression to cause disease and future studies considering these factors would further 

strengthen mechanistic understanding. Importantly, the results from this microarray study 

warrant a phenotypic verification at the protein expression level using molecular proteomics.

Acknowledgments

This work was supported by U.S. National Institutes of Health (NIH) grants HL-123255 and HL-108343 (DSC) and 
the American Heart Association grants 12PRE12030412 (WH) and 15POST25080302 (ZZ). The efforts of VAP 
and GN were supported by a grant from the Alpha-One Foundation and by funding from the College of Engineering 
and Computing at Florida International University.

Abbreviations

HCM hypertrophic cardiomyopathy

RLC myosin regulatory light chain

R58Q Arginine 58→Glutamine mutation in myosin RLC

D166V Aspartic Acid 166→Valine mutation in myosin RLC

K104E Lysine 104→Glutamic acid mutation in myosin RLC

WT wild-type human ventricular RLC

GO Gene Ontology

FC fold-change

PCA Principle Component Analysis
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Fig. 1. 
The Principle Component Analysis (PCA) plots of overall gene expression patterns in three 

different HCM-RLC phenotypes and WT hearts. Note that the K104E (open triangles) and 

D166V (squares) profiles are similar to each other while those present in R58Q (diamonds) 

differ from WT (black circles) and two mutants.
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Fig. 2. 
Scatter plots of fold change (FC with respect to WT) of the 29,726 genes. A. Overall gene 

expression pattern of R58Q vs. D166V. B. R58Q vs. K104E. C. K104E vs. D166V. D. 3D 

plot of overall gene expression in all three HCM-RLC mutants: R58Q vs D166V vs. K104E. 

Each quadrant in the x-y coordinates has been divided into two parts (a and b) divided by a 

45 line generating regions: 1-a, 1-b, 2-a, 2-b, 3-a, 3-b, 4-a and 4-b. The proximity of a gene 

to the 45 line indicates the similarity between the profiles. Positive FC indicates gene 

upregulation while the negative FC, downregulation.
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Fig. 3. 
Biological processes (A) and molecular functions (B) associated with differentially 

expressed genes in the hearts of R58Q, D166V and K104E vs. WT mice. The pie charts 

were drawn based on the percentage of enrichment of differentially expressed genes 

involved in specific biological processes and molecular functions.
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Fig. 4. 
Cluster and centrality analysis of differentially expressed genes. A. Co-occurrence network 

with only the differentially expressed genes between all three mutants; B. between D166V 

and R58Q. C. between D166V and K104E, and D. between K104E and R58Q. For each 

graph, each node represents one gene, and the nodes of same color belong to a cluster of 

genes that show strong correlation in their expression levels. The isolated nodes depicted in 

grey color suggest that these nodes are not belonging to any cluster and thus are not 

significantly correlated with other genes shown in the graph. The node marked with “*” 

indicates central nodes, namely, the most potentially influential node within its 

neighborhood. The edges in the graph represent correlations between genes with green edges 

suggesting positive correlations of their expression levels and red edges suggesting negative 

correlations. The positive correlation indicates the pair of genes are upregulated and 

downregulated simultaneously, while the negative correlation indicates one gene is 

upregulated and the other gene is downregulated.
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Table 2

Genes differentially expressed in three RLC HCM phenotypes.

Protein Gene symbol Fold-change (FC)

R58Q vs. WT D166V vs. WT K104E vs. WT

Structural

β-myosin Myh7   2.38**   1.27 −1.11

cMLCK Mylk3 −1.40   2.13* −1.21

Atrial ELC Myl4 −1.35   1.25 −1.76*

Collagen VIII Col8a1   2.01**   1.57* −1.01

Skeletal alpha actin Acta1 −1.07   1.03 −2.13**

Matrix metallopeptidase 2 Mmp2   2.62** −1.02   1.13

Titin Ttn   1.10   1.09   1.02

MyBP-C Mybpc3 −1.06   1.06 −1.14

Troponin C, cardiac/slow skeletal Tnnc1   1.07   1.13   1.01

Troponin I, cardiac Tnni3 −1.02   1.05   1.02

Myosin binding protein H like Mybphl   0.59   0.84 −2.07**

Myosin regulatory light chain 2, atrial form Myl7 −2.00**   0.79 −2.21**

Myosin light chain kinase family member 4 Mylk4 −2.85**   0.47 −1.46

Cytoskeletal

Four-and-a-half LIM protein 1 Fhl1   1.26 −1.08 −1.00

Skeletal muscle α 2 actinin Actn2 −1.06   1.01 −1.06

Nebulin-related protein Nrap −1.07   1.01 −1.12

Desmin Des   1.22   1.20   1.00

Muscle LIM Protein(MLP) Csrp3 −1.02 −1.00 −1.07

Telethonin Tcap −1.05   1.13 −1.63*

Calsarcin1 Myoz2   1.11   1.11   1.00

LIM domain-binding protein 3 Ldb3 −1.25 −1.18 −1.15

Actinin-binding LIM Protein (ALP) Pdlim3   1.62*   1.36   1.15

Myotilin Myot   1.97*   2.23**   2.10**

Nebulette Nebl −1.19 −1.24 −1.09

Myopalladin Mypn −1.51 −1.19   1.00

Nexilin Nexn   1.06 −1.01   1.09

Ankyrin repeat domain 1 Ankrd1 −1.29 −1.10 −1.28

Obscurin Obscn −1.02   1.07 −1.00

Histone demethylase Uty −2.95** −4.02** −8.53**

Protein synthesis

Transcription elongation factor 1α1 Eef1a1   1.44   1.25   1.09

A+U-rich element RNA binding factor Hnrpdl   1.22   1.04 −1.02

Mitochondrial ribosomal protein L52 Mrpl52   1.55*   1.34   1.29

Ribosomal protein L10 Rpl10   1.37   1.17   1.27
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Protein Gene symbol Fold-change (FC)

R58Q vs. WT D166V vs. WT K104E vs. WT

Ribosomal protein L13 Rpl13   1.69*   1.20   1.30

Redox system

NADH ubiquinone oxidoreductase Ndufb3   1.27   1.34   1.18

Ubiquinol-cytochrome c reductase hinge protein Uqcrh   1.25   1.23   1.18

NADH dehydrogenase Fe–S protein 6 Ndufs6   1.22   1.10   1.05

Aldo-keto reductase family 1, member E1 Akr1e1   1.72*   2.00**   2.22**

Cysteine dioxygenase 1, cytosolic Cdo1   1.34   2.49**   2.39**

Ca2+ handling

SERCA2a Atp2a2 −1.13   1.00 −1.00

RyR2 Ryr2 −1.12 −1.02 −1.04

NCX Slc8a1 −1.23 −1.17 −1.08

L-type Channel Channel, cardiac Cacna1c −1.03   1.00   1.03

Phospholamban Pln −1.03 −1.01   1.01

Calcineurin 1 Rcan1 −1.17 −1.02   1.38

Calmodulin Calm1 −1.02 −1.06   1.03

Plasma membrane Ca2+ ATPase (PMCA4) Atp2b4   1.28   1.31   1.3

G protein coupled receptor Agtr1b −1.27 −1.12 −1.16

Calcium/Calmodulin-Dependent Protein Kinase II Alpha Camk2a −1.34 −1.05 −1.05

c-Myc Myc   1.37   1.18   1.24

Mitogen-Activated Protein Kinase 8 (JNK) Mapk8 −1.01 −1.00   1.06

Protein tyrosine phosphatases (PTP) 22 Ptpn22   1.5* −1.19   1.13

MAP Kinase Phosphatase 5 Dusp10   1.21   1.08   1.07

Transforming protein p21 Hras1   1.26   1.17   1.01

Epidermal growth factor Egf −2.29** −1.71* −1.49

Stromal Interaction Molecule 1 Stim1 −1.22 −1.07 −1.04

Protein kinase C, alpha Prkca −1.21 −1.16 −1.11

RAS guanyl-releasing protein 3 RasGRP3 −1.21 −1.11 −1.1

Serum Response Factor Srf −1.24 −1.12 −1.01

Fibroblast growth factor-1 (FGF-1) Fgf1 −1.45 −1.41 −1.35

Elk-1 Elk1 −1.21 −1.1 −1.11

Sarcolipin (associated with sarcoplasmic reticulum calcium ion 
transport)

Sln −2.25**   0.90 −3.68**

Metabolism

Mitochondria related

Apoptosis-inducing factor, mitochondrion-associated, 1 (For MT 
content quantification)

Aifm1   1.07   1.05   1.19

Porin Vdac1 −1.04 −1.01 −1.03

Fatty acid oxidation related

Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Acadm −1.32 −1.20 −1.11

PPARalpha Ppara −1.10 −1.04 −1.01

Acetoacetyl-CoA synthetase Aacs −1.08 −1.03 −1.05
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Protein Gene symbol Fold-change (FC)

R58Q vs. WT D166V vs. WT K104E vs. WT

Glucose metabolism related

cAMP-dependent protein kinase catalytic subunit alpha (AMPK) Prkaca −1.23 −1.18 −1.19

Glucose transporter 4 (GLUT4) Slc2a4 −1.22 −1.02 −1.07

L-type pyruvate kinase (muscle) Pkm −1.10   1.01 −1.12

HCM biomarkers, others

Atrial natriuretic peptide (ANP) Nppa   2.54**   2.43** −1.38

Brain natriuretic peptide (BNP) Nppb   1.20   1.54*   1.26

Serine protease inhibitor A3A Serpina3a   1.13   1.39   1.26

Heat Shock 70kD protein 8 Hspa8   1.44 −1.18   1.05

Cardiac Troponin I interacting kinase Tnni3k   1.62*   1.32   3.58**

Potassium channel, voltage gated subfamily E regulatory beta subunit 1 
(regulate heart rate and contractility)

Kcne1   1.70*   1.43   2.19**

Positive FC values indicate genes that were upregulated vs. WT, while negative FC values depict genes that were downregulated vs. WT in three 
HCM mouse models. Symbol

*
denotes FC ≥ 1.5 and

**
FC ≥ 2.0. Genes were selected through the complete gene list and categorized based on biological properties/functions.
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