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Untargeted metabolomics analysis 
reveals key pathways responsible 
for the synergistic killing of colistin 
and doripenem combination 
against Acinetobacter baumannii
Mohd Hafidz Mahamad Maifiah1, Darren J. Creek1,*, Roger L. Nation1, Alan Forrest2, 
Brian T. Tsuji3, Tony Velkov1 & Jian Li4,*

Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, 
as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the 
synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The 
metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem 
(25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min 
and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation 
of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites 
decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced 
significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation 
of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 
5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially 
by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination 
synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. 
Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of 
synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics.

Multidrug-resistant (MDR) Acinetobacter baumannii has been classified by the Centers for Diseases Control and 
Prevention (CDC) as a ‘‘Serious Threat’’ which is responsible for a plethora of nosocomial infections including 
pneumonia, bacteraemia, wound infections, urinary tract infections and meningitis1–3. As one of the six signifi-
cant ESKAPE ‘superbugs’ identified by the Infectious Diseases Society of America (IDSA), A. baumannii repre-
sents a challenge as it can rapidly develop resistance to all clinically available antibiotics4–7. A. baumannii exhibits 
a wide array of antibiotic resistance strategies, including degradation and modification of enzymes, alteration of 
target binding sites, and activation of efflux pumps8.

Due to the dry antibiotic discovery pipeline, the re-utilization of the ‘old’ polymyxin class of antibiotics has 
become essential for the treatment of life-threatening infections caused by MDR A. baumannii9. Polymyxin B and 
colistin (i.e. polymyxin E) are non-ribosomal cyclic lipopeptides that contain six basic l-α​-γ​-diaminobutyric acid 
(Dab) residues, two hydrophobic amino acids, and an N-terminal fatty acyl group10. Polymyxins interact electro-
statically with the phosphate groups of the lipid A component of lipopolysaccharide (LPS) followed by non-polar 
interactions of hydrophobic domains on both molecules to initiate the rapid bactericidal effect10,11. Destabilization 
of the LPS leaflet of the outer membrane has generally been thought to cause local disturbance, osmotic 
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imbalance and finally cell death, although the ultimate mechanism of cell death is not completely understood12.  
Polymyxin monotherapy may lead to treatment failure as it is not always possible to generate reliably efficacious 
plasma exposure and bacterial resistance may emerge13–18. A. baumannii can become resistant to polymyxins by 
the addition of phosphoethanolamine (pEtN), galactosamine (GalN) or both19–24 to its lipid A structure, or by the 
loss of LPS25. These modifications significantly reduce the negative charge on the bacterial outer membrane, thus 
diminishing the binding of polymyxins10. A number of in vitro studies have shown that colistin and doripenem 
combination therapy is synergistic against MDR Pseudomonas aeruginosa, Klebsiella pneumoniae and A. bauman-
nii26–31. In addition, the colistin-carbapenem combination has been shown to significantly limit the emergence 
of colistin resistance in A. baumannii32. Therefore, polymyxin-carbapenem combinations are often employed to 
enhance therapeutic response and minimize potential polymyxin resistance.

The mechanisms that underlie the synergistic action of polymyxins and carbapenems have not been fully elu-
cidated. Metabolomics provides the opportunity to gain a system-wide snapshot of cellular biochemical networks 
under defined conditions33–35, and has been increasingly employed in bacterial physiology34 and drug discovery 
to elucidate the mechanism of drug action36. Furthermore, a detailed understanding of cellular metabolic per-
turbations in response to antibiotic treatment can potentially facilitate the discovery of novel alternative drug 
targets37. To elucidate the mechanism of synergistic killing of the colistin and doripenem combination against  
A. baumannii, we conducted an untargeted metabolomics study. Our study is the first to reveal that the metabolic 
perturbations induced by the combination were predominantly associated with the effect of colistin in the early 
time points, followed by doripenem at 4 hr. Notably, significant metabolic changes via disorganization of mem-
brane lipids and depletion of nucleotides, energy, and amino sugar metabolites were evident following treatment 
with colistin alone, and were enhanced by its combination with doripenem. Our data provide a novel insight into 
the mechanism of synergistic killing against A. baumannii by the colistin-doripenem combination.

Results
Untargeted metabolomics was applied to profile the metabolic changes in A. baumannii ATCC 19606 treated with 
monotherapy of colistin and doripenem and the combination at 15 min, 1 hr and 4 hr. Four biological replicates 
were independently prepared from different cultures on separate days, and all the samples were analyzed in a single 
LC-MS batch. The within-experiment technical (analytical) variations were monitored based on periodic analysis 
of pooled biological quality control (PBQC) samples in the batch. We showed that the median relative standard 
deviation (RSD) of the PBQC, an indicator for analytical reproducibility, was 14% (Supplementary Figure S1A) 
which is well within the acceptable limits for metabolomics38. In addition, the PCA plot showed the PBQC sam-
ples tightly clustered together, indicating minimal technical variation (Supplementary Figure S1B). The median 
RSD value for each sample group was between 19–30%, showing the dynamics of bacterial metabolism due to 
antibiotic treatments (Supplementary Figure S1A). Principal component analysis (PCA) (Fig. 1A) and heatmaps 
(Supplementary Figure S2) revealed global metabolic changes in A. baumannii after antibiotic treatment at each 
time point. A total of 1,577, 1,583 and 1,637 unique metabolites (carbohydrates, energy, amino acids, nucle-
otides, lipids, peptides, and others) were putatively identified at 15 min, 1 hr and 4 hr, respectively. Univariate 
analysis of these features revealed that 5–11% of metabolites were significantly altered (≥1.5-log2-fold; ANOVA, 
p ≤​ 0.05, FDR ≤​ 0.1) following treatment with monotherapy and the combination at each time point (Fig. 1B, and 
Supplementary Tables 1 and 2).

Colistin induced significant global metabolic changes as early as at 15 min. In contrast, the most substantial 
metabolic changes associated with doripenem monotherapy were observed at 4 hr, signifying the time-dependent 
effect of doripenem. Treatment with the colistin and doripenem combination affected 31 additional metabolites 
that were not altered by either colistin or doripenem treatment alone at 15 min and 1 hr, indicating a synergistic 
effect of this combination. Interestingly, the PCA plot (Fig. 1A) and heatmaps (Supplementary Figure S2) show 
relatively similar metabolic profiles between the treatment with colistin monotherapy and the combination of 
colistin and doripenem at 15 min. There was also considerable overlap at 1 hr as almost half of the perturbed 
metabolites from the combination treatment were also perturbed by colistin alone. However, at 4 hr the impact of 
colistin alone was minimal and the combination treatment shared many metabolic features with the doripenem 
monotherapy (Fig. 1B).

Colistin alone and in combination with doripenem predominantly induced disruption of bac-
terial lipids.  Unique patterns of changes in the levels of lipids were observed in samples treated with either 
colistin monotherapy or combination with doripenem at 15 min, 1 hr and 4 hr. Treatment with colistin alone 
induced significant perturbation in the levels of membrane lipids at 15 min and 1 hr, predominantly the glycero-
phospholipids (GPLs) and fatty acids (FAs) (≥​1.5-log2-fold; ANOVA, p ≤​ 0.05, FDR ≤​ 0.1) (Fig. 2A). Significant 
changes in levels of GPLs were observed after treatment with colistin and doripenem combination at all three 
time points, including the depletion of several lysophosphatidylethanolamines (lysoPE) while only very few FAs 
were affected. Interestingly, the metabolite arising from PE metabolism, sn-glycero-3-phosphoethanolamine, sig-
nificantly decreased (≥​1.5-log2-fold; ANOVA, p ≤​ 0.0001, FDR ≤​ 0.1) after treatment with colistin monotherapy 
and combination across all the time points (Fig. 2B). In addition, the combination therapy significantly decreased 
the level of sn-glycero-3-phosphate (≥​1.5-log2-fold; ANOVA, p ≤​ 0.001, FDR ≤​ 0.1), another metabolite associ-
ated with GPL metabolism (Fig. 2B). Doripenem alone showed no significant changes to lipid levels at 15 min 
and 1 hr. However, doripenem alone caused substantial perturbation in the levels of cellular lipids, predominantly 
accumulation of FAs at 4 hr.

Combination of colistin and doripenem induced global metabolic changes via Pentose 
Phosphate Pathway (PPP) metabolism.  The combination of colistin and doripenem caused significant 
decreases in the levels of metabolites of central carbon metabolism, primarily associated with bacterial anabolic 
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metabolism of the PPP at 15 min, 1 hr and 4 hr (≥​1.5-log2-fold; ANOVA, p ≤​ 0.001, FDR ≤​ 0.1) (Fig. 3). In par-
ticular, the combination of colistin and doripenem induced significant decreases in the levels of three essential 
metabolites of PPP at all time-points, D-ribose 5-phosphate, D-sedoheptulose 7-phosphate, and D-erythrose 
4-phosphate, key precursors for biosynthesis of nucleotides, lipopolysaccharides (LPS) and aromatic amino acids, 
respectively. These metabolites were depleted by colistin monotherapy at early time-points, but not by doripenem 
(significant at 1 hr); whereas significant depletion at 4 hr was observed for doripenem monotherapy, but not colis-
tin. In addition to these PPP metabolites, a related metabolite, 2-deoxy-D-ribose-5-phosphate was consistently 
decreased as a result of the combination of colistin and doripenem at 1 hr and 4 hr.

Colistin and doripenem caused depletion of metabolite levels of energy and nucleotide metab-
olism.  Significant depletion in the levels of intracellular metabolites of energy metabolism, namely ATP, 
NAD+ and NADP+, was observed following treatment with colistin and doripenem combination across all three 
time points (≥​1.5-log2-fold; ANOVA, p ≤​ 0.01, FDR ≤​ 0.1) (Fig. 4A). Treatment with colistin alone decreased 
the levels of these energy metabolites at 15 min and 1 hr, while doripenem-associated depletion was only signif-
icant at 4 hr. Notably, significant perturbations of tricarboxylic acid (TCA) cycle intermediates, fumarate and 
cis-aconitate were identified in samples treated with colistin and doripenem alone and in combination in par-
ticular at 15 min and 4 hr (Supplementary Table 1). In addition, significant depletion in the levels of nucleotides, 
both purines and pyrimidines, were observed after colistin alone at 1 hr, doripenem alone at 4 hr and combination 
treatment at each time point (≥​1.5-log2-fold; ANOVA, p ≤​ 0.01, FDR ≤​ 0.1) (Fig. 4B).

Colistin and doripenem induced depletion of amino sugar metabolites for cell wall biosyn-
thesis.  Colistin alone significantly decreased the intracellular levels of several important metabolites 
associated with amino sugar and nucleotide sugar metabolism, in particular at 1 hr (≥​1.5-log2-fold; ANOVA 
p ≤​ 0.05, FDR ≤​ 0.1) (Fig. 5A). The levels of two major precursor metabolites of cell wall biosynthesis signifi-
cantly decreased after treatment with colistin alone at 1 hr, namely UDP-N-acetylmuramate (UDP-MurNAc) 
and UDP-N-acetylglucosamine (UDP-GlcNAc) (≥​1.5-log2-fold; ANOVA p ≤​ 0.01, FDR ≤​ 0.1). Significant 
decreases in the levels of both metabolites were also observed following treatment with the combination of 
colistin and doripenem at 1 hr and 4 hr. Doripenem alone significantly decreased the amino sugar associated 
metabolites only at 4 hr. In addition to these metabolites, another two metabolites of peptidoglycan biosynthesis 
were identified to significantly decrease at 4 hr after doripenem treatment, meso-2,6-Diaminoheptanedioate and 
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine (≥​1.5-log2-fold; ANOVA 

Figure 1.  Multivariate and univariate analyses of global metabolic changes. (A) PCA score plots of the 
first two principal components for metabolite levels from samples treated with colistin, doripenem and the 
combination at (i) 15 min, (ii) 1 hr, and (iii) 4 hr. Each data set represents a total of 16 samples of 4 biological 
replicates of each condition. Red =​ colistin alone (C); Dark blue =​ doripenem alone (D); Green =​ colistin and 
doripenem combination (CD); Light blue =​ untreated control (X). (B) Venn diagrams represent the number of 
metabolites significantly affected by each treatment at (i) 15 min, (ii) 1 hr, and (iii) 4 hr. Significant metabolites 
were selected with ≥​1.5-log2-fold, p ≤​ 0.05, FDR ≤​ 0.1 (one-way ANOVA for multiple comparison).
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p ≤​ 0.01, FDR ≤​ 0.1). Only UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine 
was found to significantly decrease after treatment with combined colistin/doripenem at 4 hr.

Colistin and doripenem induced alterations in peptide metabolism.  Treatment with doripenem 
alone and the combination of colistin and doripenem showed unique changes in the levels of short peptides 
(Supplementary Figure S3 and Tables 1–3). The number of significantly perturbed peptides increased across the 
time points after treatment with doripenem alone and the combination of colistin and doripenem (≥1.5-log2-fold; 
ANOVA p ≤​ 0.05, FDR ≤​ 0.1). However, colistin alone showed significant changes in the levels of only a few cel-
lular peptides. Interestingly, a unique putative metabolite, tyramine (m/z =​ 137.08, tR =​ 9.03 min; MSI level 2), 
which is associated with tyrosine metabolism was found to significantly increase only after treatment with doripe-
nem alone and the combination of colistin and doripenem across all the time points (≥1.5-log2-fold; ANOVA 
p ≤​ 0.0001, FDR ≤​ 0.1).

Discussion
The global spread of MDR Gram-negative bacteria is alarming and it is crucial to understand the detailed mech-
anisms of antibiotic action and resistance. Bacterial metabolic responses to antibiotics have not been well exam-
ined with cutting-edge metabolomics, and deciphering the metabolome of bacterial cells can potentially lead 
to innovative strategies for effective antibacterial therapy. Polymyxins and carbapenems display their primary 
antibacterial activity via initial interactions with LPS and binding to penicillin-binding proteins (PBPs), respec-
tively10,39. Notwithstanding, increasing evidence indicates that the rarely explored effects on bacterial metabo-
lism are crucial for the antibacterial activity of antibiotics40. The combination of polymyxins with carbapenems 
has been shown to be synergistic against MDR Gram-negative bacteria; albeit, the detailed mechanism of their 
synergistic action(s) has not been examined26–30. Previously, our transcriptomics data revealed that the combi-
nation of colistin and doripenem altered the gene expression profiles in A. baumannii at 1 hr in a similar man-
ner to that of colistin treatment alone. These genes were primarily associated with outer membrane biogenesis, 
fatty acid metabolism and phospholipid trafficking41. Interestingly, similar transcriptional changes were also 

Figure 2.  Perturbations of bacterial lipids. (A) Significantly perturbed lipids in A. baumannii ATCC 19606 
following treatment with colistin (Col, white), doripenem (Dor, grey) and the combination (Col-Dor, black) 
for (i) 15 min, (ii) 1 hr, and (iii) 4 hr. Lipid names are putatively assigned based on accurate mass. (B) Depletion 
of (i) sn-glycero-3-phosphoethanolamine, and (ii) sn-glycero-3-phosphate after treatment with colistin, 
doripenem, and the combination across all three time points. Box plots indicate upper and lower quartiles 
(top and bottom of box); median (line within box); and the spread of data that are not outliers (whiskers). 
*≥1.5-log2-fold, p ≤ 0.05, FDR ≤​ 0.1 (one-way ANOVA).
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observed in the A. baumannii LPS-deficient strain without colistin treatment42. Our present study is the first to 
elucidate the synergistic killing mechanism of the combination of colistin and doripenem against A. baumannii. 
The most significant findings on the synergistic combination in this metabolomics study include: (1) differential 
time-dependent inhibition of key metabolic pathways; (2) perturbation of the PPP and the downstream metabo-
lism of LPS and nucleotides; and (3) inhibition of cell wall synthesis via different targets.

In the present study, global metabolic changes of MDR A. baumannii were investigated following exposure 
to colistin and doripenem individually and in combination over 4 hr. Our results show, for the first time, that 
colistin, doripenem and the combination induced common global metabolic perturbations in A. baumannii, 
and metabolisms of cellular lipids, nucleotides, amino sugars and energy are common pathways involved in the 
synergistic action of colistin and doripenem (Figs 2–5). The initial cellular metabolic perturbations following 
treatment with colistin monotherapy at 15 min and 1 hr impacted several essential metabolic pathways, namely 
lipid metabolism, nucleotide metabolism, amino sugar metabolism and energy metabolism (Figs 2, 4, and 5). 
Similar metabolic alterations were observed following treatment with doripenem alone at 4 hr (Figs 2, 4, and 5), 
indicating the effects of each antibiotic occur in a differential time-dependent manner. With the combination 
treatment, the perturbations were observed across all of the time points. This mechanistic finding has important 
implications for the pharmacokinetics/pharmacodynamics (PK/PD) of the colistin and doripenem combination, 
supporting its use in the clinic for maintaining persistent antibacterial effect and minimizing the potential bacte-
rial regrowth due to colistin monotherapy43,44.

Two key models have been proposed to explain mechanisms of drug synergism, the parallel pathway inhibi-
tion model and the bioavailability model45–48. The parallel pathway inhibition model suggests that two drugs are 
synergistic if they inhibit two different targets in parallel pathways that are essential for an observed phenotype47. 
The bioavailability model suggests that two drugs are synergistic if one drug’s action enhances another drug’s 
availability in the target cell, either by increasing the second drug’s entry into the cell or by decreasing the second 
drug’s degradation or efflux48. As doripenem itself can access its target in the periplasmic space in A. baumannii,  
the bioavailability model is unlikely to explain the synergistic activity of colistin and doripenem, and is not 
supported by our metabolomics data. Our metabolomics analysis indicates that the parallel pathway inhibition 
model explains well the synergistic killing by colistin and doripenem against A. baumannii. Notably, treatment 

Figure 3.  Central metabolic changes in the pentose phosphate pathway (PPP). Antibiotic treatment of 
A. baumannii ATCC 19606 significantly decreased the levels of three PPP metabolites (D-sedoheptulose 
7-phosphate, D-erythrose 4-phosphate, and D-ribose 5-phosphate) that are essential anabolic precursors of 
related pathways. The combined colistin/doripenem significantly decreased the levels of the three precursor 
metabolites at all the time points. Additionally, 2-deoxy-D-ribose 5-phosphate significantly decreased followed 
by the combination at 1 hr and 4 hr. In the pathway flow chart (adapted from biocyc.org with reference to  
E. coli K-12), blue boxes indicate the metabolites that were significantly decreased and red boxes indicate the 
metabolites that were not significantly changed. Box plots indicate upper and lower quartiles (top and bottom of 
box); median (line within box); and the spread of data that are not outliers (whiskers). *≥1.5-log2-fold, p ≤​ 0.05, 
FDR ≤​ 0.1 (one-way ANOVA).
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with colistin or doripenem alone or in combination at different time points significantly decreased the cellular 
levels of PPP intermediates (e.g. D-sedoheptulose 7-phosphate), UDP-GlcNAc and UDP-MurNAc, which are 
key precursor metabolites for the biosynthesis of peptidoglycan and LPS (Figs 3 and 5). Our metabolomics data 
also demonstrate that colistin and doripenem perturb various key pathways related to cell envelope biosynthesis, 
namely GPLs, FAs, LPS and peptidoglycan biosynthesis (Figs 2 and 5). Importantly, our study is the first to reveal 
that colistin itself also caused inhibition of cell wall synthesis by decreasing the essential precursor metabolites 
(i.e. UDP-GlcNAc and UDP-MurNAc), a different mechanism from doripenem which acts via binding to PBPs.

The Gram-negative bacterial cell envelope is composed of an asymmetrical outer membrane (OM), a thin cell 
wall, and a symmetrical inner membrane49. The outer leaflet of the OM is predominantly constituted of LPS and 
the inner leaflet is mainly comprised of phospholipids49,50. In line with the primary mode of action of colistin, our 
metabolomics data revealed that colistin treatment at 15 min and 1 hr caused significant perturbations in the lev-
els of OM lipids, specifically GPLs and FAs (Fig. 2A). In keeping with this finding, our previous transcriptomics 
results showed that colistin treatment up-regulated the expression of the Mla system (Maintenance of OM lipid 
asymmetry) in A. baumannii ATCC 19606, which is responsible for transporting excess phospholipids in the 
outer leaflet back to the inner membrane to maintain the OM asymmetry41,51,52. Significant changes to the OM 
lipids, as observed at both the transcriptomics and metabolomics levels, are highly consistent with the proposed 
bactericidal mechanism of colistin via lipid exchange between the inner and outer membrane11. Furthermore, 
our previous transcriptomics data showed that colistin treatment induced the up-regulation of genes involved 
in fatty acid β​-oxidation/degradation and down-regulation of genes involved in fatty acid biosynthesis41, which 
well explains the colistin-induced fatty acid perturbations observed here (Fig. 2A). Notably, doripenem treat-
ment at 15 min and 1 hr did not produce any appreciable changes in the levels of GPLs and FAs relative to the 
untreated control (Fig. 2A), and the expression of lipid metabolism genes was not affected at 15 min, although 

Figure 4.  Depletion of energy and nucleotide metabolite levels. (A) Decreased levels of key energy-
associated metabolites, ATP, NAD+ and NADP+ induced by colistin, doripenem, and the combination in  
A. baumannii ATCC 19606. Box plots indicate upper and lower quartiles (top and bottom of box); median (line 
within box); and the spread of data that are not outliers (whiskers). *≥1.5-log2-fold, p ≤​ 0.05, FDR ≤​ 0.1 (one-
way ANOVA). (B) Heatmap profile of relative abundance of significantly perturbed nucleotides at (i) 15 min, (ii) 
1 hr, and (iii) 4 hr after treatment with colistin (Col), doripenem (Dor) and the combination (Col-Dor) (n =​ 4). 
Antibiotics decreased the levels of nucleotides, both purines and pyrimidines, in A. baumannii ATCC 19606.
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significant transcriptomic changes were reported for doripenem treatment at 1 hr (i.e. retrograde phospholipid 
transport and lipoprotein transport)41. However, doripenem treatment at 4 hr produced a similar pattern of lipid 
changes (both GPLs and FAs) as per the aforementioned colistin treatment at 15 min and 1 hr. Interestingly, the 
entire time-course of the combination treatment displayed a distinct pattern of lipid changes, wherein only the 
GPLs were significantly perturbed while the FA levels remained largely unaffected. One metabolite involved in 
glycerophospholipid metabolism, sn-glycero-3-phosphoethanolamine, was specifically associated with colistin 
treatment, both alone and in combination, but sn-glycero-3-phosphoethanolamine was also significantly depleted 
in the LPS-deficient polymyxin-resistant strain A. baumannii 19606 R relative to the wild-type ATCC 19606 strain 
in the absence of polymyxin treatment53.

In terms of the impact on energy metabolism, treatment with the colistin/doripenem combination signifi-
cantly decreased intracellular ATP, NADP+ and NAD+ levels and the levels of three major metabolites of PPP, 
namely D-sedoheptulose-7-phosphate, D-ribose 5-phosphate and D-erythrose 4-phosphate. ADP-heptose, a 
key downstream metabolite of the heptose biosynthesis pathway, is an important component of the LPS inner 
core54,55. Mutations in the gene (GmhA) associated with ADP-glyceromannoheptose synthesis in Haemophilus 
influenza, which cause deficiencies in heptose biosynthesis, result in an avirulent phenotype, increased membrane 
permeability and increased susceptibility to antibiotics55–57. Excitingly, our data revealed significant depletion 
in the levels of D-sedoheptulose-7-phosphate under all treatment conditions (Fig. 3). As D-sedoheptulose-
7-phosphate is also a key early precursor metabolite in the heptose biosynthesis pathway, our data suggest that 
colistin, doripenem, and their combination perturb the biosynthesis of ADP-heptose in A. baumannii via inhibi-
tion of the PPP. Another metabolite in the PPP, D-ribose 5-phosphate, was depleted after treatment with colistin, 
doripenem and the combination (Fig. 3). D-Ribose 5-phosphate is a key initial precursor metabolite in purine 
and pyrimidine metabolism, and hence all treatment conditions caused significant decreases in the levels of 
nucleotides, both purine and pyrimidine (Fig. 4B). Previous metabolomics studies have shown total depletion of 

Figure 5.  Depletion of amino sugar metabolites for peptidoglycan and lipopolysaccharide biosynthesis. 
(A) Significant decrease in the levels of two amino sugar metabolites at 1 hr and 4 hr by colistin, doripenem and 
the combination, and perturbation of the cell envelope biosynthesis (peptidoglycan and lipopolysaccharide 
biosynthesis) in A. baumannii ATCC 19606. UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) is a key precursor 
metabolite for LPS and peptidoglycan biosynthesis. (B) Levels of two key metabolites of peptidoglycan 
biosynthesis significantly decreased after treatment with doripenem alone at 4 hr. The combination of colistin 
and doripenem also significantly decreased UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminopimeloyl-D-alanyl-D-alanine (>​2.0-log2-fold) at 4 hr. The blue boxes in the flow charts indicate the 
metabolites that were significantly decreased. The red boxes indicate the metabolites that were not significantly 
changed. Box plots indicate upper and lower quartiles (top and bottom of box); median (line within box); and 
the spread of data that are not outliers (whiskers). *≥1.5-log2-fold, p ≤​ 0.05, FDR ≤​ 0.1 (one-way ANOVA).
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the nucleotide pool following antibiotic treatment (ampicillin, kanamycin, norfloxacin, and vancomycin) in both 
Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria40,58. The significant changes 
in nucleotide levels in antibiotic-treated samples were suggestive of nucleotide degradation40. Interestingly, signif-
icant depletion in the levels of nucleotides in the polymyxin-resistant LPS-deficient strain A. baumannii 19606 R 
was observed even without polymyxin treatment53. Significant depletion in the levels of ATP, NADP+ and NAD+ 
is likely secondary to the nucleotide pool depletion, but may also be indicative of altered oxidative phosphoryla-
tion. It has been reported that polymyxins induce inhibition of respiration which reduces the level of the intracel-
lular ATP pool59, and altered levels of TCA metabolites (fumarate and cis-aconitate) were observed in the present 
study. It is likely that the depletion of energy related metabolites by colistin, doripenem and the combination is a 
secondary effect of their antibacterial activity against A. baumannii.

The broad-spectrum antibacterial effect of doripenem against Gram-positive and Gram-negative bacte-
ria is by virtue of its ability to inhibit biosynthesis of the key building block of the bacterial cell wall, pepti-
doglycan39,60,61. Fundamentally, doripenem is a substrate analogue that binds to the C-terminal transpeptidase 
active site of PBPs in a non-reversible manner, thus inhibiting the peptidoglycan polymerization process62. 
Notably, following treatment with doripenem alone or in combination at 4 hr, we observed a significant 
decrease in the levels of the peptidoglycan biosynthesis metabolites, meso-2,6-diaminoheptanedioate and 
UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl-D-alanine (Fig. 5B). As mentioned 
above, colistin monotherapy also significantly decreased the levels of the essential peptidoglycan precursor metab-
olites UDP-GlcNAc and UDP-MurNAc (Fig. 5A). Interestingly, our previous transcriptomics results showed that 
peptidoglycan-associated lipoproteins were significantly up-regulated in A. baumannii in response to treatment 
with colistin and doripenem alone or in combination41. The up-regulation of peptidoglycan-associated lipopro-
teins may be a protective action by A. baumannii to cope with the inhibition of peptidoglycan synthesis by doripe-
nem and/or colistin. Taken together, our current metabolomic study reveals that, in addition to disorganizing  
the OM, colistin also inteferes cell wall synthesis via inhbition of peptidoglycan metabolism; this mechanism also 
explains the synergistic killing effect of its combination with a carbapenem.

Studies have shown that the mechanism of polymyxin activity was partly associated with oxidative stress 
via the formation of hydroxyl radicals, with reactive oxygen species mainly targeting DNA, RNA, proteins and 
lipids63, or by inhibition of respiratory chain enzymes (e.g. NADH-quinone oxidoreductase)64,65. However, the 
association of free radicals in the mechanism of antibiotic bacterial killing is disputable66–70. In our analysis the 
reduced form of glutathione (GSH), an important indicator of oxidative stress, was not detected, as it was likely 
oxidized to glutathione disulfide (GSSG) during sample preparation and/or storage71. Nevertheless, the total glu-
tathione content, measured as GSSG, was significantly depleted following exposure to colistin and doripenem 
alone and in combination (Supplementary Table 1); this result is in line with the utilization of glutathione pools 
to compensate for antibiotic-induced oxidative damage, albeit not consistent with the increased levels of reduced 
glutathione previously reported40. Even though we were unable to detect specific markers of oxidative stress from 
the TCA cycle intermediate (i.e. α​-ketoglutarate) and product (i.e. NADH), the changes to other TCA metab-
olites (i.e. fumarate and cis-aconitate) clearly indicate the perturbation of the TCA cycle in response to single 
and combination treatments of colistin and doripenem. Our group previously demonstrated that A. baumannii 
ATCC 19606 treated with colistin significantly increased the expression of superoxide dismutase (SOD) enzyme, 
HMPREF0010_02336 (sodB encoding a predicted FeSOD) and HMPREF0010_02564 (encoding a predicted 
Cu-ZnSOD), suggesting the association of hydroxyl radicals in colistin antibacterial activity41.

To the best of our knowledge, this is the first metabolomics study to investigate the mechanism of action of 
colistin either as monotherapy, or in combination with doripenem, against A. baumannii. Our study discovered 
significant perturbations to cell envelope biosynthesis, nucleotide metabolism, and energy metabolism by colistin 
and its synergistic combination with doripenem. The convergence of antibiotic-induced metabolic profiles on the 
depletion of PPP and amino-sugar metabolites indicates that these pathways play key roles in the antibacterial 
activity of colistin alone and its combination with doripenem. Importantly, we are the first to demonstrate that 
the combination of colistin with doripenem synergistically kills A. baumannii via inhibiting different key meta-
bolic pathways in a time-dependent manner, which highlights the essentiality of mechanism-based optimization 
of this combination using pharmacokinetics/pharmacodynamics. Overall, this study highlights the importance 
of elucidating the complex and dynamic interaction of multiple cellular metabolic pathways due to antibiotic 
treatment, and the significant potential of systems pharmacology in paradigm-shifting optimization of antibiotic 
use in patients.

Materials and Methods
Strain, antibiotics and reagents.  A. baumannii ATCC 19606 (American Type Culture Collection 
[ATCC], Manassas, USA) was susceptible to both colistin and doripenem with MICs of 1 mg/L for both antibi-
otics. The strain was grown in cation-adjusted Mueller-Hinton broth (MHB; Oxoid, Australia; 20–25 mg/L Ca2+ 
and 10–12.5 mg/L Mg2+). Colistin (Sigma-Aldrich, Saint Louis, USA) and doripenem (Doribax, Shinogi Inc, 
Osaka, Japan) were prepared using Milli-Q water (Millipore Australia, North Ryde, New South Wales, Australia) 
prior to each experiment and sterilized by filtration with a 0.22-μ​m pore size Millex GP filter (Millipore, Bedford, 
MA).

Bacterial culture preparation.  Culture of A. baumannii ATCC 19606 was prepared on a nutrient agar plate 
from the frozen stock (−​80 °C) and incubated for 16–18 hr at 37 °C. For the overnight culture, a colony of ATCC 
19606 was inoculated into 15 mL MHB and incubated for 16–18 hr at 37 °C with shaking at 150 rpm. For the main 
culture, 1:100 dilution of the overnight culture was sub-cultured into four different reservoirs containing 200 mL 
fresh MHB and grown to an optical density at 600 nm (OD600) of ~0.5 to achieve the starting inoculum ~108 cfu/mL  
(in order to obtain enough cells) of an early exponential growth phase. Bacterial culture was treated with colistin 
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(2 mg/L), doripenem (25 mg/L), and combination of colistin and doripenem (2 mg/L +​ 25 mg/L, respectively); 
concentrations of colistin and doripenem were chosen based on their pharmacokinetics in patients26. Bacterial 
culture without any antibiotic treatment served as a control. Four biological replicates were prepared inde-
pendently from different colonies of ATCC 19606 on different days.

Preparation of cellular metabolite extracts.  The untargeted metabolomics study was performed to 
investigate global metabolic alterations in A. baumannii ATCC 19606 due to colistin, doripenem and the combi-
nation treatments in an in vitro static time-kill study. Cellular metabolites of A. baumannii were extracted by the 
previously optimized method with slight modifications53. Samples were collected before treatment with colistin, 
doripenem and the combination (i.e. time =​ 0), and at 15 min, 1 hr, and 4 hr for metabolite extraction and viable 
counting. For the fingerprint samples (i.e. intracellular metabolites), 15 mL of the bacterial culture was collected 
and immediately transferred on ice. All the samples were rapidly quenched in a dry ice/ethanol bath and pre-
served on ice for all following steps. Samples were normalized by optical density (OD600 nm) and centrifuged for 
10 min at 3,220 g at 4 °C. The supernatant was collected for extracellular metabolites (i.e. footprint). The cell pellets 
were washed three times with sterile saline (4 °C) and centrifuged for 3 min at 3,220 g at 4 °C. Cellular metabo-
lites were extracted with chloroform:methanol:water (1:3:1, v/v; −​80 °C) (total volume of 300 μ​L) containing 
generic internal standards (CHAPS, CAPS, PIPES and TRIS) at 1 μ​M. Samples were immediately frozen in liquid 
nitrogen and allowed to thaw on ice, and the freeze-thaw process was repeated three times to lyse the cells and 
release cellular metabolites. The extracted samples were centrifuged for 10 min at 3,220 g at 4 °C and the superna-
tant was collected and further centrifuged at 14,000 g for 10 min at 4 °C. The final supernatant samples (200 μ​L) 
were collected into injector vials for LC-MS analysis. For footprint samples, aliquots of the culture supernatant 
were rapidly filtered through a 0.22-μ​m membrane filter, and 10 μ​L of the supernatant was mixed with 250 μ​L 
of chloroform:methanol:water (1:3:1, v/v) and centrifuged at 14,000 g for 10 min at 4 °C to collect particle-free 
supernatant for LC-MS analysis.

LC-MS analysis of metabolites.  Samples were analyzed on a Q-Exactive Orbitrap mass spectrometer 
(Thermo Fisher), coupled to a Dionex high-performance liquid chromatograph (U3000 RSLC HPLC, Thermo 
Fisher) with a ZIC-pHILIC column (5 μ​m, polymeric, 150 ×​ 4.6 mm; SeQuant, Merck). The MS system was oper-
ated at 35,000 resolution in both positive and negative electro-spray ionization (ESI) mode (rapid switching) and 
a detection range of 85 to 1,275 m/z. The LC solvent consisted of 20 mM ammonium carbonate (A) and acetoni-
trile (B) with a multi-step gradient system from 80% B to 50% B over 15 min, then to 5% B at 18 min, followed 
by a wash with 5% B for 3 min, and re-equilibration for 8 min with 80% B at a flow rate of 0.3 mL/min53. The 
injection sample volume was 10 μ​L and the run time was 32 min. All samples were analyzed in the same run and 
the chromatographic peaks, signal reproducibility and analyte stability were monitored by assessment of pooled 
biological quality control (PBQC) samples (aliquot of 10 μ​L of each sample, including both footprints and fin-
gerprints) analyzed periodically throughout the batch, internal standards and total ion chromatograms for each 
sample. Mixtures of pure standards containing over 200 metabolites were analyzed within the batch to aid in the 
identification of metabolites.

Data processing, bioinformatics and statistical analyses.  Metabolomics data analyses were per-
formed as previously described53 using mzMatch72 and IDEOM (http://mzmatch.sourceforge.net/ideom.php)73. 
Quantification of each metabolite was conducted using the raw peak height. Univariate and multivariate analyses 
utilized MetaboAnalyst 3.074. Prior to analysis, relative peak intensity data were normalized by the median, log 
transformed and scaled (by auto scale function) to reduce variance between the samples. The global metabolic 
profiles of samples with antibiotic treatments at each time point were analyzed using multivariate statistical anal-
ysis by unsupervised principal component analysis (PCA). One-way Analysis of Variance (ANOVA) (p <​ 0.05, 
FDR ≤​ 0.1) for multiple comparison and post hoc analysis using Tukey’s Honestly Significant Difference (Tukey’s 
HSD) were applied to identify significant metabolite changes between treated and untreated control samples at 
each time point. Metabolites that were detected as isomeric peaks with opposite abundance changes (increased 
and decreased levels) were excluded. To further increase the reliability of the data, significant metabolites were 
filtered by selection of only those that showed a ≥​ 1.5-log2-fold change relative to the untreated control samples 
and an identification confidence score of 6 or more in IDEOM (i.e. removing likely LC-MS artefacts). Metabolic 
pathway analysis was performed based on the statistically significant identified metabolites (≥1.5-log2-fold; 
p ≤​ 0.05, FDR ≤​ 0.1, one-way ANOVA for multiple comparison). Visualization and Analysis of Networks con-
taining Experimental Data (Vanted) software was utilized to visualize the associated metabolic pathways75.
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