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Abstract

A complex interplay among host, pathogen, and environmental factors is believed to contrib-

ute to the risk of developing pulmonary tuberculosis (PTB). The lack of replication of pub-

lished genome-wide association study (GWAS) findings limits the clinical utility of reported

single nucleotide polymorphisms (SNPs). We conducted a GWAS using 467 PTB cases

and 1,313 healthy controls obtained from two community-based cohorts in Korea. We evalu-

ated the performance of PTB risk models based on different combinations of genetic and

nongenetic factors and validated the results in an independent Korean population com-

prised of 179 PTB cases and 500 healthy controls. We demonstrated the polygenic nature

of PTB and nongenetic factors such as age, sex, and body mass index (BMI) were strongly

associated with PTB risk. None of the SNPs achieved genome-wide significance; instead,

we were able to replicate the associations between PTB and ten SNPs near or in the genes,

CDCA7, GBE1, GADL1, SPATA16, C6orf118, KIAA1432, DMRT2, CTR9, CCDC67, and

CDH13, which may play roles in the immune and inflammatory pathways. Among the repli-

cated SNPs, an intergenic SNP, rs9365798, located downstream of the C6orf118 gene

showed the most significant association under the dominant model (OR = 1.59, 95% CI

1.32–1.92, P = 2.1×10−6). The performance of a risk model combining the effects of ten rep-

licated SNPs and six nongenetic factors (i.e., age, sex, BMI, cigarette smoking, systolic

blood pressure, and hemoglobin) were validated in the replication set (AUC = 0.80, 95%

CI 0.76–0.84). The strategy of combining genetic and nongenetic risk factors ultimately

resulted in better risk prediction for PTB in the adult Korean population.

Introduction

Pulmonary tuberculosis (PTB) is a prevalent infectious disease that is caused byMycobacte-
rium tuberculosis (M. tuberculosis). According to the Global Tuberculosis Report published by

the World Health Organization in 2015, the estimated numbers of new tuberculosis cases and

tuberculosis deaths worldwide reached almost 9.6 million and 1.1 million in 2014, respectively.
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The incidence and mortality rate of PTB reported in South Korea (86 patients and 3.8 deaths

per 100,000 populations, respectively) are higher than those identified in other developed

countries. (http://www.who.int/tb/publications/global_report/en/).

There is no effective vaccine for PTB, and the efficacy of theM. bovis bacilli Calmette-Gué-

rin (BCG) vaccine at preventing PTB has been estimated at approximately 50%. Additionally,

anti-tuberculosis drugs can cause side effects, and multi-drug resistant PTB is of increasing

global concern. Although one-third of the world’s population, approximately 2 billion people,

are estimated to be infected withM. tuberculosis (latent TB infection), data suggest that only

5–10% of infected individuals develop clinical PTB later in life, indicating that genetic hetero-

geneity may confer differential susceptibility to infection [1]. Previous population-based stud-

ies have reported that individuals, particularly men, with nongenetic risk factors, such as

human immunodeficiency virus (HIV) infection, diabetes mellitus (DM), cigarette smoking,

alcohol consumption, and low body mass index (BMI, less than 20 kg/m2), may be more sus-

ceptible to PTB [2, 3].

A number of genes associated with host susceptibility to PTB, including CCL2, IFNG,

NOS2A, SLC11A1, SP110, TLR1, and TNF-α, have been suggested in previous linkage and/or

candidate gene studies. Specifically, the human leukocyte antigen (HLA) genes have been

reported to be associated with PTB in multi-ethnic populations [4]. Early genome-wide asso-

ciation studies (GWASs) have reported two single nucleotide polymorphisms (SNPs), one

located in the gene desert region of 18q11.2 (rs4331426) and the other in the Wilms tumor

1 (WT1) gene (rs2057178, 11p13), to be associated with PTB in African populations [5, 6].

While none of these SNPs achieved a genome-wide level of significance, eight new loci have

demonstrated nominal significance in Indonesian and Russian populations [7], and a meta-

analysis of studies conducted in Thai and Japanese populations suggested that a SNP near the

HSPEP1-MAFB gene, rs6071980, was associated with PTB [8]. Subsequently, the association

between PTB and the rs2057178 SNP in 11p13 has been replicated in African and Russian pop-

ulations [6–9]. Curtis et al. (2015) reported associations between intronic SNPs in the ASAP1
gene (8q24) and PTB in their Russian GWAS and provided further evidence of the role of

ASAP1 in PTB pathogenesis [10]. A recent large scale Icelandic GWAS (2016) reported that

only three SNPs located within theHLA class II region were significantly associated with PTB

infection and could not replicate associations between PTB and genes reported by previous

GWASs [11]. This lack of replication could be attributable to genetic heterogeneity across

study populations, underpowered GWASs, and/or small effect sizes of PTB susceptibility

variants.

Recent studies have focused on the use of polygenic models to resolve the problem of miss-

ing heritability and concerns relating to the clinical utility of GWAS results. Using these mod-

els, even if no single marker is found to be significantly associated with a complex trait, a

polygenic score combining the effects of multiple genetic markers can be used to demonstrate

that a disease has a strong genetic basis [12, 13]. Complex diseases such as PTB occur as a result

of the interplay between environmental exposures and many genetic variants, each potentially

exhibiting only a small effect. Therefore, multiple genetic and environmental risk factors must

be considered simultaneously to predict the risk of developing PTB [14, 15]. To the best of our

knowledge, no GWAS, let alone GWAS-based predictive modeling, has been performed for

PTB risk in Koreans.

In this study, we initially performed a GWAS using data from two community-based

cohorts in Korea and then developed various risk models, each of which consisted of a differ-

ent combination of genetic and nongenetic risk factors, to predict the risk of PTB. Finally, we

validated the GWAS results and evaluated the predictive ability of our risk models using an

independent Korean population.
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Materials and methods

Study populations, data collection, and genotyping

A total of 467 cases with PTB and 1,313 healthy controls were selected from 10,004 participants

aged 40 to 70 years included in two community-based cohorts, Ansung and Ansan, developed

as part of the Korean Association Resource Project (KARE) [16]. The cases included indivi-

duals with a history of PTB, treatment, or medication. Patients with PTB were diagnosed by

either a positive sputum smear or culture [17]. The controls were healthy individuals who did

not report any history of disease, treatment, and medication. Cases and controls were not

matched on any selected characteristic. Data for demographic, environmental, and clinical

factors were collected through self-reported questionnaires and laboratory tests. A total of

352,228 SNPs out of all the SNPs genotyped using the Affymetrix Genome-Wide Human SNP

array 5.0 (Affymetrix Inc., Santa Clara, CA, USA) passed the preliminary quality control test

for inclusion in subsequent analyses (i.e., genotype call rates> 95% for both SNPs and individ-

uals, minor allele frequency (MAF) > 1%, and Hardy-Weinberg P-value> 1×10−6). To reduce

the probability of a potential bias due to missing values, we also included ~4.4 million SNPs

that were imputed based on the East Asian reference panel of the 1000 Genomes Project

(imputation accuracy, r2> 0.8) using Minimac software [18].

The replication study included 179 cases and 500 healthy controls ascertained from 3,703

participants aged 40 to 70 years who participated in the Health Examinee (HEXA) cohort [19].

Among 1,473 individuals who met the eligibility criteria for healthy controls, we further

excluded individuals with SBP> 120 mmHg, DBP > 80 mmHg, or high fasting glucose� 100

mg/dl from subsequent analysis. A total of 646,062 SNPs remained after quality control exclu-

sions from the SNPs genotyped using the Affymetrix SNP array 6.0 (Affymetrix Inc., Santa

Clara, CA, USA). This research was approved by the Institutional Review Board of Hallym

University (HIRB-2016-066), and all participants provided written informed consent. Further

details regarding the study design and data collection methods used in the KARE and HEXA

studies have been described elsewhere [16, 19].

Statistical analysis

We evaluated the associations between PTB and 17 conventional risk factors, including house-

hold income, cigarette smoking, alcohol consumption, and 12 clinical variables using general-

ized linear regression models constructed using STATA v.11.2 (Stata Corp., TX, USA).

Continuous variables, such as BMI, SBP, DBP, Hb, and BUN, were converted into categorical

variables and the new categorical variables were analyzed as well.

We conducted a GWAS for PTB under three genetic models (i.e., additive, dominant, and

recessive) after adjusting for age, sex, and BMI using PLINK v.1.07 (http://pngu.mgh.harvard.

edu/~purcell/plink/) [20]. The 374 SNPs with P values less than 0.001 identified in the KARE

GWAS were validated among subjects of the HEXA Study. In addition, we compared our

results with findings cataloged in existing genetic association studies databases, such as the

HuGE Navigator Phenopedia (https://phgkb.cdc.gov/HuGENavigator) and NHGRI-EBI

GWAS Catalog (https://www.ebi.ac.uk/gwas). We evaluated the statistical power and the sam-

ple size to achieve sufficient statistical power (80%) for each SNP using the Genetic Power

Calculator, under the assumptions; PTB prevalence of 15% in Koreans, the genetic model

showing the lowest P-value for each SNP, complete LD, 1:2.81 case-control ratio used in the

current study, and type 1 error rate at genome-wide significance level of 5×10−8 (http://pngu.

mgh.harvard.edu/~purcell/gpc/).
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In silico functional analysis

After removing redundant SNPs (r2> 0.8), we conducted in silico functional analyses of the

ten replicated SNPs to evaluate if they are in high linkage disequilibrium with functional SNPs

such as nonsynonymous SNPs, nonsense SNPs, and SNPs creating transcription factor bind-

ing sites, splicing regulator, or predicted miRNA binding sites using the SNP Function Predic-

tion program of the SNPinfo Web Server (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm).

Risk prediction for pulmonary tuberculosis

We generated a genetic risk score model comprising ten SNPs replicated in the HEXA study

population. We developed weighted genetic, nongenetic, and combined risk score models to

predict the risk of developing PTB (i.e., wGRS, wnGRS, and wGRS+wnGRS, respectively). For

each individual, a wGRS was calculated by summing the values obtained from multiplying

model-specific genotype scores (additive, 0, 1, 2; dominant, 0, 1, 1; recessive, 0, 0, 1) by the natu-

ral log transformed odds ratio (ln OR) for each SNP in the model. Likewise, four different

wnGRS models composed of different combinations of the nine covariates (age, sex, BMI, sys-

tolic and diastolic blood pressures (SBP, DBP), hemoglobin (Hb), and blood urea nitrogen

(BUN), cigarette smoking, and alcohol consumption) that demonstrated significant associations

with PTB in the univariate models were calculated by categorizing (i.e., 0, 1 or 0, 1, 2) and sum-

ming the ln ORs across variables. The predictive abilities of the wGRS and wnGRS models were

evaluated by comparing the area under the receiver operating characteristic curves (AUC)

using the roctab and roccomp commands in STATA. After stratification into quartiles based on

the risk scores of each model, we also examined the associations between each risk score quartile

and PTB risk. Finally, we compared the performance of the PTB risk models in HEXA dataset.

Results

Association of nongenetic factors

Ten of the 17 conventional risk factors were identified as significantly associated with in-

creased risk of PTB in the KARE study dataset. PTB risk was higher in men than in women

(OR = 2.03, 95% CI 1.64–2.52, P = 1.1×10−10) and in people aged 50 years and older than their

younger counterparts (OR = 1.81, 95% CI 1.46–2.24, P = 5.3×10−8). Environmental factors,

such as low household income, cigarette smoking, and alcohol consumption, were also identi-

fied as potent risk factors. While high BMI was observed to be a strong protective factor against

PTB, elevated SBP, DBP, Hb, and BUN levels were associated with increased risk of PTB.

The results obtained using the HEXA dataset were similar to those obtained using KARE; how-

ever, the associations between PTB and alcohol consumption and BUN were marginally signif-

icant, and household income was not significantly associated with PTB in the HEXA dataset

(Table 1). The application of the strict selection criteria excluded a large proportion of controls

with hypertension and high fasting glucose levels and 500 healthy normotensive nondiabetic

controls were analyzed in the HEXA Study. As a result, the replication study yielded stronger

effects for the covariates than the effects reported in the initial study. For instance, the OR of

TB for current smokers was much higher in the HEXA data than the KARE data (OR = 2.72,

95% CI 1.67–4.46 vs. 1.52, 95% CI 1.38–2.07). Categorization of continuous covariates resulted

in loss of power; especially the statistical significance disappeared after dichotomization of

BUN (Table 1). Among these risk factors, gender, age, and BMI remained in the optimal

model after stepwise selection was performed in the KARE Study dataset. Of the ten variables

that were available and significant in the univariate models, four variables: gender, BMI, SBP,

and DBP, remained in the optimal model after stepwise selection (Table A in S1 File).
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Table 1. Univariate logistic regression analysis for associations between baseline characteristics and pulmonary tuberculosis in the KARE and

HEXA Studies.

KARE HEXA

Characteristicsa Case Control OR (95% CI)b Pb Case Control OR (95% CI)b Pb

(N = 467) (N = 1,313) (N = 179) (N = 500)

Male, N (%) 286 (61.2) 574 (43.7) 2.03 (1.64–

2.52)

1.1×10−10c 104 (58.1) 124

(24.8)

4.20 (2.93–

6.02)

5.0×10−15c

Age, N (%)

< 50 216 (46.2) 799 (60.8) 1.00 67 (37.4) 302

(60.4)

1.00

50� 251 (53.8) 514 (39.2) 1.81 (1.46–

2.24)

5.3×10−8c 112 (62.6) 198

(39.6)

2.55 (1.79–

3.62)

1.8×10−7

Household income (million won), N

(%)

< 100 138 (29.9) 281 (21.7) 1.00 21 (11.7) 39 (7.8) 1.00

100� 324 (70.1) 1,016 (78.3) 0.65 (0.51–

0.82)

4.0×10−4 133 (74.3) 371

(74.2)

0.67 (0.38–

1.17)

0.159

Cigarette smoking, N (%)

Nonsmoker 240 (51.8) 835 (63.8) 1.00 110 (61.5) 406 (81.2) 1.00

Ex-smoker 94 (20.3) 177 (13.5) 1.85 (1.38–

2.47)

3.0×10−5 34 (19.0) 46 (9.2) 2.72 (1.67–

4.46)

6.1×10−5

Current smoker 129 (27.9) 296 (22.6) 1.52 (1.18–

1.95)

0.001 34 (19.0) 46 (9.2) 2.72 (1.67–

4.46)

6.1×10−5

Alcohol consumption, N (%)

Nondrinker 185 (39.7) 647 (49.4) 1.00 78 (43.6) 265 (53.0) 1.00

Ex-drinker 39 (8.4) 69 (5.3) 1.98 (1.29–

3.02)

0.002 9 (5.0) 16 (3.2) 1.91 (0.81–

4.49)

0.138

Current drinker 242 (51.9) 594 (45.3) 1.42 (1.14–

1.79)

0.002 90 (50.3) 219 (43.8) 1.40 (0.98–

1.99)

0.063

BMI, kg/m2 23.45±0.13 24.70±0.08 0.86 (0.82–

0.89)

1.3×10−14c,d 22.94±0.20 22.96

±0.12

0.99 (0.93–

1.06)

0.905c,d

< 25 338 (72.4) 734 (55.9) 1.00 137 (76.5) 393 (78.6) 1.00

25–30 117 (25.0) 515 (39.2) 0.49 (0.39–

0.63)

6.4×10−9 41 (22.9) 101 (20.2) 1.16 (0.77–

1.76)

0.469

30� 12 (2.6) 64 (4.9) 0.41 (0.22–

0.76)

0.005 1 (0.6) 6 (1.2) 0.48 (0.06–

4.01)

0.496

SBP, mmHg 119.06

±0.87

116.15

±0.44

1.01 (1.01–

1.02)

0.001d 122.80

±1.09

107.47

±0.37

1.17 (1.14–

1.21)

4.1×10−27c,d

< 120 296 (63.4) 952 (72.5) 1.00 70 (39.1) 500 (100)

120–140 117 (25.0) 282 (21.5) 1.33 (1.04–

1.72)

0.025 81 (45.3) 0

140� 54 (11.6) 79 (6.0) 2.20 (1.52–

3.18)

3.0×10−5 28 (15.6) 0

DBP, mmHg 79.09±0.56 77.20±0.28 1.02 (1.01–

1.03)

0.001d 77.24±0.74 67.37

±0.29

1.20 (1.16–

1.25)

3.4×10−26c,d

< 80 329 (70.4) 1,004 (76.5) 1.00 86 (48.0) 500 (100)

80–90 84 (18.0) 224 (17.0) 1.14 (0.86–

1.51)

0.345 64 (35.8) 0 -

90� 54 (11.6) 85 (6.5) 1.94 (1.35–

2.79)

3.5×10−4 29 (16.2) 0

Hb, g/dLe 13.80±0.06 13.52±0.04 1.13 (1.05–

1.21)

8.4×10−4d 14.36±0.14 13.47

±0.07

1.37 (1.23–

1.53)

1.5×10−8d

13.8–17.2 (12.1–15.1) 353 (75.6) 1,022 (77.8) 1.00 148 (82.7) 410 (82.0) 1.00

(Continued)
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Genome-wide association and replication studies

After elimination of the SNPs in linkage disequilibrium (LD, r2> 0.8), 374 unique SNPs

achieved a significance level of P< 0.001 in the KARE GWAS with adjustment for age, sex,

and BMI (data not shown). However, none of these SNPs achieved conventional genome-wide

significance (P< 5×10−8). Of the six SNPs with P< 1.0×10−5, the rs3825435 SNP located on

intron of the FARP1 gene (13q32.2) showed the strongest association with PTB under an addi-

tive model (OR = 1.69, 95% CI 1.38–2.07, P = 5.3×10−7) (Table 2). A total of ten out of the 374

SNPs were associated with PTB at P< 0.05, and two SNPs, rs9682385 near the GADL1 gene

(3p23) and rs9787961 near the 5’-UTR of the CTR9 gene (11p15.3), yielded the strongest asso-

ciations with PTB in the HEXA dataset (P = 0.007 and 0.008, respectively) (Table 3). The joint

analysis of data from the KARE and HEXA cohorts did not improve the observed statistical

significance but suggested that an intergenic SNP, rs9365798, located 400 kb downstream of

Table 1. (Continued)

KARE HEXA

Characteristicsa Case Control OR (95% CI)b Pb Case Control OR (95% CI)b Pb

(N = 467) (N = 1,313) (N = 179) (N = 500)

< 13.8 (< 12.1) 110 (23.5) 282 (21.5) 1.13 (0.88–

1.45)

0.343 20 (11.2) 73 (14.6) 0.76 (0.45–

1.29)

0.307

17.2 < (15.1 <) 4 (0.9) 9 (0.7) 1.29 (0.39–

4.20)

0.676 11 (6.1) 17 (3.4) 1.79 (0.82–

3.92)

0.143

BUN, mg/dL 14.47±0.17 13.97±0.09 1.04 (1.01–

1.07)

0.008d 13.92±0.28 13.32

±0.16

1.05 (0.99–

1.10)

0.060d

� 20 428 (91.6) 1,235 (94.1) 1.00 168 (93.8) 474 (94.8) 1.00

20 < 39 (8.4) 78 (5.9) 1.44 (0.97–

2.15)

0.072 11 (6.2) 26 (5.2) 1.19 (0.58–

2.47)

0.633

Abbreviations: BMI, body mass index, BUN, blood urea nitrogen; CI, confidence interval; DBP, diastolic blood pressure; Hb, hemoglobin; OR, odds ratio;

SBP, systolic blood pressure
a Data are shown as the numbers of subjects (percentage) for discrete and categorical variables and mean ± standard error for continuous variables.
b ORs and P values were estimated from univariate logistic regression analysis.
c The variables remained significant at P value less than 0.05 after backward elimination in a multivariate logistic regression model.
d The ORs, 95% CIs, and P values for the continuous variables were estimated using univariate logistic regression analyses.
e Hemoglobin levels in males (females).

https://doi.org/10.1371/journal.pone.0174642.t001

Table 2. Results of the genome-wide association study for pulmonary tuberculosis in the KARE Study (P < 1×10−5).

Gene Chr. SNP Function Modela N/R NN/NR/RRb RAF MLRc

Cases Controls Cases/Controls OR (95% CI) P

FARP1 13q32.2 rs3825435 intron A T/C 303/144/20 996/298/18 0.20/0.13 1.69 (1.38–2.07) 5.3×10−7

OXR1 8q23.1 rs3110431 intron D T/C 180/223/54 668/519/126 0.37/0.29 1.70 (1.37–2.12) 2.1×10−6

CLIC5 6p12.3 rs9381416 intron A A/C 76/216/174 320/640/353 0.61/0.51 1.44 (1.23–1.67) 4.0×10−6

KLHL36 16q24.1 rs2326344 intergenic A G/T 203/214/50 726/506/81 0.34/0.25 1.48 (1.25–1.75) 4.9×10−6

IGSF11 3q13.3 rs571110 intergenic R G/A 258/150/47 766/463/59 0.27/0.23 2.56 (1.70–3.85) 6.9×10−6

SRBD1 2p21 rs17394081 intron D C/T 423/43/1 1257/55/1 0.05/0.02 2.61 (1.72–3.98) 7.9×10−6

Abbreviations: Chr., chromosome; N/R, non-risk/risk allele; OR, odds ratio; MLR, multiple logistic regression; RAF, risk allele frequency; SNP, single

nucleotide polymorphism
a The genetic model that showed the most significant evidence for association with PTB: A, additive; R, recessive.
b NN/NR/RR, the numbers of cases and controls with non-risk homozygote/heterozygote/risk homozygote genotypes, respectively.
c ORs and P values were estimated from the MLR model adjusted for age, sex, and BMI.

https://doi.org/10.1371/journal.pone.0174642.t002
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the C6orf118 gene (6q27) was most significantly associated with PTB (OR = 1.59, 95% CI 1.32–

1.92, P = 2.1×10−6). Among the SNPs reported in previous studies, eight SNPs located near or

in seven genes were evaluated; however, none of these SNPs showed evidence of association

with PTB in either the KARE or HEXA Study datasets (Table B in S1 File). Furthermore, none

of the SNPs in the three genes reported to be associated with PTB in recent GWASs, HLA
class II, ASAP1, andWNT1, yielded a significant allelic association with PTB in the KARE

GWAS (Table C in S1 File). One SNP, rs571110, of the six SNPs with P< 1.0×10−5 identified

in the KARE GWAS (Table 2) showed a statistical power of 86% under a recessive model; how-

ever, the current study was underpowered for detection of other SNPs at genome-wide signifi-

cance level, ranging from 24% (rs9381416) to 68% (rs17394081). Among the ten replicated

SNPs that are shown in Table 3, the rs9840514 showed a sufficient statistical power under a

recessive model in the joint analysis (99%); other SNPs were underpowered, ranging from 12%

(rs9682385) to 72% (rs4348560).

In silico functional analysis

Among the ten replicated SNPs, eight SNPs, including six SNPs in strong LD with four geno-

typed SNPs, located in four genes (r2> 0.8) fell into different functional categories: transcrip-

tion factor binding sites (TFBSs), exonic splicing sites (ESSs), miRNA, and nonsynonymous

SNPs (nsSNPs) (Table D in S1 File). Specifically, rs2259633 (CCDC67, 11q21) have been pre-

dicted to be an amino acid substitution (Gln> Lys). This SNP was in strong LD with the SNP

rs3019221 identified in the current GWAS (r2 = 1.00).

Risk prediction models for pulmonary tuberculosis

The estimated AUC values of the wGRS model composed of the ten SNPs that were validated

in the HEXA dataset were approximately 0.64 within both study populations. Data for the

missing rate of household income was as high as 17% in the HEXA dataset; thus, this variable

was excluded from subsequent analyses. Inclusion of cigarette smoking and alcohol consump-

tion did not improve the predictive ability of the model (AUC, 0.630 to 0.627 in KARE and

0.693 to 0.689 in HEXA); however, the combined model including age, sex, BMI, SBP, Hb, and

Table 3. Ten replicated SNPs associated with PTB in the KARE and HEXA Studies.

Gene Chr. SNP Function Modela N/Rb KARE HEXA Joint Analysis

OR (95% CI)c P OR (95% CI)c P OR (95% CI)c P

CDCA7 2q31.1 rs7594926 intergenic D G/A 1.59 (1.22–2.08) 7.6×10−4 1.64 (1.05–2.56) 0.030 1.54 (1.23–1.89) 1.4×10−4

GBE1 3p12.2 rs2307058 intron R C/T 1.75 (1.31–2.33) 1.4×10−4 1.60 (1.02–2.50) 0.040 1.63 (1.29–2.05) 3.4×10−5

GADL1 3p23 rs9682385 intergenic A G/A 1.34 (1.14–1.58) 5.4×10−4 1.45 (1.11–1.91) 0.007 1.31 (1.15–1.50) 7.9×10−5

SPATA16 3q26.31 rs9840514 intergenic R T/C 1.79 (1.27–2.50) 9.5×10−4 1.96 (1.16–3.23) 0.011 1.96 (1.16–3.23) 5.4×10−5

C6orf118 6q27 rs9365798 intergenic D T/C 1.61 (1.27–2.04) 7.1×10−5 1.49 (1.02–2.17) 0.038 1.59 (1.32–1.92) 2.1×10−6

KIAA1432 9p24.1 rs4348560 intron R G/A 1.79 (1.28–2.50) 6.3×10−4 1.75 (1.04–2.94) 0.034 1.69 (1.30–2.22) 1.3×10−4

DMRT2 9p24.3 rs10738171 intergenic A C/T 1.33 (1.12–1.57) 8.9×10−4 1.34 (1.03–1.75) 0.029 1.30 (1.14–1.49) 1.3×10−4

CTR9 11p15.3 rs9787961 Near 5’-UTR R C/G 1.67 (1.26–2.21) 3.9×10−4 1.83 (1.17–2.85) 0.008 1.64 (1.30–2.06) 2.3×10−5

CCDC67 11q21 rs3019221 intron A G/C 1.61 (1.25–2.07) 2.3×10−4 1.50 (1.00–2.23) 0.048 1.56 (1.27–1.91) 2.1×10−5

CDH13 16q23.3 rs12716963 intron D C/T 1.54 (1.19–1.96) 7.7×10−4 1.72 (1.12–2.83) 0.012 1.56 (1.27–1.92) 2.6×10−5

Abbreviations: Chr., chromosome; CI, confidence interval; HEXA, Health Examinees Study; KARE, Korea Association Resource Study; OR, odds ratio.
a The genetic models that showed the most significant evidence for association with PTB: A, additive; D, dominant; R, recessive.
b N/R, non-risk/risk allele
c ORs and P values were estimated from the multiple logistic regression model adjusted for age, sex, and BMI.

https://doi.org/10.1371/journal.pone.0174642.t003
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smoking leads to a much greater AUC increase in the HEXA study (AUC, 0.80; sensitivity

0.83, specificity 0.63, Fig 1B) than in KARE Study (AUC, 0.69; sensitivity 0.70, specificity 0.59,

Fig 1A) (Table 4). The wGRS model replicated in HEXA Study captured significantly more

risk than did any individual SNP, with 3.7-fold increased risk of PTB identified in the highest

risk quartile compared with the lowest risk quartile (P = 1.6×10−5, Fig 2A). Persons in the

highest risk quartile in the combined model were identified to have a higher risk of PTB

(OR = 16.98, 95% CI 8.67–33.24, P = 1.4×10−16, Fig 2C) than the risk that was identified the

model in which only conventional risk factors were taken into account (OR = 8.78, 95% CI

4.77–16.14, P = 2.8×10−12, Fig 2B) (Table E in S1 File).

Discussion

Traditional risk factors such as gender (male), aging, low household income, cigarette smoking,

alcohol consumption, and high blood pressure, which is one of the risk factors for DM, were

consistently found to be associated with PTB risk [15, 21]. Specifically, male, increased age and

low BMI were identified as strong predictors of PTB in Korean adult populations. Consistent

with previous studies, blood pressure was positively correlated with BMI (β = 0.02, 95% CI 0.02–

0.03, P = 6.4×10−9 and β = 0.04, 95% CI 0.03–0.05, P = 1.5×10−11 for SBP and DBP, respectively),

while BMI was negatively associated and blood pressure was positively associated with PTB in

the current study [2, 21]. Categorization of two continuous predictors, Hb and BUN, made

them insignificant. These results support previous findings that categorization of continuous

Fig 1. Comparison of predictability of risk prediction models for tuberculosis in KARE (463 cases and 1,308 controls) (A) and HEXA (142

cases and 490 controls) (B) Studies. wGRS comprised of ten SNPs replicated in both studies (blue-dotted line), wnGRS comprised of six nongenetic

factors, age, sex, body mass index (< 20 kg/m2), systolic blood pressure (120 mmHg <), hemoglobin, cigarette smoking (red dashed lines), and the

combined model of wGRS and wnGRS (solid black lines).

https://doi.org/10.1371/journal.pone.0174642.g001
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Table 4. Replication of risk models for pulmonary tuberculosis.

Risk model SNP AUC (95% CI)a

Pdiff < 1×10−4b N wGRSc wnGRS1d wnGRS2e wnGRS3f wnGRS4g

KARE 0.636 (0.607–

0.665)

Nongenetic

model

Cases/Controls,

N

467/1313 463/1308 463/1308 463/1305

0.630 (0.602–

0.659)

0.627 (0.598–

0.657)

0.634 (0.604–

0.663)

0.633 (0.603–

0.662)

Combined model Cases/Controls,

N

467/1313 463/1305 463/1308 463/1305

0.690 (0.663–

0.718)

0.684 (0.656–

0.712)

0.692 (0.665–

0.720)

0.687 (0.659–

0.715)

HEXA 0.639 (0.587–

0.692)

Nongenetic

model

Cases/Controls,

N

179/500 177/498 151/498 141/498

0.693 (0.650–

0.736)

0.689 (0.643–

0.735)

0.770 (0.726–

0.814)

0.780 (0.734–

0.825)

Combined model Cases/Controls,

N

170/490 168/490 142/490 132/490

0.739 (0.697–

0.781)

0.736 (0.692–

0.780)

0.799 (0.758–

0.841)

0.808 (0.765–

0.851)

Abbreviations: AUC, area under the receiver operating curve; CI, confidence interval; wGRS weighted genetic risk score; wnGRS, weighted non-genetic

risk score.
a AUCs and P values were estimated for ROC analyses
b Pdiff < 1×10−4, AUCs of the three risk score models, wGRS, wnGRS, and wGRS+wnGRS, were significantly different from each other at P < 0.0001.
c wGRS, the weighted genetic risk score model composed of the ten replicated SNPs.
d wGRS+wnGRS1, the combined model of wGRS model composed of 10 validated SNPs plus wnGRS1 comprised of age, sex, BMI.
e wnGRS2 was comprised of wnGRS1 plus cigarette smoking, and alcohol consumption.
f wnGRS3 was comprised of wnGRS1 plus cigarette smoking, SBP and Hb.
g wnGRS4 was comprised of wnGRS3 plus alcohol consumption, DBP, and BUN.

https://doi.org/10.1371/journal.pone.0174642.t004

Fig 2. Comparison of genetic (A), nongenetic (B), genetic plus nongenetic (C) models in 142 cases and 490 controls after removing individuals

with missing values from HEXA data. White and dark-gray bars (left Y-axis) denote the proportions of controls and cases, respectively, in each risk

quartile. Black dots and solid lines (right Y-axis) denote odds ratios and their standard errors for each risk quartile group compared to the lowest risk quartile

group (X-axis).

https://doi.org/10.1371/journal.pone.0174642.g002
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risk factors, especially dichotomization, reduces statistical power and leads to incomplete correc-

tion for confounding factors [22]. Thus, baseline BMI, SBP, DBP, HB, and BUN were investi-

gated as continuous variables in multivariate logistic analysis. We cannot, however, rule out

potential temporal bias in the estimation of causal effects of the nongenetic factors as prevalent

cases were analyzed in the current study.

Recent GWASs have proposed a few candidate genes for PTB; however, most of these SNPs

are located in intronic regions, and subsequent studies have not replicated previous findings,

except for theWT1 gene (rs2057178) [5–11]. None of the associations previously identified

between PTB and these gene variants were replicated in the evaluated Korean populations;

instead, SNPs located in introns of the SRBD1,CLIC5,OXR1, and FARP1 genes or nearby the

genes, IGSF11 and KLHL36, were identified to be associated with PTB at P values of less than

1×10−5. Three genes, SRBD1,CLIC5, and KLHL36, have been found to be involved in immune

responses and reported to be associated with various phenotypes, such as glaucoma, neurologi-

cal disorders, and carcinoma [23–25]. Dysfunction of the OXR1 gene resulted in increased

oxidative stress associated with neurodegenerative disorders [26]. IGSF11-specific activation

has been reported to be correlated withHLA-A�0201-restricted cytotoxicy [27]. The role of

KLHL36 gene in human complex disease is unknown. Of ten genes replicated in the HEXA

Study dataset, three tumor suppressor genes, CDCA7,KIAA1432, and CCDC67, which were

functionally annotated with Polyphen-2 may directly or indirectly play key roles in the devel-

opment of PTB through immune system and inflammatory responses. The CDCA7 and

KIAA1432 genes have been reported to be highly overexpressed in lung cancer cells [28, 29].

CCDC67mRNA, which encodes a 604 amino acid protein containing a coiled-coil domain,

was associated with down-regulation in various tumor tissues such as lung, cervix, and gastric

cancers [30]. The CDH13 polymorphisms play critical roles in metabolic processes and in the

development of metabolic-related diseases and lung diseases such as chronic obstructive pul-

monary disease [31, 32]. In most previous PTB GWASs, nongenetic covariates were not con-

sidered; however, we could not replicate the associations reported in these studies, even in our

unadjusted model. This lack of replication may be due to considerable genetic, phenotypical

and environmental diversity among study populations; more fundamentally, however, PTB

may occur as a result of a complex host-pathogen-environment interplay and polygenic path-

ways including many genetic variants, each with a relatively small effect [33].

Previous studies have recognized that genetic risk models for complex diseases developed

based on specific populations are unlikely to be applicable to other populations because the

small effect sizes of common alleles tend to vary based on population composition and may

even be identified as having opposing effects in different populations, and risk estimates for

some variants could be imprecise, as various characteristics of study subjects potentially con-

found genetic associations [34]. This study provided important insights into the identification

of susceptibility genes for PTB. Overall, we improved the discriminatory ability of PTB risk

models by including both genetic and conventional risk factors. The risk model that comprised

ten replicated SNPs was found to have similar AUCs in both study datasets (0.636 and 0.639,

respectively). Inclusion of six conventional risk factors (i.e., age, sex, BMI, SBP, Hb, and ciga-

rette smoking) resulted in a greater improvement in PTB risk prediction in the HEXA Study

than in the KARE Study (AUC, 0.80 vs. 0.69), which was likely due to the stronger effects of

the nongenetic factors observed in the HEXA dataset (e.g., OR for men, 4.2 vs. 2). However,

addition of three risk factors, alcohol consumption, DBP, and BUN did not significantly

improve the AUC of the model, wGRS+wnGRS3 (Table 4). The best prediction of individual

disease risk is achieved using a large number of predictors; however, given several models with

similar predictive accuracy, the simplest model with fewer predictors is considered to be more

efficient and cost-effective by collecting relevant minimum information on patients [35].
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Although their signature was not found to be sufficiently predictive, a recent African study

prospectively identified RNA markers to predict progression to active PTB among latent PTB

patients (Sensitivity 53.7%, Specificity 82.8%) [36]. Future studies are warranted to perform

validations of the risk models in independent populations with substantially larger samples,

and further prospective investigations are needed. Clearly, future risk models with clinical util-

ity in preventing active PTB will need to include susceptibility variants with potent discrimina-

tory ability based on whole genome sequencing and omics data integration; however, these

models will likely have limited applicability in the near future due to cost constraints and tech-

nical limitations [34, 37]. Gene-gene interactions or epistasis are a potential source of missing

heritability and new strategies for modeling epistasis to improve the predictability of PTB risk

may warrant further examination in future studies.

The current study consisted of 646 PTB patients and 1,813 health Koreans, aged 40 years

and above, selected from two population based cohorts. The present study may have been

underpowered to detect genetic variants for PTB susceptibility with weak or modest effect

sizes at a genome-wide level of significance; hence further studies with large PTB cases are war-

ranted to validate our findings. Given the importance of age at PTB onset, future studies in

patients aged younger than 40 years will be important to decipher the genetic basis for PTB

arising at young age. HIV infection is the most potent risk factor for developing active PTB

[3]. In the current study, however, none of the participant reported being HIV infected and

the prevalence of HIV was very low in South Korea, about 4.2 per 100,000 people in 2009 [38].

The genetic risk prediction models developed in this study seemed to have limited predictive

power for clinical use; however, the performance of risk prediction based on the results of

numerous models suggested important insights regarding ongoing attempts to identify indi-

viduals susceptible to PTB in the general population. Firstly, models considering polygenic

inheritance and evaluating the role of and interactions between replicated variants influencing

the metabolic, inflammatory, and immune pathways in the pathogenesis of infectious disease

may better explain an individual’s risk of developing PTB. Secondly, we found that gender and

BMI were the strongest predictors of PTB and validated the effects of a number of nongenetic

risk factors in an independent Korean population. Finally, our strategy of constructing risk

prediction models for PTB by combining genetic and nongenetic risk factors may ultimately

result in better risk prediction. These findings pave the way for the development of models to

identify susceptible individuals and prevent their progression to active PTB.
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