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Abstract

Objective—Do movements made with an intracortical BCI (iBCI) have the same movement time 

properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: MT 
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= a + b log2(D/R ) (where MT is movement time, D is target distance, R is target radius, and a,b 
are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for 

iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since 

movement time depends only on the ratio D/R) and (2) that movements have a large dynamic 

range of accuracy (since movement time is logarithmically proportional to D/R).

Approach—Two participants in the BrainGate2 pilot clinical trial made cortically controlled 

cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We 

investigated whether the movement times were well described by Fitts’ law.

Main Results—We found that movement times were better described by the equation MT = a + 

bD + cR−2, which captures how movement time increases sharply as the target radius becomes 

smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we 

studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were 

sensitive to the absolute scale of the task (small targets had long movement times regardless of the 

D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose 

magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-

independent noise creates a baseline level of variability that cannot be decreased by trying to move 

slowly or hold still, making targets below a certain size very hard to acquire with a standard 

decoder.

Significance—The results give new insight into how iBCI movements currently differ from 

able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI 

movements may require nonlinear decoding strategies.

Introduction

Able-bodied reaching movements towards stationary targets typically obey Fitts’ law:

where MT is movement time, D is target distance, R is target radius, and a,b are parameters 

(Fitts 1954). Tasks where Fitts’ law has been shown to be a good descriptor of movement 

times include using a stylus to tap a target region of a predefined size (Fitts 1954), 

transferring pins to holes of different sizes (Fitts 1954), grasping objects (Bootsma et al. 

1994), using a joystick or mouse to move a cursor on a monitor (Jagacinski, Hartzell, and 

Ward 1978; Epps 1986; Kantowitz and Elvers 1988), and making pointing movements with 

a variety of joints (Michmizos and Krebs 2014; Langolf, Chaffin, and Foulke 1976; Corcos, 

Gottlieb, and Agarwal 1988; Leisman 1989). Fitts’ law expresses two properties of the able-

bodied motor system that hold generally (though not always strictly) across a wide range of 

tasks:

1. Scale invariance. According to Fitts’ law, only the ratio of target distance to 

target radius affects movement time. Shrinking or expanding the task by a 

constant scale factor should therefore not affect movement time. This invariance 

to motor scale is similar to the sensory system’s ability to operate at an 

equivalent relative accuracy over many orders of magnitude (Weber’s law).
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2. High dynamic range. Fitts’ law describes movement time as a logarithmic 

function of D/R, reflecting the ability of the motor system to complete tasks 

requiring orders of magnitude more relative accuracy (larger D/R ratios) without 

taking orders of magnitude more time to complete them.

Scale invariance and high dynamic range are useful properties that enable the able-bodied 

motor system to achieve good performance over a wide range of tasks occurring at different 

absolute scales and demanding different relative levels of accuracy. With the stated goal of 

many iBCI studies being to close the existing performance gap between iBCI-controlled 

movements and able-bodied movements [e.g. (Collinger et al. 2013; Gilja et al. 2012)], it is 

natural to ask: do iBCI-controlled movements currently obey a Fitts’ law-like movement 

time relationship that would be indicative of scale invariance and high dynamic range? If 

not, can investigating this discrepancy teach us something new about iBCIs and give insight 

into how to further improve them?

Several studies have used Fitts’ law as a tool to quantify iBCI performance (Simeral et al. 

2011; Gilja et al. 2012; Gilja et al. 2015) and have reported data that is reasonably consistent 

with Fitts’ law for a limited range of target distances, radii, and gains (speed scaling 

parameters). One recent study tested the validity of Fitts’ law explicitly and showed that in 

one rhesus macaque, iBCI movement times were better described by the Shannon-Welford 

model in one of the five experimental sessions considered (Matlack, Chizeck, and Moritz 

2016). The Shannon-Welford model relaxes the scale invariance assumption of Fitts’ law by 

having separate terms for the effect of target distance and radius on movement time. While 

statistically significant, the departure from Fitts’ law observed in that study was relatively 

small in magnitude, on the order of what is sometimes seen in able-bodied movements 

(Shoemaker et al. 2012). Therefore, as previous iBCI studies have not reported a substantial 

departure from Fitts’ law, one might conclude that movement time properties for iBCIs may 

be quite similar to natural movements. Alternatively, this lack of departure may be because 

Fitts’ law was not tested over a wide enough range of target radii and gains (particularly, 

smaller targets and faster gains, which would enable task difficulties and movement times 

similar to those found in studies on able-bodied movements).

In this study, to test whether iBCI-commanded movement exhibit different movement time 

properties from natural movements, we collected and use data from fifteen research sessions 

from two participants of the BrainGate2 pilot clinical trial in which iBCI control was tested 

under a wide range of parameters. In the first half of the study, we demonstrate substantial 

departures from Fitts’ law when participants use a linear decoder to acquire targets with a 

computer cursor. We found that the participants’ movement times were inconsistent with 

both the scale invariance and high dynamic range properties expressed by Fitts’ law, and that 

these inconsistencies were substantially greater than smaller violations sometimes found for 

able-bodied movements (Shoemaker et al. 2012). We propose a new movement time 

equation to describe what we observed.

In the second half of the study, we investigate why Fitts’ law does not generally hold for 

iBCI-controlled cursor movements. It is thought that signal-dependent motor noise (motor 

noise that scales in proportion to the magnitude of the motor command) underlies both the 
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scale invariance and dynamic range properties of able-bodied movements by enabling a 

person to achieve greater precision by moving more slowly or by making smaller 

movements (Meyer et al. 1988; Harris and Wolpert 1998; Tanaka, Krakauer, and Qian 2006; 

Guigon, Baraduc, and Desmurget 2008; Bye and Neilson 2008). Signal-dependent noise 

explains scale invariance because movements made at smaller scales have a proportionally 

smaller amount of noise (thus keeping the relative size of the noise constant across scales). 

Signal-dependent noise also explains the high dynamic range of able-bodied movement, 

since targets demanding high accuracy can be achieved by slowing down and making small 

corrective movements.

Could signal-independent noise in iBCI- controlled movements be the underlying reason for 

a departure from Fitts’ law? To our knowledge, there is no direct evidence in the literature 

concerning the signal-dependency of unintended variability (“noise”) in the decoder output 

during control of an iBCI, though when discussing and simulating iBCI movements 

researchers often model the decoding noise as signal-independent (Willett et al. 2017; 

Marathe and Taylor 2015; Rouse and Schieber 2015).

Here, we directly analyze the decoder output and simulate iBCI movements in several ways 

to show that signal-independent decoding noise is indeed the root cause of the non-standard 

movement time properties we observed. Finally, we quantitatively compare the noise 

properties of iBCI movements to those of the able-bodied motor system, and conclude that 

new decoding approaches may be required to impart Fitts’ law properties to iBCI 

commanded movements.

Methods

Permission for these studies was granted by the US Food and Drug Administration 

(Investigational Device Exemption #G090003) and the Institutional Review Boards of 

University Hospitals Case Medical Center (protocol #04-12-17), Stanford University 

(protocol #20804), Partners Healthcare/Massachusetts General Hospital (2011P001036), 

Providence VA Medical Center (2011-009), and Brown University (0809992560). All 

participants were enrolled in a pilot clinical trial of the BrainGate Neural Interface System 

(http://www.clinicaltrials.gov/ct2/show/NCT00912041). Informed consent, including 

consent to publish, was obtained from the participants prior to their enrollment in the study.

Participants

This study includes data from two participants (T6, T8), both of whom have chronic 

tetraplegia and received intracortical implants as part of the BrainGate2 pilot clinical trial. 

T6 and T8 had one and two 96 channel intracortical microelectrode arrays (Blackrock 

Microsystems, Salt Lake City, UT), respectively, implanted in the hand area of dominant 

motor cortex (1.0-mm electrode length for T6, 1.5-mm length for T8). T6 is a 52-year-old 

woman diagnosed with ALS. T6 received the intracortical array on December 7, 2012 and 

data in this study are from T6’s trial days 727 to 837. Participant T8 is a 53-year-old man 

with cervical spinal cord injury (C4, ASIA A). T8 received the intracortical arrays on 

December 1, 2014 and data in this study are from T8’s trial days 101 to 354. Surgery details 

can be found in (Gilja et al. 2015; Simeral et al. 2011; Hochberg et al. 2006).
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Note that we sometimes used different parameter settings (specified below) for each 

participant. This was done in attempt to optimize decoding performance for each 

participant’s unique neural signals and to keep consistent with what each participant was 

accustomed to from previous studies. We do not believe that any of these differences are a 

confounding factor, and consistent results were found despite these minor differences.

Study design and task

We analyzed 3 center-out-and-back and 12 random target sessions of closed loop neural 

control of a 2D computer cursor. Participants were instructed to imagine using the thumb 

and index finger to control the cursor (T6) or attempt to make arm movements to control the 

cursor (T8), consistent with how each participant was accustomed to controlling the cursor 

from previous studies (Jarosiewicz et al. 2015; Gilja et al. 2015).

Each session began with an open loop block where participants watched the cursor 

automatically complete a center-out-and-back target acquisition task while attempting to 

make the cursor movements shown. We used this data to calibrate the decoding matrix. 

Then, participants completed a series of closed loop neural control blocks with computer 

assistance that were used to re-calibrate the decoder. Finally, the decoder was held fixed and 

participants completed a series of 4 or 5 minute closed-loop blocks with no computer 

assistance. Data reported in the study are from these later closed-loop blocks.

Participants acquired targets by holding the cursor in unbroken contact with the target region 

for a specified dwell-time (which we sometimes varied from session to session). A trial was 

failed and the cursor was reset to the target position if a maximum movement time of 8 to 12 

seconds (depending on the session) was exceeded. After a target was acquired, another target 

appeared after a 200 to 300 ms delay (T6) or immediately afterwards (T8). In the random 

target task, targets appeared in a random location within a square workspace with uniform 

probability (but were constrained to appear far enough away from the cursor so as not to 

overlap it). Targets appeared with a radius chosen from a set of 1 of 3 possible radii. Note 

that when reporting target radius and testing Fitts’ law, we use the “effective” target radius 

(actual target radius plus cursor radius) which defines the size of the target acquisition 

region. Supplementary tables 1 and 2 summarize the parameters used for each dataset.

Decoding architecture

We used a reparameterized, steady-state Kalman filter to enable real-time neural control of 

cursor velocity (Jarosiewicz et al. 2015; Gilja et al. 2015; Fan et al. 2014; Gilja et al. 2012; 

Malik et al. 2011). We reparameterized the Kalman filter to separate its dimensionality 

reduction step (linearly mapping the high-dimensional neural feature space to a two-

dimensional control signal) from its filtering dynamics (gain, smoothing, and integrating 

velocity to get position) following the methods of (Willett et al. 2017). This 

reparameterization allowed us to clearly isolate and define the cursor gain, which was 

important for testing Fitts’ law.

Dimensionality reduction—Our signal processing and neural feature extraction methods 

followed closely those of (Willett et al. 2017; Jarosiewicz et al. 2015). Every 20 millisecond 
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time step, threshold crossing counts and power in the spike frequency band (250–5000 Hz) 

were computed for each channel. Threshold crossing counts were defined as the number of 

times that the voltage time series on a given channel crossed a negative threshold ( −3.25 × 

RMS for T6, who did not have many discernable single-unit spikes, and −4.5 × RMS for T8, 

who did). The RMS for each channel was computed at the beginning of the session using 

one minute of data. High frequency power was defined as the root mean square of the signal 

in the spike band during each 20 ms time step. These neural features were concatenated into 

a 2N × 1 feature vector (where N is the number of microelectrode array channels) and 

normalized by subtracting their mean and dividing by their standard deviation.

At each time step, we mapped the neural features to a decoded “control” vector with the 

equation

where ft is a 2N × 1 neural feature vector, D is a 2 × 2N decoding matrix, and ut is a 2 × 1 

decoded control vector.

To account for changes in the mean value of neural features over time that can cause an 

offset (bias) to appear in ut (Perge et al. 2013), we updated our estimate of the feature means 

over the course of the session using methods similar to Jarosiewicz et al. 2015. We also used 

a “bias corrector” during blocks of closed-loop control to detect and remove biases in ut not 

accounted for by updating the feature means (Jarosiewicz et al. 2015).

Decoder calibration—To build the decoding matrix, we made the assumption that ut 

pointed straight from the cursor to the target at each time step with a constant magnitude of 

1. To build the decoder, we used all open loop and closed-loop calibration data (2 to 7 

blocks, each five minutes long). The matrix D was solved for using either “reverse 

regression” with T6 (Kass, Ventura, and Brown 2005), or “full OLE” with T8 (Chase, 

Schwartz, and Kass 2009). The regressions were done on the raw, 20 ms time step data (and 

not the trial averages). To exclude data where the control vector may have decreased in 

magnitude near the target (violating the assumption that the control vector is of constant 

magnitude), we excluded time steps after the first 1.8 (T6) or 1.5 (T8) seconds of the trial.

Cursor gain and smoothing—The decoded control vector ut was smoothed using a first-

order low-pass filter (equivalent to the kind of smoothing done by a steady-state Kalman 

filter) and mapped to cursor velocity with the equation

where vt is cursor velocity, α ∈ [0,1) parameterizes the amount of low-pass smoothing and β 
∈ (0, ∞) can be used to vary the cursor gain.
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Importantly, we normalized the decoding matrix D (see Section 1 of the Supplement) so that 

β alone parameterized the maximum speed of the cursor. When D is normalized, β defines 

the cursor’s “terminal velocity”, or the (average) speed that the cursor would asymptotically 

approach if the user pointed ut in the same direction forever. We report cursor gain as this 

maximum speed, reported in units of workspace widths per second (WW/s).

Computer simulation of iBCI cursor movements with signal-independent noise

We propose a simple computer model of iBCI cursor movements that can explain the 

movement time properties we observed and that is consistent with the hypothesis that signal-

independent noise is the root cause of those properties. In the model, the cursor is a massless 

particle whose velocity at each time step is equal to signal-independent, Gaussian noise plus 

neural modulation that pushes the cursor straight towards the target at a constant magnitude. 

To simulate movements with this model, we set α=0 (which simplifies the model by 

removing all smoothing dynamics) and generated ut at each time step according to the 

following equation:

where gt is the target position, pt is the cursor position, and et is normally distributed (signal-

independent) white noise with a standard deviation equal to 1.5. Note that similar results can 

be obtained with α>0 (not shown). We chose to report results for α=0 to highlight that the 

movement time properties we observed can be explained solely by signal-independent noise 

and a constant “neural push”.

We performed three separate simulations to show that the model can reproduce the empirical 

movement time properties shown in figures 2, 3 and 4 (simulation results are shown in figure 

5). To reproduce figure 2, we simulated 100 movements under each of 5 gain settings to a 

target with a radius of 0.095 workspace widths (WW) and a distance of 0.58 WW. To 

reproduce figure 3, we simulated 100 movements under 18 target distance and radius 

conditions and 3 different gain conditions (full factorial design with 3 radii, 6 distances and 

3 gains). To reproduce figure 4, we simulated 100 movements under 64 target distance and 

radius conditions (full factorial design with 8 radii and 8 distances).

Simulation of iBCI cursor movements with able-bodied volunteers

To further investigate the effect of signal-independent and dependent noise on movement 

times, we constructed a simulation of iBCI cursor movements that consisted of able-bodied 

volunteers controlling cursors using a joystick. We collected data from three able-bodied 

volunteers (2 male and 1 female graduate students at Case Western Reserve University, ages 

22 to 25) that were naïve to the purpose of the experiment. Informed consent was obtained 

from the participants and approval was obtained from the Institutional Review Board at 

University Hospitals Case Medical Center (protocol #11-12-27).

Each volunteer completed 12 blocks of 200 cursor movements each (2400 movements total) 

under different noise and cursor gain conditions. The “position” of the joystick at each time 
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step (i.e. the X and Y offset of the stick from its center position, as returned by the device) 

was substituted for ut in the velocity update equation, so that the velocity smoothing 

dynamics were identical to those in the iBCI system. The joystick position was normalized 

to have a maximum magnitude of 1. We set the smoothing coefficient (α) equal to 0.94 and 

varied the cursor gain (β) from 0.385 to 3.85 WW/s. We preferred using a joystick to using 

the position of a computer mouse because (1) the joystick position is physically bounded, 

thus simulating bounds on the neural population activity, and (2) the springs in the joystick 

automatically guide it back to its equilibrium position that corresponds to zero velocity, so 

that the user does not have to guess or memorize where the zero position is.

We tested three different noise conditions. In the “no noise” condition, no noise was added 

to ut beyond that introduced by the participant’s own motor system. In the “signal-

independent noise” condition, we added white noise to ut at each time step that was 

normally distributed with a standard deviation of 1.0 (compare to figure 6F) In the “signal-

dependent noise” condition, we added white noise to ut at each time step that was normally 

distributed with a standard deviation equal to 2 times the magnitude of ut as determined by 

the joystick.

Results

I. Effect of gain on movement time

If iBCI movements are scale invariant (as Fitts’ law predicts), then their duration should be 

invariant to “cursor gain” (also called the control display gain, or speed scaling). This is 

because changing the cursor gain by a factor of g has functionally the same effect as scaling 

both the target distance and radius by a factor of 1/g (e.g., doubling the cursor gain is 

functionally the same as halving both the target distance and radius, see figure 1 for an 

illustration). Fitts’ law would then predict that movement time will remain unchanged (since 

 for any g).

Figure 2 illustrates how changing the cursor gain affected movement time for three 

experimental sessions of a standard center-out-back task. In this task, participants T6 and T8 

controlled the velocity of the cursor using a reparameterized, steady-state Kalman filter that 

decodes velocity (Gilja et al. 2015; Jarosiewicz et al. 2015; Hochberg et al. 2012; Malik et 

al. 2011) and acquired targets by hovering the cursor over the target for a specified dwell-

time.

In contrast to able-bodied movements, where movement accuracy can remain roughly 

equivalent over a wide range of gains (Kantowitz and Elvers 1988; Lin, Radwin, and 

Vanderheiden 1992; Bohan et al. 2003; van Doorn and Unema 2005; Casiez et al. 2008), we 

found that movement accuracy sharply decreased for iBCI movements as gain was 

increased. Cursor movements made at higher gains were fast and inaccurate, orbiting 

uncontrollably in and around the target region instead of stopping precisely on top of it 

(figure 2a).

We used three metrics to quantify each movement: translation time (time taken to first reach 

the target), dial-in time (time spent trying to dwell on the target beyond the necessary dwell 
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time; Gilja et al., 2012), and total movement time (time taken to acquire the target). As the 

gain was increased, dial-in time (figure 2b, left) and translation time (figure 2b, middle) 

traded off with each other and caused the total movement time curve to be U-shaped, with an 

optimal point where dial-in time trades off in a balanced way with translation time (figure 

2b, right). This is evidence that iBCI movements may not have the scale invariance property 

implied by Fitts’ law; if they did, the gain vs. movement time curves would be horizontal 

lines (implying a constant movement time) instead of U-shaped. For able-bodied movements 

this is typically the case; able-bodied gain vs. movement time curves are mostly flat with 

movement time varying only slighty (e.g., by 0–10%) in spite of a 2, 4, or even 10 fold 

increase in gain (Kantowitz and Elvers 1988; Lin, Radwin, and Vanderheiden 1992; Bohan 

et al. 2003; van Doorn and Unema 2005; Casiez et al. 2008).

Note that we define movement time here to include both the translation and dial-in portion 

of the movement. Including the dial-in time is important for measuring movement accuracy 

and is consistent with literature on Fitts’ law where a “dial-in” phase of the task is typically 

included [e.g., requiring participants to place a pin accurately in a hole (Fitts 1954)].

II. Effect of target distance and radius on movement time

To measure the effect of target distance and radius on movement time, we asked T6 and T8 

to acquire targets in a “random target” task (Simeral et al. 2011) where each new target 

appeared in a random location with one of three possible sizes (figure 3A shows example 

movements made by T8). Results from twelve sessions of the random target task 

demonstrate that iBCI movement times can sometimes substantially depart from Fitts’ law 

(Figure 3B). To be consistent with Fitts’ law, movement times must be linearly proportional 

to  (called the “index of difficulty”). We tested this by plotting movement time vs. 

index of difficulty (ID) for each of the three target sizes separately; if Fitts’ law holds, these 

three lines should lie on top of each other.

We found that for conditions with higher cursor gains, target radius had a disproportionately 

large effect on movement time. Targets with small radii were much more difficult to acquire 

than those with larger radii, adding more movement time than Fitts’ law expects and shifting 

the index of difficulty (ID) vs. movement time lines upwards for smaller targets (right 

column of figure 3). This departure from Fitts’ law was substantially greater than the smaller 

violations of Fitts’ law previously demonstrated for able-bodied pointing movements 

(Shoemaker et al. 2012; Matlack, Chizeck, and Moritz 2016); in supplemental figure 1 we 

demonstrate this quantitatively.

For conditions with lower cursor gains, smaller targets posed no extra difficulty and so the 

target radius had little effect on the movement time, leaving the effect of target distance to 

dominate (left column of figure 3). As we discuss later, the cursor seems to approach 

maximum velocity before reaching the target, causing movement time to increase linearly 

with target distance (instead of logarithmically as expected by Fitts’ law). The linear effect 

of distance and the non-existent effect of radius at lower gains causes the ID vs. movement 

time curves to shift towards the right. However, when the effect of target radius was 

approximately balanced with that of target distance, Fitts’ law did appear to hold (middle 

column of figure 3).
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Supplemental figure 2 shows the ID vs movement time curves for all parameter settings 

included in all twelve sessions. We varied the target radii, dwell times, and cursor gains 

across sessions and sometimes tested multiple conditions within a single session. For some 

settings, Fitts’ law is a reasonable approximation of the data, while for others gross 

violations can be seen, particularly when the gain is higher or the dwell time is long. At 

higher gains, both T6 and T8 were unable to make the cursor slow down enough to make the 

cursor stop within the smaller target without continually leaving the target area. 

Supplemental figure 3 confirms that the lack of overlap for the radius-specific ID vs. 

movement time lines is not affected by the placement of the bin edges (it holds for both 

linearly and logarithmically spaced edges).

III. A new movement time equation for iBCIs

Since we found that Fitts’ law was sometimes substantially violated by iBCI movement 

times (figures 2 and 3), we sought to find a new equation that could better explain iBCI 

movement times and, in doing so, offer new insight into the properties of iBCI-commanded 

movements.

We designed a new equation by examining the main effect of target radius and distance on 

translation time and dial-in time as observed in the random target task (figure 4). For 

sessions with more than one gain condition, we combined the data across conditions by 

dividing the target distances and radii by the cursor gain (since changing the gain by a factor 

of g has the same functional effect as scaling the task by a factor of 1/g). Doing so increased 

the number of target distance and radius pairs available for fitting from 12 pairs in a single-

gain condition to 24 or 36 pairs in a multi-gain combined condition. However, data collected 

during the same session but with a different dwell time setting could not be combined in the 

same way; we therefore examined each unique combination of session date and dwell time 

separately as its own dataset.

Figure 4 illustrates that translation time appears to vary linearly as a function of target 

distance and to be independent of target radius. In contrast, dial-in time appears to vary as a 

power law function of target radius and to be independent of target distance. Assuming that 

translation time and dial-in time sum linearly to determine the total movement time yields 

the following equation:

where a, b, and c are parameters, D is target distance, R is target radius, and MT is average 

movement time.

The proposed relationship (which we call “LinPow”) implies that movement time is a linear 
function of target distance (bD), but a power law function of target radius (cR−2). In contrast 

to Fitts’ law, LinPow is scale sensitive as opposed to scale invariant (since it has separate 

terms for D and R). It also implies a smaller dynamic range of accuracy than Fitts’ law (R−2 

grows much faster than log2(1/R) when R is small; see Section 2 of the Supplement for how 

we determined the −2 exponent for the cR−2 term). LinPow can therefore describe the sharp 
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increase in movement time we observed when target radius becomes too small 

(supplemental figure 4A and 4B show examples).

To validate LinPow, we performed a cross-validated comparison of its ability to predict 

movement times vs. Fitts’ law. LinPow outperformed Fitts’ law for 14 out of 14 datasets 

(trials corresponding to a unique session date and dwell time combination). On average, 

Fitts’ law explained 46% of the variance in movement time as a function of target distance 

and radius, while LinPow explained 78%. Supplemental figure 5 shows prediction 

performance for each dataset and compares LinPow to four additional movement time 

equations in the literature, including the recently proposed Shannon-Welford model 

(Matlack, Chizeck, and Moritz 2016; Shoemaker et al. 2012). LinPow outperformed these 

models as well.

An additional advantage of LinPow is that it explains how movement time varies as a 

function of cursor gain for a fixed target distance and radius (supplemental figure 4C shows 

how LinPow can fit the U-shaped movement time vs. gain curves observed in figure 3B, 

while Fitts’ law and the Shannon-Welford model cannot).

IV. A computer model of iBCI cursor movements featuring signal-independent noise

We now turn our attention to explaining why Fitts’ law did not hold for the iBCI cursor 

movements we studied. In this section, we propose a simple model of iBCI cursor 

movements that can explain why iBCI movement times follow the form of the LinPow 

equation.

We hypothesize that when attempting to dwell on the target using a standard linear decoder, 

the user continually adjusts their neural activity using visual feedback to counteract signal-

independent decoding noise perturbations that push the cursor about randomly. Instead of 

stopping definitively, the cursor moves about in a cloud centered on the target. As the radius 

of the target becomes small enough, the probability that the cursor will pop outside of the 

target at some point during the dwell time increases rapidly (power law), causing the R−2 

term in the LinPow equation. This phenomenon has no analog in able-bodied movements, 

where a person can come to a nearly complete stop since motor noise is small when no 

motor command is being executed (signal-dependent noise). For example, one study showed 

that the average hand acceleration during rest caused by physiologic tremor was around 0.02 

m/s2 (Morrison and Newell 2000), while peak accelerations during arm movements can 

easily reach 10 m/s2 (Gordon et al. 1994).

To explain the linear D term in the movement time equation, we turn to the specifics of the 

user’s neural modulation and the exponential smoothing dynamics imposed by the Kalman 

filter decoder. Unless the smoothing is pronounced, it doesn’t take long to accelerate the 

cursor to near max speed. Since cursor movements typically occur over longer time scales 

(several seconds), the cursor will travel for much of the time at a relatively constant (on 

average) speed that is determined by the magnitude of the neural activity. If we assume that 

the user applies a “neural push” to the cursor that has a constant magnitude for any target 

distance or radius, then the cursor will cover distance linearly with respect to time, 

independently of target radius.

Willett et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This model of iBCI cursor movements can be distilled into a simplified form: the movement 

of the cursor at each time step is equal to a Gaussian white noise vector (representing signal-

independent decoding noise) plus a vector of constant magnitude that points from the cursor 

to the target (representing a volitional neural push that directs the cursor towards the target). 

Results from simulating this model, shown in figure 5, reproduce the departures from Fitts’ 

law empirically observed in figures 2–4. We simulated movements under different gains to 

reproduce the U-shaped movement time curves demonstrated in figure 2, and simulated 

movements to targets of different radii and distances to reproduce the divergent ID vs. 

movement time curves demonstrated in figure 3 and the dial-in time and translation time 

curves demonstrated in figure 4.

V. Verifying the computer model of cursor movement

The simplified computer model of iBCI cursor movements reproduces the movement time 

properties we observed, but is it also consistent with our participants’ neural modulation and 

decoding noise properties? To answer this, we directly examined the decoding noise 

properties of the iBCI and the user’s neural modulation strategy for moving the cursor to see 

if they matched the model.

To perform the analysis, we first needed to separate the output of the decoder into a noise 

component and a “volitional” component intended to push the cursor towards the target. To 

do so, we followed the approach taken in (Willett et al. 2017) and modeled the pre-smoothed 

output of the decoder (called the decoded control vector) as the sum of population-level 

neural modulation (called the encoded control vector) and decoding noise (unintended 

variability). In equation form:

where ut is the decoded control vector at time step t, ct is the encoded control vector 

(representing volitional neural modulation) and et is the decoding noise.

We assumed that the encoded control vector points straight from the cursor to the target with 

a magnitude that is a nonlinear function of the distance between the cursor and the target 

[which is a simplified form of the feedback control model presented in (Willett et al. 2017)]. 

We empirically fit this distance weighting function to the data and used it to decompose ut 

into ct and et (see Section 3 of the Supplement for details). Panels A, B and C of figure 6 

illustrate the results of this decomposition for an example cursor movement and highlight 

how large the decoding noise is compared to the signal. In addition to being large, it also 

appears pre-dominantly signal-independent; that is, the noise does not seem to attenuate very 

much when the cursor is on top of the target and the user is trying to hold still (and therefore 

presumably outputting a smaller motor command).

Figure 6D and 6E summarize, for each target radius, the magnitude of the encoded control 

vector as the cursor approaches the target. The analysis reveals that the participants did not 

change their behavior as a function of target radius (i.e., they did not attempt to move more 

slowly to acquire smaller targets) and that the control vector magnitudes remained fairly 

constant as a function of target distance [except when the cursor was near to the target, 
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consistent with results from center-out datasets analyzed in (Willett et al. 2017)]. Figure 6F 

summarizes the magnitude of the noise (often comparable to or greater than the signal) and 

figure 6G summarizes its signal-dependency (weak or non-existent). In sum, the computer 

model appears to be consistent not only with the observed movement times, but also the 

user’s neural modulation and decoding noise.

VI. A model of how signal-independent decoding noise can arise from neurons with signal-
dependent noise

The dominant presence of signal-independent decoding noise identified in figure 6 may 

seem at odds with the known fact that the variability of individual neurons increases with 

their mean firing rate in a signal-dependent manner [e.g. by following a Poisson distribution 

(de Ruyter van Steveninck et al. 1997; Paninski 2004; Maimon and Assad 2009)]. We 

investigated the signal-dependent variability of the neural features we used for decoding 

(threshold crossing rates and spike band power) to confirm that, similar to individual 

neurons, their variability increases with their mean (supplemental figure 6). How then can 

the output of a linear decoder, which is only a weighted sum of individual neural features, 

have largely signal-independent variability while the individual features have signal-

dependent variability?

One possible explanation is that, as the encoded control vector becomes larger, features 

whose preferred directions align with the control vector increase their level of activity while 

other features with the opposite preferred direction decrease their activity. The 

corresponding increases and decreases in variance then cancel each other out, causing the 

decoding noise to be predominantly signal-independent. One caveat to this explanation is 

that some studies suggest that during movement the overall firing rate of neurons increases 

relative to baseline (Moran and Schwartz 1999; Churchland and Shenoy 2007; Perel et al. 

2015) even though some features decrease their firing rate. This phenomenon could 

introduce some signal-dependency to the decoding noise; however, it would only dominate if 

the increase in firing rate were substantially larger than the baseline firing rate, which causes 

a floor of signal-independent noise.

To test that this is a plausible explanation for the largely signal-independent decoding noise 

we observed, we simulated an ensemble of 60 Poisson-distributed neural features whose 

mean firing rate varied as a linear function of the encoded control vector and its magnitude. 

Linear tuning is a simple approximation that captures how neural activity might be expected 

to adapt to a linear decoder and is also consistent with aspects of neural activity elucidated in 

previous reports (Moran and Schwartz 1999; Perel et al. 2015). We used the following 

equation:

where f is the mean firing rate of a neural feature, c is the (one-dimensional) control vector, 

and b0, b1 and b2 are feature-specific tuning coefficients. The linear tuning to magnitude, b2|

c|, can describe an overall increase in firing rate with the strength of the motor command 
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(when b2>0). We considered only a single dimension of the control vector to simplify the 

simulation.

Figure 7 shows results consistent with our expectation: when neural activity is tuned purely 

to the control vector (b2=0, figure 7A), increases and decreases in firing rate cancel each 

other and the decoding noise is purely signal-independent (blue line in figure 7C). When 

there is also an overall increase in firing rate with control vector magnitude (b2>0, figure 

7B), the decoding noise is weakly signal-dependent (red line in figure 7C). For Poisson-

distributed noise, the standard deviation of the noise increases with the square root of the 

mean. Thus, although we simulated a 100% increase in firing rate from no motor command 

to full motor command (b2=b0), the decoding noise increased only by a factor of . 

In Section 5 of the Supplement we give more simulation details and in Section 6 we give a 

complementary statistical analysis.

VII. Able-bodied joystick movements under different noise properties

We studied joystick movements made by able-bodied volunteers to confirm that (1) Fitts’ 

law accurately describes movement times for our random target task when the cursor is 

controlled by able-bodied movement, (2) that adding large amounts of signal-dependent 
noise does not cause Fitts’ law to break down in the ways we observed for iBCI movements 

(and thus could not be an alternative explanation for the results), and (3) that adding signal-

independent noise causes a breakdown of Fitts’ law as expected.

Figure 8 illustrates the results for one able-bodied volunteer, who controlled the cursor with 

joystick movements under different gain and noise conditions. Fitts’ law appears to hold in 

both the no noise and signal-dependent noise conditions under a wide range of gains, with 

the exception of the lowest gain setting (low gain results with no noise are similar to the left 

column of figure 3). While large amounts of signal-dependent noise caused movement times 

to increase overall as compared to the no noise condition, movement times remained stable 

for higher gains (scale invariance was preserved). On the other hand, when signal-

independent noise was added, performance rapidly deteriorated for higher gains and Fitts’ 

law ceased to be a good descriptor of movement times. Supplemental figure 7 and 

supplemental figure 8 show similar results for the other two able-bodied volunteers.

VIII. Quantitative comparison of the noise properties of the Kalman iBCI and the able-
bodied motor system

Our results indicate that the decoding noise of the iBCI is large (significantly higher than the 

variability of able-bodied movements) and is largely signal-independent, in contrast to the 

largely signal-dependent noise of able-bodied movements. In this section, we quantify this 

comparison using able-bodied motor performance data available in the literature.

In figure 9A we illustrate the size of the decoding noise for T6 and T8 compared to that of 

the able-bodied motor system in various motor tasks (hand force impulses, wrist rotations, 

stylus movements, and arm movements) (Schmidt et al. 1979; Meyer et al. 1988; Young, 

Pratt, and Chau 2009; Liao and Kirsch 2014). We defined SNR as the size of the signal 

divided by the standard deviation of the noise. To estimate the SNR for iBCI movements, we 
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averaged the pre-smoothed decoder output (ut) in a 300 ms time window at the beginning of 

each movement (beginning after a reaction time interval) and modeled it as the sum of a 

vector pointing straight from the cursor to the target (signal) and neural variability (noise). 

Similarly, the able-bodied noise distributions were estimated using the first 100 to 300 ms of 

the movement only (i.e. the “ballistic” portion of the movement before fine corrections could 

be made) and the SNR was computed by dividing the amplitude of the movement by its 

variability (more methodological details are reported in Section 4 of the Supplement).

Note how, for able-bodied movements, the magnitude of the noise clearly declines as the 

movements become smaller. Figure 9B and 9C plot the SNR as a function of signal strength; 

not only are the SNRs of the able-bodied motor system considerably higher, they decay 

more slowly as signal strength declines (i.e. the SNR vs. signal strength curves are flatter for 

the able-bodied motor system). For movements perfectly obeying Fitts’ law (where the 

relative accuracy is constant regardless of the movement scale), we would expect a perfectly 

flat SNR curve.

Finally, in figure 9D we analyze how the SNR of the iBCI decoder output varies as a 

function of the number of recording electrodes included in the decoder (these curves were 

generated by cross-validated offline decoding, see Section 4 of the Supplement). Based on 

linear extrapolations of the session-speceific curves in figure 9D, with current decoding and 

recording methods about 5,000 to 10,000 channels would be required to restore an SNR 

approaching that of able-bodied motion (an SNR of 5 or 6). To restore that same SNR for a 

variety of signal strengths (thus enabling the user to make smaller movements while 

maintaining a high relative accuracy), even more channels would be needed. For example, 

when the noise is signal-independent, a base SNR of 10 would be needed to ensure an SNR 

> 5 for a signal strength of either 0.5 or 1.

Discussion

Overview

We examined whether iBCI cursor movements have the movement time properties described 

by Fitts’ law. With data from two participants in the BrainGate2 pilot clinical trial, we 

showed that, inconsistent with Fitts’ law, iBCI cursor movements made with a standard 

linear velocity decoder are significantly scale sensitive (figure 2) and have a smaller 

dynamic range of accuracy than do able-bodied movements (movement time increases very 

sharply for small targets, figure 3). We introduced a new movement time equation that can 

describe these departures from Fitts’ law.

To explain how this equation comes about, we proposed a highly simplified computer model 

of iBCI cursor movement that reproduces all the phenomena we observed (figure 5) and is 

based on two main assumptions: large, signal-independent decoding noise and neural 

modulation that is the same regardless of the target radius or the distance to the target. We 

verified the model by characterizing the participants’ neural modulation (figure 6) and by 

reproducing the same movement time phenomena when signal-independent (but not 

dependent) noise was added to able-bodied joystick movements (figure 8). We also 

explained how neural features with signal-dependent variability (e.g. Poisson-distributed 
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neurons) could be consistent with signal-independent decoding noise (figure 7). Finally, we 

compared the noise properties of iBCI movements to those of able-bodied movements based 

on motor performance data available in the literature (figure 9).

Restoring Fitts’ law properties to iBCI-controlled movements

Fitts’ law describes two properties of able-bodied movements: scale invariance (the ability to 

make movements at different scales with similar relative accuracy) and a high dynamic 

range (the ability to acquire small targets without a large sacrifice in movement time). 

Ideally, iBCIs would be capable of restoring movements with these properties, thus enabling 

the user to operate effectively over a wide range of tasks that occur at different scales and 

demand different levels of relative accuracy.

One straightforward way to restore Fitts’ law properties might be to reduce the amount of 

signal-independent decoding noise by recording from more electrodes (figure 9). Through 

cross-validated, offline decoding we demonstrated that the signal-to-noise ratio of a linear 

decoder increases steadily as a function of the number of electrodes used, though it does so 

rather slowly (logarithmically) as a function of the number of electrodes, echoing what 

others have observed (Carmena et al. 2003; Li et al. 2009; Fitzsimmons et al. 2009; Lebedev 

and Nicolelis 2011). The trends shown in figure 9 suggest that it would require 5,000 or 

10,000 electrodes to approach the SNR of able-bodied movements for a single movement 

scale using a linear velocity decoder. It would require even more electrodes to reduce the 

signal-independent noise enough to enable a high relative accuracy for both small 

movements and large movements (thus restoring scale invariance). Given the current state of 

recording technology, recording from more than 10,000 microelectrodes may prove 

challenging in the near term.

Another way to reduce the amount of signal-independent noise while still using the same 

linear decoding architecture could be to improve how the decoder is calibrated, so that there 

is a better match between the decoder coefficients and the neural activity (and thus, in 

theory, a higher SNR). There have been several reports of improved performance obtained 

by improving the calibration procedure, for example by better estimating the user’s intention 

(Shanechi, Orsborn, and Carmena 2016; Fan et al. 2014; Gilja et al. 2012) and by updating 

decoder parameters during the course of a session to track non-stationarities in the neural 

activity (Jarosiewicz et al. 2015). Recently, it was reported that there can be a substantial 

mismatch between the subject’s “internal model” and the decoder (Golub, Yu, and Chase 

2015), implying that there may be significant room for improvement in calibration (at least 

for the calibration procedure tested in that study). How best to calibrate linear decoders, and 

how much improvement still stands to be made, is still an open question.

However, there may be a limit to what can be achieved with a linear decoder architecture 

alone, given that neural features behaving under standard assumptions cause predominantly 

signal-independent noise when passed through a linear decoder (figure 7). A relatively 

simple way to restore more scale invariance and dynamic range may be to apply a non-linear 

transformation to the output of a linear decoder. Recently, an improved ability to stop the 

cursor on smaller targets was reported when a standard Kalman filter was modified to 

attenuate cursor speed in the presence of fast changes in the direction of the decoded 
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velocity (which occur more frequently when the user is trying to stop on the target) (Golub 

et al. 2014). Another method could be to apply a static non-linear transformation, such as 

squaring the decoded velocity, to create signal-dependent decoding noise (Rouse and 

Schieber 2015). Signal-dependent noise in the able-bodied motor system is believed to come 

primarily from the distribution of sizes and the recruitment order of motor units (smaller 

motor units are more common and are recruited first) (Jones, Hamilton, and Wolpert 2002). 

When generating small forces, many small motor units participate together, reducing 

variability by enabling noise in single motor units to be averaged out. When generating large 

forces, there are fewer large motor units that can be recruited, leading to more variability. 

Typical iBCIs, consisting of a linear decoder combined with linear smoothing, do not have 

this same structure. In theory, a static non-linear transformation could increase the user’s 

ability to hold still on small targets by reducing noise when their neural command signal is 

small, at the cost of reducing the user’s SNR when trying to move.

Finally, another way to restore signal-dependency might be to use a different decoder 

architecture altogether that can extract more information about stopping or the intended 

scale of the movement from the neural activity. Recently, a non-linear, two state decoder that 

can switch between a postural decoder and a movement decoder (Sachs et al. 2015) 

increased the ability of the user to stop on smaller targets. More generic non-linear decoders 

could automatically extract information about stopping or about movement scale in general, 

if it exists (Sussillo et al. 2012; Li et al. 2009). There is evidence that the speed or scale of a 

movement may be encoded somewhat separately from its direction in a way that a linear 

velocity decoder might not be able to use optimally (Moran and Schwartz 1999; Churchland 

and Shenoy 2007; Perel et al. 2015). Using a different decoding architecture to extract such a 

“scaling” signal, and using it to gate the output of a typical linear decoder, might restore 

some scale invariance to iBCI movements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram illustrating how increasing (decreasing) the cursor gain is equivalent to shrinking 

(expanding) both the target distance and radius. We study the effect of cursor gain on iBCI 

movement times as a way of testing the scale invariance predicted by Fitts’ law.
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Figure 2. 
Effect of cursor gain on iBCI movements. (A) Cursor trajectories (colored by target) made 

by T8 under four different cursor gains. Cursor movements made at higher gains are faster 

but lack accuracy; the cursor takes curved paths towards the target and circles around it 

instead of coming to a complete stop on top of it. (B) Dial-in Time, Translation Time, and 

Movement Time as a function of cursor gain (reported in workspace widths per second at 

terminal speed) for three sessions (2 with T6, 1 with T8). Error regions are 95% confidence 

intervals for the mean. Cursor gain has a large effect on movement time, in contrast to the 

scale invariance predicted by Fitts’ law.
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Figure 3. 
(A) Example cursor movements made by T8 in the random target task under three different 

gain conditions. (B) Index of difficulty (ID) vs. movement time plots for 6 example 

conditions (3 from T6 on the top row, 3 from T8 on the bottom row). One “ID vs. movement 

time” line is plotted for each target radius and illustrates the average movement time for four 

target distance bins. If Fitts’ law holds, all three radius lines should lie on top of one another. 

Divergent lines (left and right columns) indicate that index of difficulty alone cannot 

describe how movement time varies as a function of target distance and radius. Error regions 

represent 95% confidence intervals. Each line contains data from four distinct target distance 

bins (with bin edges at 0.15, 0.3, 0.45, 0.6, and 0.75 workspace widths).
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Figure 4. 
Main effect of target distance (left column) and target radius (right column) on translation 

time (top row) and dial-in time (bottom row) across all sessions and conditions. Each circle 

indicates the average dial-in time or translation time for movements corresponding to a 

single “dataset” (a unique session date and dwell time setting). Variables have been 

normalized (z-score) to enable comparison across data with different absolute levels of 

performance and target characteristics. The thick black lines with gray 95% CI regions were 

generated by fitting a third-order polynomial for visualization purposes. They indicate that 

translation time is a linear function of target distance and that dial-in time is a power law 

function of target radius.
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Figure 5. 
A highly simplified computer model of iBCI cursor movements featuring signal-independent 

decoding noise reproduces all of the movement time relationships we empirically observed 

in figures 2–4. One hundred movements were simulated for each condition and the shaded 

regions indicate 95% confidence intervals. (A) Simulated gain vs. movement time curves are 

U-shaped, as in figure 2. (B) The simulated ID vs. movement time curves diverge for low 

and high gains, as in figure 3. (C) Simulated dial-in time is a power law function of radius 

(independently of distance) and simulated translation time is a linear function of distance 

(independently of radius), as in figure 4.
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Figure 6. 
Verifying that the participants’ neural modulation and decoding noise is consistent with the 

computer model of iBCI cursor movements. (A–C) Before analysis can be done, the output 

of the decoder must first be decomposed into a volitional modulation component and a noise 

component. Panel A shows an example cursor movement from a random target session with 

T8, illustrating the trajectory (black line) plus the pre-smoothed output of the decoder at 

each time step along the trajectory (red vectors). Panel B shows the same decoder output (u) 

as a time series plotted against what we estimated to be the volitional component (c, which 

we call the “encoded control vector”). Panel C shows the noise component (e) obtained by 

subtracting c from u. Gray regions indicate when the cursor is on top of the target. (D,E) 

Size of the control vector as a function of target distance and radius for T6 and T8. Each line 

Willett et al. Page 27

J Neural Eng. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is estimated from a different session of the random target task. Consistent with the computer 

model, modulation is independent of target radius and is relatively flat when not near the 

target. (F) Magnitude of the noise (characterized by standard deviation) for each block of the 

random target task included in the study (blocks from the same session are connected with a 

line). The noise magnitude is comparable to that of the volitional modulation. (G) 

Normalized noise magnitude as a function of control vector magnitude for each block of 

data. Each curve was normalized by dividing by its mean value. Consistent with our 

hypothesis, the noise is largely signal-independent.
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Figure 7. 
Decoding from a simulated ensemble of Poisson-distributed neural features. (A, B) Thin 

colored lines illustrate the mean firing rate of example features as a function of the encoded 

control vector. The thick black lines show the mean firing rate across the entire ensemble. 

The features in (A) are tuned only to the control vector (b2=0), while those in (B) are tuned 

to the control vector and its magnitude independently (b2=b0), causing the mean firing rate 

of the ensemble to increase with the control vector magnitude. (C) A linear decoding matrix 

was calibrated with the same mathematical methods used with our participants and then 

applied to the neural ensemble. The standard deviation of the decoding noise is plotted as a 

function of control vector magnitude, showing that the noise is purely signal-independent 

(model A, blue line) or predominantly signal-independent (model B, red line).
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Figure 8. 
Movement time data from participant A (1 of 3 able-bodied volunteers) using a joystick to 

complete the random target task under different gain and artificial noise conditions. The 

cursor’s velocity is smoothed and integrated in the same way as it is under iBCI control, but 

the output of the decoder is determined by the joystick position instead of neural activity. 

Performance is relatively robust to gain under the no noise and signal-dependent noise 

(SDN) conditions, but rapidly deteriorates as gain is increased under the signal-independent 

noise (SIN) condition. Consequently, Fitts’ law is a good descriptor of movement times in 

the no noise and signal-dependent noise conditions, but breaks down when signal-

independent noise is added (the radius-specific lines do not overlap). Note that failed trials 

(where movement time exceeded 8 seconds) are reported as 8 second movement times.
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Figure 9. 
Signal-to-noise ratio (signal strength divided by noise standard deviation) of our iBCI 

compared to the able-bodied motor system. iBCI and able-bodied SNRs are computed using 

a small time window of movement (100 ms to 300 ms) representing the “ballistic” phase of 

motion. (A) The decoding noise of iBCI cursor movements is compared to the variability of 

able-bodied motion. The standard deviation of the noise at different movement magnitudes 

is illustrated with a Gaussian probability density function (normalized to unit height). 

Movement magnitudes have been normalized so that 1 corresponds to the largest movement 

studied in a given experiment. (B) The signal-to-noise ratios implied by the data shown in A, 

plotted as a function of signal strength. (C) The same SNR curves as in B, but normalized to 

the SNR at full signal strength, revealing the relative fall-off of SNR as the signal strength 

declines. For purely signal-independent noise, the curve would lie on the unity line. (D) How 

many more recording electrodes would be needed for iBCI movements to approach the SNR 

of able-bodied movements using the decoder studied here? To answer this, we plot the signal 

to noise ratio as a logarithmic function of the number of recording channels included in the 

decoder (computed offline). One line is drawn for each session, and linear extrapolations are 
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drawn as dashed lines (a linear model was fit to the session-specific lines using least squares 

regression and then extrapolated).
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