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Abstract

Despite our continuous improvement in understanding antibiotic
resistance, the interplay between natural selection of resistance
mutations and the environment remains unclear. To investigate
the role of bacterial metabolism in constraining the evolution of
antibiotic resistance, we evolved Escherichia coli growing on glyco-
lytic or gluconeogenic carbon sources to the selective pressure of
three different antibiotics. Profiling more than 500 intracellular
and extracellular putative metabolites in 190 evolved populations
revealed that carbon and energy metabolism strongly constrained
the evolutionary trajectories, both in terms of speed and mode of
resistance acquisition. To interpret and explore the space of meta-
bolome changes, we developed a novel constraint-based modeling
approach using the concept of shadow prices. This analysis,
together with genome resequencing of resistant populations, iden-
tified condition-dependent compensatory mechanisms of anti-
biotic resistance, such as the shift from respiratory to fermentative
metabolism of glucose upon overexpression of efflux pumps. More-
over, metabolome-based predictions revealed emerging weak-
nesses in resistant strains, such as the hypersensitivity to
fosfomycin of ampicillin-resistant strains. Overall, resolving meta-
bolic adaptation throughout antibiotic-driven evolutionary trajec-
tories opens new perspectives in the fight against emerging
antibiotic resistance.
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Introduction

Rapid emergence of multidrug-resistant bacteria renders treatment

of bacterial infections once more an urgent global challenge.

Acquired through horizontal gene transfer or genetic mutations, the

most effective antibiotic resistance mechanisms alter the antibiotic

target, increase drug efflux, or overexpress drug modification

enzymes (Blair et al, 2015b). While the cost of resistance is highly

variable, such resistance mutations or genes often come with a fit-

ness cost that reduces the rate of bacterial proliferation (Dahlberg

& Chao, 2003; Melnyk et al, 2015). Multiple causes may contribute

to reduced fitness, including increased energy and resource

demands or activation of less efficient mechanisms that bypass the

drug target. The success of resistant mutants critically depends on

rapid counterbalancing of the decreased fitness by acquiring

compensatory mutations (Levin et al, 1997; Marciano et al, 2007),

which in most cases restore normal growth while preserving resis-

tance to the antibiotics (Marcusson et al, 2009). The number and

variety of compensatory mutations required to successfully

compensate fitness cost varies with organism (Palmer & Kishony,

2013, 2014; Cheng et al, 2014) and the particular environmental

conditions under which compensation occurs (Testerman et al,

2006; Hoffman et al, 2010; Toprak et al, 2012; Lindsey et al, 2013).

Nevertheless, the nature of this interaction is poorly understood,

and very little is known about the functional constraints that the

environment imposes on the evolution of antibiotic resistance and

compensatory mechanisms (Björkman et al, 2000; King et al, 2006;

Hoffman et al, 2010; Auriol et al, 2011; Zhang et al, 2011; Villagra

et al, 2012).

To this end, we investigated metabolic rearrangements during

evolution of antibiotic resistance in Escherichia coli under two dif-

ferent nutritional conditions. To interpret and understand the

impact of metabolic changes in conferring or compensating for

antibiotic resistance, we used a genome-scale model of E. coli

metabolism and developed a novel constraint-based modeling

approach. By systematically exploring the space of dual solutions

to the linear optimization of flux in each individual reaction, the

new approach relates changes of metabolite abundances to poten-

tial functional flux rearrangements. This novel systematic

approach, together with genome sequence analysis of evolved

populations, demonstrates how environmental nutrient composi-

tion can directly affect the selection of resistance mechanisms and

compensatory mutations.
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Results

Generation and metabolic profiling of antibiotic-
resistant mutants

To investigate the interplay between evolution of antibiotic resis-

tance and bacterial metabolism, we selected three antibiotics with

different modes of action: the cell wall synthesis inhibitor ampi-

cillin, the protein synthesis inhibitor chloramphenicol, and the DNA

replication inhibitor norfloxacin. Four independent lineages of wild-

type E. coli BW25133 were then allowed to evolve increasing resis-

tance to each antibiotic in minimal medium with either glucose or

acetate as the sole carbon source. These two carbon sources impose

radically different metabolic states: rapid growth with respiro-

fermentative metabolism and slower growth with fully respiratory

energy generation (Fig 1A).

Selection of resistant mutants was achieved by serial passage in

a 96-well plate cultivation format (Fig 1B). To maintain a constant

selective pressure at every passage, each culture was inoculated into

seven different drug concentrations. At the end of a 48-h cultivation

cycle, cells growing at the highest tolerable concentration were used

for inoculation at the next passaging round, until 150–160 genera-

tions were reached for all lineages. As controls, two independent

culture lines were evolved on glucose and acetate without antibi-

otics. Despite similar mutation rates on glucose and acetate (Dataset

EV1) and previous experimental evidence that slowly growing cells

are intrinsically more tolerant to antibiotic stress (Gilbert et al,

1990; Claudi et al, 2014), resistance to all three tested antibiotics

evolved much faster on glucose than on acetate (Figs 1C and EV1),

demonstrating that environmental conditions can constrain the rate

of resistance acquisition.

To shed light on the underlying mechanisms by which metabo-

lism constrained the path of resistance evolution, we profiled the

metabolome of evolved populations by nontargeted mass spectrom-

etry (Fuhrer et al, 2011). Seven to eight populations from different

points along the evolutionary trajectory were selected from each of

the 24 antibiotic-evolved lineages. The resulting 190 evolved popu-

lations were regrown on the carbon source used for selection but

without antibiotic addition, while the endpoint of antibiotic-free

evolved lineages and the wild-type ancestor E. coli strain were

grown in both glucose and acetate minimal media (see Materials

A

C
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Figure 1. Evolutionary trajectories of Escherichia coli evolving resistance
to three different antibiotics on two different media.

A Metabolism on glucose and acetate. Glucose is catabolized by glycolysis
and can be fermented and/or oxidized via secretion of acetate or
tricarboxylic acid cycle (TCA) (blue arrows), respectively. Acetate forces a
complete different distribution of internal fluxes and bacterial growth is
strictly respiratory (red arrows).

B Schematic representation of the evolutionary experiment. Each well in a
column corresponds to a different dilution of the same antibiotic. Every
48 h, out of the cultures that grew to an OD600 ≥ 0.5, the one that survived
the highest antibiotic concentration is selected. Selected population for the
next passaging step are indicated by the symbols: ●, ►, ■, ★ indicating
the four lineages evolved under the same selective pressure. Selected
evolved populations are diluted into eight different antibiotic
concentrations, such that at every passaging step 12 populations on
glucose and 12 populations on acetate are propagated. At each inoculation
step, the highest drug concentration tested was adjusted to be at least
double of the concentration where bacterial growth was detected in the
previous passaging step.

C Evolution of resistance. Each dot (●, ►, ■, ★) corresponds to one evolved
population selected during the serial passage experiment. Y-axis indicates
the antibiotic concentration at which evolved populations were selected
during serial passages (blue, glucose; red, acetate). Solid line: median of the
four lineages, dotted line: single lineages, shaded region is
median � standard deviation across the four lineages.
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and Methods for full details) populations. Intracellular and extracellu-

lar samples were taken during steady-state exponential growth, and

relative abundances of 413 intracellular and 392 extracellular ions,

that based on measured accurate mass could be putatively matched

to 586 and 553 deprotonated metabolites, were measured by time-of-

flight mass spectrometry (TOF-MS; Dataset EV2).

Both the intra- and extracellular metabolome underwent drastic

changes after only a few generations (Fig 2A and B), and the

changes were highly reproducible across lineages evolved under

identical selection pressure (Figs 2A and B, EV2 and EV3). It is

worth noting that antibiotic-resistant populations exhibited gener-

ally altered metabolomes when compared either with the ancestral

strain or with populations evolved without antibiotic selection. This

observation suggested that a large portion of metabolic adaptive

changes in antibiotic-resistant populations is driven by the respec-

tive antibiotic, and not by adaptation to the carbon source (Figs 2B,

EV2 and EV3).

Metabolite changes that are the result of adaptive mutations are

expected to (i) exhibit clear monotonic transitions from wild-type

basal concentrations to new different steady-state levels and (ii) to

occur reproducibly across the four lineages evolved under the same

selective pressure. We discriminated such metabolic adaptations

from transient or stochastic fluctuations by fitting a sigmoidal curve

to the relative metabolite abundances in the evolved populations

from each lineage. The quality of fit (adjusted R2) was used to

systematically identify metabolites transitioning to a new steady state

(Dataset EV3 and Fig 2C). Overall, a tendency for larger metabolic

rearrangements was observed in glucose-evolved cultures (Fig 2D),

where the metabolic changes were also more homogeneous across

evolutionary lineages. The faster rate of resistance evolution and the

extent of metabolic rearrangement on glucose presumably reflect the

higher degree of freedom for respiro-fermentative catabolism, and

thus the larger potential for metabolic compensation of antibiotic

resistance (Appendix Fig S1). Further interpretation of metabolite

changes required development of new unbiased network-based

methods for data analysis, since changing metabolites rarely clus-

tered within canonical pathways (Appendix Fig S2).

A constraint-based modeling approach to interpret evolutionary
metabolic adaptation

To functionally interpret the evolved metabolic states in antibiotic-

resistant cells, we used concepts derived from flux balance analysis

(Fong & Palsson, 2004; Pál et al, 2006) and interrogated metabolo-

mics data with a genome-scale model of E. coli metabolism (Orth

et al, 2011). Classical flux balance analysis is a powerful constraint-

based approach to model steady-state internal fluxes (Fong &

Palsson, 2004; Orth et al, 2011) given a stoichiometric matrix of

metabolic reactions and a cellular objective function. Since micro-

bial metabolism is shaped by multiple competing objectives, such as

minimization of proteome resource investment (Lewis et al, 2010),

adaptability to sudden environmental changes (Schuetz et al, 2012),

maximization of biomass production (Fong & Palsson, 2004) or

energetic efficiency (Schuetz et al, 2007), natural evolution is

expected to select the best tradeoff between these competing objec-

tives, such that metabolism operates in the proximity of a so-called

Pareto front (Schuetz et al, 2012). However, evolution of resis-

tance to antibiotics introduces new constraints and objectives,

making it unclear which potentially new objective functions shape

metabolic adaptation (Appendix Fig S3).

While flux changes can in principle result from changes in

enzyme abundance or mutations affecting kinetic parameters of the

reaction (e.g. Kcat, Km values), empirically we observed that a

change in flux is often accompanied by changes of metabolites

abundance (Boer et al, 2010) and that adjustments of enzyme abun-

dance alone are often insufficient to explain flux changes (Fendt

et al, 2010; Chubukov et al, 2013; Reznik et al, 2013; Gerosa et al,

2015). Hence, we used the reverse approach by assuming that

altered metabolite concentrations in evolved strains reflect an

attempt to redirect intracellular fluxes toward specific but unknown

metabolic objectives to drive and compensate for resistance. To test

for this possibility, we systematically minimized or maximized

fluxes through each individual reaction of the E. coli genome-scale

metabolic model (Orth et al, 2011). For each reaction, we calculated

the shadow prices (Reznik et al, 2013; Appendix Figs S4 and S5),

which estimate the sensitivity of the objective function (i.e. reaction

flux) to changes in the availability of all individual metabolites (see

Materials and Methods for full details). Metabolites with negative

shadow prices can be interpreted as limiting quantities for the reac-

tion. Next, we used a permutation test to select reactions where

metabolites with negative shadow prices were significantly (P-value

≤ 0.001) overrepresented among metabolites experimentally found

to be altered during evolution of antibiotic resistance. By using

shadow prices to interpret measured metabolite level changes, we

implicitly assume that the newly evolved flux states will be reflected

in altered steady-state concentrations of metabolites that are limiting

▸Figure 2. Metabolic rearrangements during acquisition of antibiotic resistance.

A Pairwise similarity between metabolite profiles of populations that evolved resistance to ampicillin on glucose. Spearman correlation (Fieller et al, 1957) is used to
assess the pairwise similarity between Z-score normalized metabolite changes. Selected populations are indicated by (i) three letters indicating the selective pressure,
in this case ampicillin (AMP), (ii) followed by evolutionary lineages, referred to as lineage 1–12, where 5–8 evolved resistance to ampicillin, and (iii) number of
generations (Dataset EV2).

B Pairwise similarity between metabolome profiles of evolved populations. Spearman correlation (Fieller et al, 1957) is used to assess the pairwise similarity between
Z-score normalized metabolite changes in the 193 selected mutants. Yellow bars on the side indicate the wild-type ancestor and the two populations evolved in
glucose and acetate antibiotic-free media. For a given drug, all selected populations of one lineage from the evolutionary experiment are in consecutive order and all
four lineages are displayed one after another.

C Intracellular pantothenate levels in ampicillin-resistant Escherichia coli populations. Values are normalized to the wild-type ancestor. For the populations belonging to
each of the four independently evolved lineages, a sigmoidal curve is fitted and the resulting adjusted sum of squared errors (R2) is reported. Data are the mean �
standard deviation across biological replicates.

D Metabolic rearrangements. For each independently evolved lineage, the number of metabolites with an adjusted R2 from the fitting analysis greater or equal to an
arbitrary stringent threshold of 0.6 is reported for intracellular and extracellular metabolites.

E Distribution of predicted EMC across metabolic pathways. For each pathway, the relative percentage of EMCs is reported.
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for the evolved metabolic functions. By systematically searching for

reactions with an overrepresentation of altered limiting metabolites,

we thus try to identify metabolic functions that if modulated can

play an active role in the evolution of resistance or its compensa-

tion. We refer to these reactions as evolved metabolic characteristics

(EMCs; see Dataset EV4 for full list).

The above metabolic rearrangements were quantified in the

absence of antibiotics to ensure that they reflect the evolved

compensatory adaptations of resistant E. coli, rather than their

immediate stress response in actually dealing with the different

antibiotics themselves. Next, we asked whether the evolved meta-

bolic traits could be functionally related to the direct effects of inhi-

bition of antibiotic targets. To this end, we monitored the short-term

metabolic response of wild-type (antibiotic-sensitive) E. coli grown

in glucose minimal medium, 1 h after treatment with the respective

antibiotics (Appendix Fig S6). The basic premise is that metabolic

changes directly induced upon antibiotic treatment reflect the rapid

metabolic adaptation to inhibition of the drug target (e.g. gyrase

upon norfloxacin treatment). The direct antibiotic response of inter-

mediates in some metabolic pathways of wild-type E. coli was simi-

lar to the persistent response in evolved populations in the absence

of the antibiotic. These constitutive metabolic rearrangements were

often independent of the nutrient environment used during selec-

tion, such as changes in steady-state levels of intermediates in

nucleotide metabolism across norfloxacin-evolved populations

(Fig 2E). These relatively few common changes might relate to

mutations directly affecting the function of drug targets, such as

mutations within the gyrase complex.

The majority of EMCs, however, were in metabolic pathways not

directly affected by an antibiotic treatment. Hence, most metabolic

phenotypes in evolved E. coli reflect resistance or compensatory

mechanisms involving metabolic processes not directly affected by

the short-term action of the antibiotics. These EMCs unveiled unex-

pected and radical differences in metabolic adaptation to a given

antibiotic as a function of the carbon source used during selection.

This environmental influence was most evident in chloramphenicol-

and ampicillin-evolved populations, which also exhibited the largest

metabolic changes throughout evolution (Fig 2D). Thus, the

detected EMCs represent stable evolved traits that can be expected

to reflect compensatory and resistance mechanisms that could have

not been predicted from the specific antibiotic response.

Rearrangements of central carbon metabolism in evolved E. coli
under chloramphenicol and glucose selective pressures

Predicted EMCs in chloramphenicol-glucose-evolved populations

involved sugar transport, oxygen uptake, and CoA formation,

suggesting major changes in glucose catabolism (Fig 3A). Indeed,

the evolved populations exhibited higher rates of glucose consump-

tion, acetate secretion, and a reduced relative oxygen uptake,

revealing a switch from respiratory to fermentative metabolism

(Fig 3B and Dataset EV5). Surprisingly, anaerobically growing wild-

type E. coli showed an increased susceptibility to chloramphenicol

(Fig EV4), raising the question of how increased aerobic fermenta-

tion confers advantages in chloramphenicol-resistant mutants. To

this end, we performed genome sequence analysis of the 26 cell

populations at the endpoint of evolution, and used multivariate

statistical analysis to identify putative mutated genes whose

presence correlated with measured respiration rates in glucose-

evolved mutants (Dataset EV6). The mutations in four genes, acrB,

acrR, fecA, and yjhF, were significantly associated with reduced

oxygen uptake (P-value ≤ 0.01; Dataset EV7), and in particular,

mutations in the promoter region of the multidrug efflux pump

encoding acrB were the most significant (P-value = 0.001). Consis-

tently, we showed that: (i) chloramphenicol treatment selectively

induces increased transcription of acrB (Appendix Fig S7), (ii)

AcrAB efflux pump is essential to cope with chloramphenicol, as the

deletion of the respective encoding genes render E. coli much more

sensitive to chloramphenicol (Nichols et al, 2011; Appendix Figs S8

and S9), (iii) deletion of the efflux pump repressor genes marR or

acrR caused a strong increase in glucose fermentation via acetate

secretion (Fig EV5), and (iv) chloramphenicol-resistant populations

evolved in glucose in the absence of the antibiotic constitutively

exhibited almost four times higher AcrB protein levels than any

other evolved population and wild type (Fig 3D).

How could efflux pump overexpression cause the metabolic

switch? Generally, overexpression of membrane proteins in E. coli

leads to a down-regulation of the tricarboxylic acid cycle (Wagner

et al, 2007) and causes a shift to fermentative metabolism, which

may result from a reduced metabolic proteome allocation (Hui et al,

2015; Appendix Fig S10) or competition for membrane space with

oxidative phosphorylation proteins (Zhuang et al, 2011). Since

acetate metabolism depends on respiration, a similar compensatory

mechanism during growth on acetate would have more drastic

consequences on cellular fitness. Interestingly, a functional link

between chloramphenicol resistance and membrane proteome

remodeling comes from phenotypic profiling of the E. coli gene dele-

tion library where many chloramphenicol-resistant mutants were

more sensitive to cell wall-damaging agents (e.g. ampicillin or

oxacillin) or oxidative phosphorylation inhibitors (e.g. carbonyl

cyanide m-chlorophenyl hydrazone (CCCP) or theophylline), and

vice versa (Nichols et al, 2011; Appendix Fig S11). Albeit circum-

stantial, this evidence suggests the balance between oxidative phos-

phorylation activity and the membrane composition as an important

constraint during evolution of antibiotic resistance, which deserve

more attention in future studies.

The role of cell wall recycling in mediating ampicillin resistance

In ampicillin-resistant populations, we identified major EMCs on

glucose in nucleotide metabolism, serine biosynthesis, and cell wall

recycling (Fig 4A). We focused on the anhydromuropeptide trans-

port in cell wall recycling (highlighted in Fig 4A and B) because of

its proximity to the actual ampicillin target: peptidoglycan biosyn-

thesis. Our EMC predictions (Fig 4A) based on metabolite changes

in resistant populations suggested recycling of anhydromuropep-

tides to play an important role in mediating resistance to ampicillin.

In support of this hypothesis, we demonstrated ampicillin-glucose-

evolved populations to be two to eight times more sensitive to fosfo-

mycin (FOSF; Fig 4C), an inhibitor of peptidoglycan biosynthesis

and the last enzymatic step of the anhydromuropeptide recycling

pathway (Fig 4B). In contrast, ampicillin-resistant populations

evolved in acetate exhibited a similar or higher tolerance to fosfo-

mycin (Appendix Fig S12). The reason why recycling of anhydro-

muropeptides evolved only on glucose could be the requirement of

the glucose PTS phosphotransfer protein EIIAGlc for the activation of
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MurP, a key protein in N-acetylmuramic acid transport. Expression

of EIIAGlc is repressed in acetate minimal medium (Oh et al, 2002),

which would explain why a similar EMC did not emerge in cultures

evolved under the combined selective pressure of ampicillin and

acetate. It is worth noting that differently from acetate, glucose-

evolved populations had very few consistent mutations across the

A C

D

B

Figure 3. Functional metabolic rearrangements in chloramphenicol-resistant populations.

A List of EMCs predicted in chloramphenicol-glucose-evolved mutants. Reactions are grouped on the basis of their topological distance, by means of the minimum
number of connecting reactions on the metabolic network. For EMCs predicted in chloramphenicol-glucose, filled marks on the right-hand side highlight whether the
same EMC was found also in the other evolved populations.

B Experimentally measured fluxes exclusively in evolved populations grown in glucose minimal medium. Absolute glucose consumption is reported in mmol/gDW/h,
growth rate in h�1. Acetate secretion and oxygen consumption rates are reported as a percentage relative to glucose uptake. Data have been grouped according to
the selective pressure and for each group. The tops and bottoms of each box are the 25th and 75th percentiles of the samples, respectively, while the red line in the
middle of each box is the sample median (Dataset EV5 contains mean � SD of three biological replicates).

C Genetic changes identified by whole-genome sequencing. Genetic changes identified in at least two out of the four lineages evolved under the same selective
pressure are retained. The bipartite graph links selective pressures (i.e. chloramphenicol-glucose and chloramphenicol-acetate) to mutated genes. Arrow size
represents the number of lineages with at least one sequence change in the corresponding gene or its upstream regulatory sequence.

D Western blot analysis monitoring the AcrB protein abundance across antibiotic-resistant populations evolved in glucose, wild type and populations evolved in glucose
and acetate without antibiotics. Asterisks indicate statistically significant difference from wild type E. coli (**P < 0.01 from t-test analysis). Data are the mean � SD of
two replicates. One of the Western blots is shown.
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four lineages, mainly affecting regulatory proteins involved in stress

response upon environmental changes (e.g. RpoD, Aer, YqjL;

Fig 4C), from which no obvious link to anhydromuropeptides recy-

cling could have been made. Hence, directly monitoring metabolic

rearrangements in resistant E. coli populations was crucial to find

the new adaptive mechanisms.

Differential propagation of resistance and compensatory muta-

tions under different nutrition conditions (Figs 3C and 4D) reflect

the potential role of metabolism in rendering certain mutations less

accessible by natural selection. Ampicillin-resistant populations

evolved in acetate, despite almost four times more mutations

than ampicillin-resistant populations evolved in glucose (Fig 4D),

exhibited relatively modest metabolic rearrangements (Fig EV3).

Altogether, our data suggest that in glucose few mutations offer

strong selective advantage and cause sensible metabolic rewiring.

On the contrary, in acetate the difficulties in rewiring metabolism

make similar jumps in the fitness landscape insurmountable,

constraining cells to explore less advantageous solutions. Overall,

A B

C D

Figure 4. Functional metabolic rearrangements in ampicillin-resistant populations.

A List of EMCs predicted in ampicillin-glucose-evolved populations. Reactions are grouped on the basis of their topological distance, by means of the minimum number
of connecting reactions on the metabolic network. EMCs detected in other evolved populations are highlighted by filled marks on the right-hand side.

B Schematic representation of cell wall recycling pathway in Escherichia coli, adapted from Gisin et al (2013). Detected metabolites are highlighted in red or green
according to a significant accumulation or depletion in AMP-evolved populations.

C Sensitivity analysis of ampicillin-glucose to fosfomycin (FOSF). The relative growth rate inhibition of different FOSF concentrations relative to antibiotic-free growth is
reported for wild-type (WT) and the populations evolved in the presence of ampicillin and glucose. Data are the mean � SD of three biological replicates.

D Genetic changes identified by whole-genome sequencing. Genetic changes identified in at least three out of the four lineages evolved under the same selective
pressure are retained. The bipartite graph links selective pressures (i.e. ampicillin-glucose and ampicillin-acetate) to mutated genes. Arrow size represents the number
of lineages with at least a mutation (e.g. SNP) in the corresponding gene.
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we observed large genetic differences in particular between ampi-

cillin- and chloramphenicol-evolved E. coli in glucose versus acetate

medium (Fig 4D). For example, murE, a gene responsible for over-

expression of ampicillin targets (Gardete et al, 2004) and ftsI, encod-

ing for a penicillin-binding protein, were mutated only in cells

evolved on acetate, while ampicillin-resistant strains evolved in

glucose showed frequent mutations in transcription and sigma

factors such rpoD, yqjI, and aer (Fig 4D). Similarly, mutations of the

ATP synthase component atpA, the 50S ribosomal subunit rplC, and

the two RNA polymerase subunits, rpoB and rpoC, were identified

only in chloramphenicol-resistant strains evolved on glucose.

Discussion

A large body of evidence exists on mutations that confer antibiotic

resistance, but we know only relatively little about how such muta-

tions affect cellular metabolism, either directly or indirectly. Even

less well-understood is how metabolism influences evolutionary

strategies to acquire antibiotic resistance. In contrast to genetic

screens that identify resistance mutations, we investigated here how

metabolism accommodates such resistance mutations. While meta-

bolic adaptation is presumably not the only compensatory mecha-

nism to antibiotic resistance, we demonstrated that environmental

conditions play a crucial role in determining the tradeoff between

cost and benefit of resistance mutations, and consequently in how

rapidly a resistant mutant will establish itself within the population.

Specifically, resistance to all three antibiotics evolved much more

rapidly on glucose than on acetate, suggesting a greater metabolic

plasticity during respiro-fermentative metabolism compared to the

obligatory respiratory metabolism on acetate. Developing antibiotic

resistance, in turn, also drives metabolic adaptations and the under-

lying compensatory mutations, which in the two conditions were

different for ampicillin and chloramphenicol but similar for nor-

floxacin (Appendix Fig S13). Despite genome sequence data from

evolved populations, which might contain clonal variations, and

despite a large genetic space of neutral and beneficial mutations that

may confer similar resistance phenotypes, all four parallel popula-

tion lineages evolved under a given selective pressure converged to

highly similar metabolic steady states (Figs 2B, EV2 and EV3).

These results suggest that one should consider the natural condi-

tions in tissues or body fluids to better understand the role of meta-

bolic constraints in the evolution of antibiotic resistance in a clinical

setting.

During the evolution of resistance, metabolism underwent large

condition-dependent rearrangements of metabolite concentrations

(Fig 2A and B). These metabolic rearrangements may confer a direct

advantage to the mutants in a given selective environment, but may

also be their Achilles heels if targeted by a second antibiotic, such

as fosfomycin in ampicillin-resistant populations. Hence, under-

standing metabolic adaptation to evolution of resistance and its

compensation can suggest nonobvious targets for multidrug thera-

pies to slow down evolution of resistance, or reveal weaknesses that

confer hypersensitivity to alternative treatments in evolved resistant

bacteria (Lázár et al, 2013; Gonzales et al, 2015).

The systematic experimental and computational framework

developed in this work generates testable predictions on the func-

tional role of metabolic changes upon evolution of antibiotic

resistance. Beyond inferring adaptive mechanisms in the evolution

of resistance to antibiotics, it can easily be extended to other drug

responses or biological systems such as naturally evolved resistant

pathogens. These adaptive mechanisms could not have been

derived solely from genome sequence analysis of evolved popula-

tions, and classical targeted LC-MS/MS approaches would have

been prohibitive due to the large sample size and their relatively

low coverage. Moreover, our constraint-based modeling approach

differs significantly from other metabolome analysis frameworks

such as classical pathway enrichment analysis (Subramanian et al,

2005) because we explore the entire network topology in a context-

dependent manner, such that different environments/nutrients can

lead to different predictions of limiting metabolites and hence, dif-

ferent interpretations of metabolome changes. Understanding the

relationship between external nutrients and resistance acquisition

and compensation has the potential to suggest less conventional

strategies to slow down or prevent selection and emergence of resis-

tance mechanisms.

Materials and Methods

Bacterial strains and culture conditions

Escherichia coli BW25113 was used as the wild-type strain through-

out this study. Growth medium was standard M9 minimal medium

with 5 g/l of acetate or glucose as carbon sources, in addition to

(per liter) 7.52 g Na2HPO4�2H2O, 3 g KH2PO4, 0.5 g NaCl, 2.5 g

(NH4)2SO4, 14.7 mg CaCl2�2H2O, 246.5 mg MgSO4�7H2O, 16.2 mg

FeCl3�6H2O, 180 lg ZnSO4�7H2O, 120 lg CuCl2�2H2O, 120 lg
MnSO4�H2O, 180 lg CoCl2�6H2O, 1 mg thiamine�HCl. Chloram-

phenicol, ampicillin, and norfloxacin were purchased from Sigma.

Antibiotic evolutionary experiment

For each of the six drug/media combinations, four independent

lineages were propagated in parallel. Serial passaging was

performed in 96 deep-well plate cultivation (2 ml well volume,

900 ll culture volume; Fig 1B). Seven wells in a plate column were

prepared with gradually increasing concentrations of the same

antibiotic, and the last row of the plate served as a growth control

and contained no drug. Every 48 h, OD600 was measured with a

plate reader. The bacterial population that was able to grow (i.e.

OD ≥ 0.5) at the highest of seven tested drug concentrations was

used for the next passaging step. 9 ll of the selected bacterial

culture (e.g. surviving to the highest drug concentration) was used

for reinoculation. The number of generations during each passaging

step was calculated by (i) measuring the final OD after a 48-h

growth cycle (ODfin), (ii) 9 ll of selected evolved populations was

reinoculated in 900 ll of fresh medium yielding a 1/100 dilution for

the new starting OD. At the end of the 48-h growth cycle, OD was

measured (OD*) and number of generation is calculated by the

following formula: log2(OD*/(ODfin/100)). At each propagation

step, an aliquot of the culture was frozen and stored at �80°C to

obtain a library of mutants at different stages of the evolutionary

experiment. At each reinoculation step, the highest drug concentra-

tion tested was adjusted to be at least double of the concentration

where bacterial growth was detected in the previous passaging step.
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In parallel, a similar experimental setup was used to evolve two

independent cultures in antibiotic-free media. Evolutionary lineages

on the two growth media, glucose (GLC) and acetate (ACE) M9, are

referred to as lineage 1–12, where 1–4 evolved resistance to nor-

floxacin, 5–8 to ampicillin, and 9–12 to chloramphenicol. Similarly

to other laboratory evolution strategies (Toprak et al, 2012), this

experimental setup allowed us to qualitatively monitor the rate at

which evolution of resistance progresses.

Whole-genome sequencing

Evolved populations were inoculated from frozen stocks, grown

overnight in LB medium, and chromosomal DNA was purified using

commercial bacterial DNA isolation kits (QIAGEN DNeasy Blood &

Tissue Kit). Isolated DNA was submitted to the functional genomics

center Zurich (http://www.fgcz.ch/) for whole-genome sequencing

on an Illumina Gene Analyzer II× (75 bp single-end reads, average

coverage of 6 million reads per strain). Raw reads were aligned to

the reference genome of E. coli K-12 BW25133 using bowtie 2

(Langmead & Salzberg, 2012). Duplicated alignments were removed

from the alignment files (bam) using samtools v.1.0 (Li et al, 2009),

and the variant calling pipeline of GATK v3.2 (McKenna et al, 2010)

was applied to identify mutations. In particular, the HaplotypeCaller

was employed and a minimum coverage of 20× was imposed. The

vcf variant files were annotated using SnpEff v 4.0 (Cingolani et al,

2012). Raw genome sequence data are available at the European

Nucleotide Archive (http://www.ebi.ac.uk/ena/data/view/PRJEB

19222).

Metabolite extraction and profiling

For each of the four lineages evolved under the three different selec-

tive pressures (i.e. ampicillin, chloramphenicol, and norfloxacin) in

the two media (glucose and acetate M9), we selected eight different

populations at intermediate stages during the evolutionary experi-

ment. Overall, we selected 192 populations under antibiotic selective

pressure. Two of these populations did not grow properly during the

metabolome sampling experiment (i.e. AMP 5_3 and NOR_4_3

evolved in glucose M9) and were excluded from further analysis. We

also profiled the endpoints of evolution for two E. coli populations

evolved in glucose or acetate minimal medium without any antibi-

otics, and wild type. The resulting 193 different E. coli populations

were cultivated in duplicate in 96-well deep-well plates and samples

were collected during exponential phase. Evolved populations were

grown in antibiotic-free M9 media with the carbon source used

throughout the selection process. For sampling, 75 ll of cell culture
was transferred to a 96-well storage plate (Thermo Scientific 96-Well

Storage Plate) and quenched in a cold ethanol bath at �50°C for 7 s.

After quenching, the samples were centrifuged for 2 min at 1,252 g

and 0°C. The supernatant was discarded and the pellet was extracted

with 100 ll of 60% (v/v) ethanol solution at 80°C, for 2 min.

Samples were placed at �80°C and stored until further analysis.

Eight samples for intracellular metabolite profiling were taken at dif-

ferent time points during exponential growth. Extracellular metabo-

lites were collected by sampling 50 ll of cell culture, diluting 1:4 in

150 ll of water, centrifuging for 5 min at 4,000 rpm and 0°C, and

storing at �80°C. Collected samples were directly injected into an

Agilent 6550 time-of-flight mass spectrometer (ESI-iFunnel Q-TOF,

Agilent Technologies). Details are described in Fuhrer et al (2011).

This method is not able to separate compounds with similar m/z and

relies on direct ionization without LC separation. To normalize for

the so-called “matrix-effect”, we extracted E. coli cells with the same

extraction buffer, and normalize data only within similar nutritional

condition (e.g. acetate or glucose minimal media). For 64 metabo-

lites, we could prove that intensities scales linearly with the corre-

sponding metabolite abundance (Appendix Fig S14). Spectral data

processing identified 413 intracellular and 392 extracellular ions that

based on measured accurate mass could be putatively matched to

586 and 553 metabolites in a genome-scale model of E. coli (Orth

et al, 2011), containing 1,136 unique metabolites.

Processing of high-throughput metabolome data

We employed high-throughput time-of-flight mass spectrometry

measurements as previously described in Fuhrer et al (2011). Intra-

cellular and extracellular metabolome extracts were collected during

cell growth from early until late exponential phase. Samples were

collected in biological duplicates and arranged in 96-well plates

before two direct injections.

Raw data normalization was a critical step to obtain accurate

semi-quantitative metabolite concentrations. We considered the

impact of (i) plate-to-plate variance, (ii) the intensity drift during

sequential injection, and (iii) matrix effects. We modeled linear

dependencies between measured ion intensities and (i) drift during

sequential injection for each plate, (ii) amount of extracted biomass

quantified (OD600), and (iii) the total sum of measured ion intensi-

ties. For each metabolite m, the relative change in sample u (FCm)

was calculated as follows:

FCm ¼ log2 Im=ðamODu þ bj;mK þ cj;mTICuÞ
� �

where Im is the measured intensity of metabolite m, ODu represents

the optical density at the time of extraction of sample u, a repre-

sents the linear dependency between measured intensities and OD,

bj represents the linear dependency of measured intensities with

the temporal drift during injections in plate j, K is the injection

sequence (from 1 to 96, number of wells in the same plate), c is

the linear dependency with Total Ion Counts (TIC) in plate j. The

proportionality factors, a, b, and c, were determined by multiple

least square fitting analysis for each ion individually across all

measured samples. For each evolved population(s), fold-change

and variability of metabolite m are, respectively, the average and

standard deviation of FCm across collected samples (Dataset EV2)

and biological replicates.

Metabolome data analysis

For each annotated metabolite, log2 fold-changes in evolved popula-

tions are calculated with respect to the ancestor strain and reported

in Dataset EV2. Relative metabolite changes (FCm) in the eight

selected populations belonging to the same lineage are sorted

according to the number of generations (g). A weighted least square

fitting analysis is then used to fit a sigmoidal curve function:

FCmðgÞ ¼ p1;m þ p2;m � p1;m
� �

1þ 10 p3;m�gð Þ�p4;m
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where p1 is the minimum of the function values, p2 is the dif-

ference between maximum and minimum, p3 is the number of

generations at which metabolite concentration reaches half of its

maximum level, and p4 is the slope. Quality of the fitting is

assessed by estimating the adjusted R2 values using the MATLAB

function “fitnlm”, and weights used are the inverse of the fold-

change standard deviation. A sigmoidal model intrinsically

captures slow and rapid changes from one basal state to a new dif-

ferent state. For those metabolites where a sigmoidal curve exhibits

poor descriptive performance (e.g. low adjusted R2) either: (i) data

are too noisy, (ii) there are no significant changes in the relative

abundance of the metabolite during evolution of antibiotic resis-

tance, (iii) changes are transient and reabsorbed to a normal basal

level by the end of our evolutionary experiment.

Estimation of substrate consumption and byproduct
secretion rates

Of the 12 investigated evolved populations, two did not grow to a

sufficient OD and are therefore excluded from further analysis (lin-

eages 3 and 12 that evolved resistance to norfloxacin and chloram-

phenicol). Selected populations were grown in glucose minimal

medium, and supernatant samples were collected during exponen-

tial phase. Residual glucose was quantified using enzymatic assays

kits (Megazyme), and acetate was quantified by high-performance

liquid chromatography (HPLC). HPLC analysis did not reveal signifi-

cant secretions of other plausible fermentation products, such as

citrate, succinate, fumarate, lactate, malate, oxaloacetate, or pyru-

vate. Relative oxygen uptake rates were measured using the Oxygen

Consumption Rate Assay Kit (MitoXpress�-Xtra HS Method) follow-

ing the suggested protocol. An absolute estimate of oxygen

consumption was made by assuming the uptake rate of oxygen in

wild type equals 14.93 mmol/gDW/h as reported in Covert et al

(2004). Measured rates are reported in Dataset EV5.

Shadow Price estimation and EMC inference

The E. coli MG1655 genome-scale metabolic model (Orth et al,

2011) was used to calculate the shadow prices (w) associated with

each metabolite (j) for the systematic maximization/minimization of

flux (vi) through each individual reaction (i) in the model. In matrix

notation, if the primal problem is formulated in its standard form:

Max bTv

subject to Sv ≤ l, v ≥ 0,

the corresponding symmetric dual problem is as follows:

Min lTw

subject to STw ≥ b, w ≥ 0,

where w is the vector of dual variables.

In our specific case, the primal FBA problems are for each flux vi:

min/max cTvi
s.t. Sv = 0

vmin ≤ v ≤ vmax

where c is a vector with only one nonzero element corresponding to

the flux to be optimized, S is the stoichiometric matrix, and vmin and

vmax are the thermodynamic constraints. Hence, the dual problem

can be formulated as follows:

max=min lTL vmin þ lTUvmax

cT ¼ wTS þ lTL þ lTU
lL � 0

lU � 0

where w are the dual variables associated with the mass balance

constraints and lL and lU the dual variables to the thermodynamic

inequality constraints. The CPLEX LP solver was used to find the

corresponding dual solution to the FBA problems. Two sets of

calculations were performed, corresponding to the two media

conditions (glucose and acetate).

Practically, in a classical FBA analysis, where maximization of

growth is assumed, a shadow price corresponds to the change in the

biomass flux when one of the mass balance constraints is violated

(e.g. metabolite deviating from steady state). Wasting of a metabo-

lite (e.g. secretion) with a negative shadow price would have a

negative impact on the objective, and hence decrease biomass

production (Appendix Fig S5).

Overall, our procedure explores violation of mass balance

constraints to predict the link between metabolite and flux changes.

Given the medium composition, the stoichiometry of the system,

and measurements of actual metabolic changes in evolved popula-

tions, we predicted evolved metabolic characteristics (EMC) as

follows. Model-based estimated shadow prices were compared to

measured altered metabolites in evolved populations. For each

condition, the 5% of metabolites with the highest R2 from the

sigmoidal fitting analysis (Ω) were retained and used for the

comparison. Results are qualitatively similar if the top 1% of meta-

bolic changes are retained (Dataset EV4). It is worth noting that

shadow prices are not by any means predictive of metabolite levels,

but identify limiting metabolites for specific metabolic reactions,

providing a concept to transform the experimentally determined

metabolite concentration changes upon evolution of antibiotic resis-

tance into a network of potential flux rearrangements. We focus

here on the negative signed shadow prices mostly because we are

interested in the concept of limiting resources and how these

resources can constrain/shape evolution of metabolism in antibi-

otic-resistant E. coli. A positive shadow price would biologically

mean that the metabolite is not a limiting resource for the objective

reaction, but rather a toxic element. Moreover, the directionality of

the metabolite changes at steady state (e.g. accumulation/depletion)

is not discriminative in such a framework. For example, the same

higher demand for a metabolite can induce two radically different

scenarios: its overproduction and possibly accumulation, or an

increased utilization, resulting in decrease metabolite levels. In both

cases, the metabolite can still be limiting. Hence, the sign of the

measured metabolic changes was not taken into account to establish

the link with shadow prices.

For each objective reaction (i), the sum of shadow prices for

selected metabolites is divided by the total sum of shadow prices.

This results in a unique similarity score associated with maximiza-

tion or minimization of flux i:

Molecular Systems Biology 13: 917 | 2017 ª 2017 The Authors

Molecular Systems Biology Metabolic evolution to antibiotic resistance Mattia Zampieri et al

10



SHi
o ¼

P

j2X
wj

P

j

wj

where SHi
o denotes the observed statistics associated with maxi-

mization or minimization of reaction i, given the set of altered

metabolites Ω. To avoid any assumption on the underlying back-

ground distribution and independence of categories, we tested the

significance of the observed statistics using a permutation test.

Associations between shadow prices and metabolites are random-

ized 1,000 times, yielding for each tested reaction 1,000 permuted

statistics (SHP). Score significance is assessed as follows:

P�value ¼
P1;000

1

SHP � SHoð Þ
1; 000

For each reaction, the lowest P-value between maximization and

minimization is retained. Reactions identified to be significant (i.e.

P-value ≤ 0.001) in each of the six tested conditions are reported in

Dataset EV4.

Measurement of acrB expression

We used a GFP transcriptional reporter in which the promoter

region of acrAB was fused to GFP in the plasmid pMW82 (Blair

et al, 2015a). Expression of acrAB was measured during mid-loga-

rithmic phase in M9 minimal medium. Changes in promoter activity

during growth were monitored using a plate reader recording GFP

intensity and optical density. GFP levels were normalized dividing

them by the corresponding optical density.

Measure of acrB protein abundance

Bacterial samples required for Western blotting were grown aerobi-

cally overnight in M9 minimal medium at 37°C. The following day

cultures were subcultured and grown in M9 minimal medium at

37°C to approximately mid-logarithmic growth phase (OD600nm ~0.6)

then harvested by centrifugation, and cell pellets were re-suspended

in 50 mM Tris–HCl (pH 8.0). Protein extracts were prepared by

sonication on ice with an MSE Soniprep 150 (Sanyo, UK) for four

pulses of 30 s with a 30-s pause between each pulse. A Bradford

assay was carried out to quantify the protein concentration, and

10 lg of protein was run on 4–12% NuPAGE� Bis-Tris mini gels

with NuPAGE� MES SDS running buffer (Life Technologies, UK).

Protein was transferred to nitrocellulose transfer membranes (What-

man, UK), and analyzed by Western blotting using AcrB antibody at

a 1 :1,000 dilution. Blots were developed using anti-rabbit IgG

horseradish peroxidase-linked antibody (Sigma, UK) at a 1 :25,000

dilution and analyzed using the ECL detection system (GE Health-

care UK).

Elementary flux modes

There are several metabolic operational modes that E. coli can

explore to grow on a glycolytic substrate like glucose, relatively to a

gluconeogenic one, like acetate. For example, cells using glucose

can grow in a completely anaerobic environment, avoiding any

usage of the TCA cycle, or can redirect carbon to the pentose phos-

phate pathway to bypass upper glycolysis. On the contrary, E. coli is

forced to oxidize acetate using the glyoxylate shunt, and gluconeo-

genesis to feed carbon into pentose phosphate pathway. A systematic

analysis of the degrees of freedom in E. coli metabolism for respiro-

fermentative catabolism of glucose, compared to oxidation of

acetate, can be systematically estimated by calculation of all the so-

called elementary flux modes.

Elementary flux modes (EFM) are defined as the minimal reac-

tion sets that are able to operate at steady state (Schuster & Hilgetag,

1994). We used the FluxModeCalculator algorithm (van Klinken &

Willems van Dijk, 2016) to exhaustively estimate all possible EFMs

that can potentially support growth of E. coli when growing in a

glucose versus acetate minimal media, using the stoichiometric

model of central carbon metabolism (http://gcrg.ucsd.edu/Down

loads/EcoliCore).

We compared the different EFMs solutions (e.g. set of reactions)

that E. coli can exploit in order to generate energy to sustain growth

and synthetize all the precursors essential for biomass generation

when using glucose or acetate. While there are only 506 EFMs that

can generate biomass from acetate, we found 83,601 EFMs that can

use glucose in order to sustain growth (Appendix Fig S4).

Metabolic changes upon exposure to norfloxacin,
chloramphenicol, and ampicillin

An isogenic strain of E. coli BW25113 was grown in glucose M9

minimal medium. Culture volumes of 5 ml were incubated at 37°C,

and growth was followed via absorbance at 600 nm. When cell

culture reached an OD600 of 1, cells were perturbed with the imme-

diate addition of 200 ng/ml norfloxacin, 50 lg/ml chloramphenicol,

and 50 lg/ml ampicillin. All samples were harvested after 1 h from

drug exposure. Culture broth samples were transferred on a filter,

supernatant was fast filtered, and metabolome was immediately

extracted. To normalize the amount of biomass extracted, a total

Volume × OD600 equal to 1 was maintained throughout all samples.

The same mass spectrometry technique described in the “Processing

of high-throughput metabolome data” section was used. Relative

fold-changes were calculated for each of the 437 detected metabo-

lites (Dataset EV2) and significance of the changes calculated by

means of t-test analysis over three biological replicates. P-values

were corrected for multiple test by means of q-value correction

(Storey, 2002). Overall, we found 16, 96, and 55 metabolites with

an absolute fold-change > 0.5 and q-value lower or equal than 0.01.

We calculated the number of significantly changed metabolites

within each metabolic pathway relative to the total number of

significant changes (Appendix Fig S9). This experiment revealed

the metabolic changes induced in wild-type E. coli after sudden

exposure to the antibiotics used as selective pressures during the

evolutionary experiments.

While several affected metabolites were in common among

multiple antibiotic perturbations, we observed that the largest frac-

tion of significant changes upon norfloxacin exposure is locating in

pyrimidine metabolism, possibly reinforcing the adaptive functions

of metabolic changes in nucleotide metabolism upon evolution of

resistance to norfloxacin. Similarly, we observed metabolic changes

in glycerolipid metabolism only when cells were confronted with

ampicillin.
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Possible advantages conferred by higher fermentative
metabolism in response to chloramphenicol

We considered here other possible mechanisms conferring higher

tolerance to chloramphenicol upon a reduced cellular respiratory

activity.

Membrane permeability

Mutations of genes related to the respiratory chain were recurrently

observed in aminoglycosides-resistant mutants (Lázár et al, 2013).

However, differently from aminoglycosides, requiring proton motive

force (PMF) to be imported, chloramphenicol can diffuse through

the membrane.

Enzyme cost

TCA cycle enzymes are among the most costly enzymes for cells

(Appendix Fig S15); hence, reduced respiration might compensate

for limited proteome resource. Nevertheless, enzymes in TCA

cycle occupy a small fraction of the total proteome in the cell,

~5% (Li et al, 2014). Hence, it is unclear whether this fraction is

enough to justify the metabolic phenotype observed upon dele-

tions of inhibitors of efflux pumps (i.e. marR and acrR;

Appendix Fig S14).

Oxidative stress

Recent studies suggested TCA cycle imbalance to aggravate antibi-

otic toxicity through generation of reactive oxygen species (ROS;

Foti et al, 2012). However, cells growing anaerobically did not show

higher tolerance to chloramphenicol, but rather increased sensitiv-

ity, suggesting oxidative stress not to be the driving force of

metabolic adaptation in chloramphenicol-resistant populations

(Appendix Fig S10).

Estimation of mutation rate

To estimate the mutations rates in a glucose and acetate minimal

media, we performed a typical fluctuation test (Luria & Delbrück,

1943). 20 cultures of E. coli were grown for 48 h in a glucose and

acetate minimal media. Cells aliquots were plated on LB agar plates

with and without 50 lg/ml of chloramphenicol. After 24 h, cells

were counted and estimate of mutation rates was calculated using

the formula of Luria and Delbrück (1943):

l̂0 ¼ log 2
� logðp̂0Þ

Nt

Results are reported in Dataset EV1.

Data availability

Metabolome data are provided in Dataset EV2. Raw genome

sequence data are available at the European Nucleotide Archive

(http://www.ebi.ac.uk/ena/data/view/PRJEB19222).

Expanded View for this article is available online.
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