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Abstract: Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective
therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases.
Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly
expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized
that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory
role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling
cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological
evidences showed promising role of phytochemicals against several types of cancer. Oleanolic
acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant
species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of
phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer
effects of oleanolic acid are mediated by caspases, 5′ adenosine monophosphate-activated protein
kinase, extracellular signal–regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax
and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen
species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB,
cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well
as aforementioned signaling pathways . In this work, we critically review the scientific literature
on the molecular targets of oleanolic acid implicated in the prevention and treatment of several
types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this
bioactive phytochemical.
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1. Introduction

Cancer is known as one of the major global health problems throughout the world, mainly due to
changes in lifestyle, as well as unhealthy diets and environmental pollution [1]. Currently, the global
map of cancer prevalence is rapidly changing. Referring to Western societies, there has been a decrease
in most cancer-related mortality. Meanwhile incidence and mortality continue to rise quickly in
developing or undeveloped countries [2,3].

Nowadays, cancer has been considered as an important cause of death and it is estimated that it
will be more than 18 billion in the next five years [4]. Despite the substantial progress made in diagnosis
and treatment, current therapeutic protocols, such as radiotherapy, phototherapy, chemotherapy,
immunotherapy, as well as surgical protocols, are limited and still associated with low outcome, and
high morbidity and mortality rate, suggesting crucial needs for finding new effective therapeutic
agents [4,5].

The term “chemoprevention” refers to use of pharmacological agents, nutraceutical, as well as
bioactive natural products, to prevent or delay cancer development [5]. Recently, much attention has
been paid to the clinical usage of natural products as anticancer agents to prevent cancer or delay its
development [1,6–8].

Epidemiological evidence shows that there is a reverse correlation between high intake of
vegetables and fruits and developing non-communicable disease, such as certain types of cancer,
stroke, and neurodegenerative diseases [7,9,10]. This statement is particularly ascribed to the presence
of a variety of non-nutritive phytochemical agents from plant-based foods [11]. At the same time,
a compelling trend and one of the current dilemmas in natural products research is what is more
beneficial: the plant extract/herbal product or its active phytoconstituents? The researchers that are
in favor of the “whole” argue that the therapeutic efficacy of an extract is the outcome of synergistic
or additive effects of its various bioactive components, while those who prefer purified compounds
contend that, unlike isolated compounds, several phytochemicals present as a mixture in a natural
source are not bioavailable, or have limited bioavailability and, therefore, are less useful. Both
arguments present valid hypotheses and, despite the fact that a significant amount of investigation has
been carried out in the field, results do not proclaim a winning side [2,11].

When considering the influence of dietary patterns, many efforts have been carried out to evaluate
the association between certain dietary models and their health claims as well as the influence of
particular single components from the wide range of other nutrients or non-nutrients. Nonetheless, it
is worth mentioning that, among various dietary patterns, a traditional Mediterranean diet has been
revealed as one of the healthiest choices and this claim is being ascribed to the consumption of copious
amounts of olive oil [12]. Despite being less investigated than phenolic compounds, current studies on
olive oil triterpenoids, such as oleanolic acid, have revealed a marked potential in altering different cell
signaling pathways and, thus, reveal significant potential in cancer prevention and therapy [12–16].

This review presents the chemistry, sources, and bioavailability, as well as the anticancer effects of
oleanolic acid, with a particular emphasis on molecular mechanisms of action.

2. Chemistry and Biosynthesis

Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) is one of the most common pentacyclic
triterpenoid compounds mainly found in different herbal sources [17]. It is a non-volatile light yellow
compound soluble in 1-butanol and ethyl acetate and less soluble in ethanol, 2-propanol, methanol,
acetone, and water, where solubility increases with an increase in temperature [18,19]. Triterpenoid
compounds possess great pharmacological potential, and their biosynthetic pathways in plants have
been thoroughly studied. As reviewed by Pollier and Goossens [17], oleanolic acid biosynthesis
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goes from the primary sterol metabolism precursor 2,3-oxidosqualene (synthesized in the mevalonate
pathway), which is cyclized to β-amyrin by the enzyme β-amyrin synthase. Further, β-amyrin and
erythrodiol undergo three consecutive oxidation steps at the C-28 position by the cytochrome P450
(CYP) enzyme to produce oleanolic acid. Oleanolic acid in plants occurs both in its free form, and also
as a triterpenoid saponin aglycone linked to one or more sugar moieties. In its free form, it is found in
plants cuticular waxes, where it is involved in plant biotic and abiotic stress responses [17].

In plants and plant-based foods, oleanolic acid is often found together with isomer ursolic acid,
from which it differs by the sites of the methyl group on the E loop (Figure 1). Both isomers have
similar pharmacological properties [20,21], although they can differ in the intensity of biological
activity due to the difference in the position of the methyl groups, which influences their potency
and consequently bioactivity of compounds [22]. Oleanolic acid is a registered drug for treating
liver diseases in China [23]. In the last 20 years, numerous investigations have been centered on the
chemical modifications of oleanolic acid in order to make it more effective and/or develop water
soluble derivatives, which resulted in hundreds of new compounds with diverse biological activities.
Among the most studied compounds, bardoxolone methyl has been evaluated in several clinical trials
for diabetes mellitus, chronic kidney disease, and various types of cancer [16,24].
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3. Sources and Bioavailability

Oleanolic acid is found in more than 1600 plant species [16]. Aerial parts of higher plants are
covered with a hydrophobic layer called the cuticule, which forms a protective coating important for
plant survival in its environment. The cuticle contains two structural ingredients, including a polymeric
matrix called cutin, and epicuticular wax which can be distinguished in intracuticular and epicuticular
layers [25]. Numerous research reported that triterpenoids in plants are found concentrated in the
intracuticular wax compartment (reviewed in [25]). Therefore, oleanolic acid content is much higher in
fruit “skin” or “peel” (non-botanical terms which include cuticle and multiple cell types) in comparison
with the pulp (Table 1). In general, fruits which are consumed with the skin, including dried fruits,
can be better dietary sources of oleanolic acid [26]. The most important sources of oleanolic acid
in human diet are olives (Olea europaea L.), from which the compound derives its name, and their
products, such as olive oil [27]. It is estimated that in the Mediterranean diet, containing olives and
olive oils, total daily intake of oleanolic acid is around 25 mg [28]. In addition to olives, other foods
common in the Mediterranean diet, such as various legumes, contain oleanolic acid in the range of
0.251–2.591 µg/g fresh weight (fw) [29]. High amounts of oleanolic acid are also present in edible parts
of jujube (Ziziphus jujube Mill.), a commonly consumed fruit in Southern Asia and China [30].

Although triterpenes in free form are found in cuticular waxes of edible plants, roots of medicinal
plants, such as ginseng (Panex sp.) [31] and wild sage (Lantana camara L.) [32], are also high in
oleanolic acid. Hawthorn berries (Crataegus sp.) [33], and fruits of Chinese privet (Ligustrum lucidum
W.T. Aiton) [34] and Chinese quince (Chaenomeles sinensis (Thouin) Koehne) [35] stand out among
other plants used in traditional medicine as a good source of oleanolic acid. Additionally, numerous
other medicinal and aromatic plants contain oleanolic acid. Large scale studies have shown its
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presence in 88 taxa of Lamiaceae family [36]. Comparative analysis of 38 commercial herbal extracts
showed the presence of oleanolic acid in extracts of Aesculus hyppocastanum L., Crataegus monogyna L.,
Harpagophytum procumbens DC, Lagerstroemia speciosa L., Ortosiphon stamineus L., Punica granatum L.,
Styrax benzoin Dryand., Vaccinium myrtillus L. and Vitis vinifera L. [37]. Oleanolic acid is also detected
in propolis [37] and numerous plant-based products, including spices [38,39], vegetable oil [27], and
snack products, containing dried whole fruits [26].

Biological effects of food components do not depend solely on their amount in certain food, but
rather on their bioavailability. Bioavailability is the proportion of a compound that enters the systemic
circulation when introduced into the body. Experimental and clinical studies reported the presence
of oleanolic acid in blood several hours after intake in its intact form [39–41], but oral bioavailability
was low due to low aqueous solubility and intensive metabolism by cytochrome P450 isoenzymes
(CYP) [42]. Jeong et al. [43] reported that the bioavailability of oleanolic acid after oral administration
was only 0.7% in rats. Therefore, in recent years much scientific efforts have been put on creation
of complexes and formulations that could increase oleanolic acid bioavailability through increased
solubility and permeability [42]. On the other hand, bioavailability does not depend only on physical
and chemical properties of a compound, but on the fact that other micro-and macronutrients present
in consumed foods affect the bioavailability and metabolism of the targeted compound. In this area,
studies on oleanolic acid are still insufficient.

Table 1. Main sources of oleanolic acid.

Fruits Analyzed Part Oleanolic Acid Concentration Method Reference

Apples Pomace 16 µg/g·dm
HPLC-DAD [44]Skin 28 µg/g·dm

Pomegranate
Sarocarp nd

HPLC-DAD [45]

Peel 26.96 ± 0.93 µg/g dw
Seed 1.12 ± 0.09 µg/g dw

Lemon
Sarocarp nd

Peel 0.62 ± 0.01 µg/g dw

Mandarin
Sarocarp nd

Peel 1.05 ± 0.04 µg/g dw

Bilberries Whole fruit 1679.2–2029.6 µg/g dw GC-MS-FID [25]

Pears
Skin 164.3–3066.6 µg/g fw

HPLC-PAD [46]Pulp 34.0–156.0 µg/g fw

Grapes Peel 176.2 µg/g dw

HPLC-FD [47]
Persimmon

Peel 367.7 µg/g dw
Flesh 17.2 µg/g dw

Jujube Pulp 360 ± 10.7 µg/g dw UHPLC-MS/MS [30]

Olives
Skin 3094–4356 µg/g fw

HPLC-DAD [48]Pulp 27–29 µg/g fw
Seed nd

dm, dry matter; dw, dry weight; fw, fresh weight; nd, not detected.

4. Oleanolic Acid as Anticancer Agent

4.1. Oleanolic Acid Inhibited Tumor Initiation and Development

The anticancer effects of oleanolic acid have been evaluated in many cancer types, including liver
cancer [49–52], lung cancer [53,54], breast cancer [55], colon cancer [56–58], bladder cancer [59], prostate
cancer [60], pancreatic cancer [61,62], gastric cancer [63], gallbladder cancer [64], osteosarcoma [65],
hematological malignancies, e.g., leukemia [66], as well as in central nervous system cancers, such as
malignant glioma [67,68].
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Anticancer activity of oleanolic acid was initially described by inhibition of the tumor promotion
of mouse skin cancer cells under in vivo conditions [69]. In this model, oleanolic acid inhibited
chemically-induced carcinogenesis through inhibition of irregular gene expression of several studied
genes in mouse skin cancer cells [70]. In another study, chronic oral administration of oleanolic acid
(five times a week for four weeks) decreased colon carcinogenesis in rats, showing that oleanolic acid
can inhibit tumor initiation [56].

Oleanolic acid dose-dependently suppressed tumor promotion and caused cell cycle arrest at
G0/G1 phase in prostate cancer cells [60], at G0/G1 phase in gallbladder cancer cells [64], at S phase
and/or G2/M phase in pancreatic cancer cells [62], at subG1 phase in hepatocellular carcinoma
cells [71], and at G2/M phase via inhibition of cyclin B1/cdc2 mediated by p21 in hepatocellular
carcinoma cells [51,52]. Oleanolic acid treatment of lung cancer cells can also cause cell cycle arrest
by modulating miR-122/cyclin G1/MEF2D axis [54]. Modification of the miR-122 activity is a
novel anticancer strategy, since this microRNA suppresses cancer cell survival, proliferation, and
invasion [72].

Oleanolic acid and its derivatives act as inhibitors of the phosphatidylinositide 3-kinase/protein
kinase B/mammalian target of rapamycin/nuclear factor-κB (PI3K/Akt/mTOR/NF-κB) signaling
pathway in a dose-dependent fashion [50,55,60]. Another study showed that oleanolic acid inhibited
Akt/mTOR/S6K signaling pathway [59]. Oleanolic acid reduced the phosphorylation of PI3K and
Akt, which are the upstream molecules of mTOR pathway, whereas there were no significant changes
in the expression levels of total PI3K or Akt. These effects are probably mediated by reactive oxygen
species (ROS) because treatment of cells with antioxidants, such as N-acetylcysteine, reversed the
inhibitory activity of oleanolic acid [50]. In addition, over-expression of Akt also reversed the effects of
oleanolic acid [60]. Importantly, oleanolic acid is also an inhibitor of extracellular signal–regulated
kinase/c-Jun N-terminal kinase/mitogen-activated protein kinase (ERK/JNK/p38 MAPK) signaling
pathway mediated by the activation of the 5′ adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway that consequently activates downstream signaling leading to the mTOR
inhibition and activation of autophagy [55,68,73]. A significant decrease in p-p38α/p38α ratio and
in the levels of p-JNK1 and pERK1/2 together with the increased phosphorylation of AMPK were
reported in oleanolic acid-treated cancer cells [74]. Oleanolic acid via an AMPK activation-dependent
manner also induced metabolic alterations in cancer cells, such as suppressed lipogenesis, protein
synthesis, and aerobic glycolysis, thus having tumor suppressor activity [74]. Moreover, it has been
demonstrated that ERK activation plays a pivotal role in cancer cells resistant to oleanolic acid’s
pro-apoptotic activity [75]. Therefore, pharmacological ERK suppression increased anticancer activity
by sensitizing cancer cells to oleanolic acid [75].

From the tumor cell proliferation perspective, oleanolic acid acted as an inhibitor of transforming
growth factor-β (TGF-β) by binding to its receptors [76]. Cancer cells respond to excessive production
of TGF-β in a pro-tumorigenic manner [77]. In addition, the isomer of oleanolic acid, ursolic acid,
inhibited TGF-β/Smad signaling pathways with the antagonistic activity in the low micromolar range
(IC50 = 6.9 µM) [78]. Moreover, oleanolic acid also inhibited topoisomerase I and IIα proteins, which are
key enzymes involved in tumor cell proliferation, by relaxing DNA supercoiling inside cells [63]. It has
been demonstrated that topoisomerase inhibition activates the NF-κB pathway [79]. The suppression
of Top-I and Top-IIα resulted in the inhibition of the NF-κB pathway via p-IκBα and p-p65-dependent
manner [63].

Oleanolic acid also induced apoptosis through a mitochondrial-dependent pathway by altering
mitochondrial membrane potential, releasing caspase activators, such as cytochrome c, into the
cytoplasm, leading to the fragmentation of nuclear DNA in human cancer cells [51,71]. The effects
can be mediated by the alteration of expression levels of the pro- and anti-apoptotic Bcl-2 families,
as evidenced by the decreased expression of anti-apoptotic Bcl-2 and the increased expression of
proapoptotic Bax [51].
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Although most studies are focused on isolated oleanolic acid and several derivatives, studies
on plant extracts containing triterpenes, including oleanolic acid, are also reported. For example,
various extracts of Oldenlandia diffusa, member of the Rubiaceae family, have been shown to be effective
against a number of cancer models, including breast cancer, small cell lung carcinoma, or leukemia
cells [80–82]. Crataegus pinnatifida, belonging to the Rosaceae family, is another example of a medicinal
plant with potential effects against cancer cells. Triterpenoids-enriched fraction demonstrated notable
antiproliferative activities against liver and breast carcinoma cells [83]. Ethyl acetate extract from
Betula utilis, a member of the Betulaceae family, exerted cytotoxic activity against cancer cell lines, such
as breast, head and neck, lung, ovary, colon, and cervical carcinoma cells [84].

4.2. Oleanolic Acid Induced Apoptosis

Oleanolic acid induced apoptosis of tumor cells in numerous cancer cell lines, including acute
myeloid leukemia [85], liver cancer cells [50,51], osteosarcoma cells [65], non-small cell lung cancer
cells (NSCLC) [53], breast cancer cells [55,86], gastric cancer cells [62,87], pancreatic cancer cells [63],
prostate cancer cells [61], bladder cancer cells [59], and colorectal cancer cells [58].

Oleanolic acid and its derivatives induced both extrinsic and intrinsic apoptosis by multiple
signaling pathways. Extrinsic apoptosis was induced in human lung cancer cells by oleanolic
acid derivative, methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate, via MAPK pathways, leading
to caspase-8 activation [88]. Oleanolic acid derivative, SZC015, activated intrinsic apoptosis, as
observed by the up-regulation of caspase-3 and caspase-9, poly (ADP-ribose) polymerase (PARP)
cleavage, release of cytochrome c, as well as increase in Bax/Bcl-2 expression ratio [55,87]. Moreover,
oleanolic acid and its derivatives also caused autophagy, i.e., formation of autophagic vacuoles,
elevated microtubule-associated protein 1 light chain 3α (MAP1LC3A), increased LC3II/LC3I ratio
and upregulated the expression of Atg5 and beclin1 in hepatic [50], breast [55] and gastric cancer
cells [73,87]. Interestingly, oleanolic acid-triggered autophagy was ROS-dependent as shown by
elevated cellular ROS levels, and the effect was abolished if ROS levels were reduced [50,62]. Indeed,
increased ROS levels were responsible for the increased anticancer activity in the co-administration
of oleanolic acid together with routinely used chemotherapeutic drug (sorafenib) in hepatocellular
carcinoma [89]. Mechanistically, oleanolic acid dose- and time-dependently stimulated apoptosis via
activation of ROS/apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway [90]. Oleanolic
acid induced the activation of ASK1 mediated by ROS levels which, in turn, phosphorylated p38 MAPK
and subsequently activated pro-apoptotic proteins by phosphorylation of Bax, Bim, and Bcl-2 [90].

In a recent study, oleanolic acid modified Warburg-like metabolism, which was induced by high
salt-mediated suppression of cytochrome oxidase, caspase cascade as well as the expression of Bax
protein. This study suggested that oleanolic acid can cause apoptosis through mitochondrial-related
pathways promoting the release of mitochondrial-associated caspases and pro-apoptotic Bax
proteins [91]. In addition, oleanolic acid inhibited aerobic glycolysis by inducing pyruvate kinase
muscle (PKM)isoforms switch from PKM2 to PKM1 through suppression of phosphorylated mTOR,
consequently disrupting Warburg effects in various cancer cells [92].

4.3. Oleanolic Acid Mediated Control of TRAIL-Induced Signaling

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated signaling is an
extensively-studied area of oncology, and has led to developing a sharper understanding of the protein
network, which is functionalized to promote apoptosis in cancer cells without affecting non-tumor
cells [93–95]. TRAIL transduces the signals intracellularly by activating death receptors (DR4 and DR5)
situated on the surface of neoplastic cells [96,97]. Structural interaction of TRAIL with its receptors
induces clustering of the receptors into high-molecular-weight nano-complexes that facilitates the
development of the death-inducing signaling complex (DISC) [95]. DISC formation is necessary to
activate caspase-8 [98]. Caspase-8 proteolytically processes a downstream effector caspase-3 [99]. Once
caspase-8 is activated, its downstream effector is channelized through receptors and termed as an
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extrinsic pathway [100]. However, intrinsic pathway is functionalized through entry of truncated Bid
(tBid) into mitochondrion. Importantly, tBid promotes the mitochondrial release of cytochrome c [101].
Cytochrome c interacts with pro-caspase-9 and apoptotic protease activating factor to generate the
apoptosome [102]. Functionally, active caspase-9 further activates caspase-3 in cancer cells leading to
apoptosis activation [103].

TRAIL-induced apoptosis is frequently impaired in cancer cells mainly because of downregulation
of DR4 and DR5, inactivation of pro-apoptotic proteins, and overexpression of anti-apoptotic proteins.
Different synthetic and natural products have been reported to induce apoptosis in TRAIL-resistant
cancer cells. In the following sections, we summarize how oleanolic acid modulated this protein
network in cancer cells.

A derivative of oleanolic acid, 3-O-acetyloleanolic acid, was found to effectively improve
TRAIL-mediated apoptosis in human colon tumor (HCT)-116 cancer cells. Detailed mechanistic
insights revealed that 3-O-acetyloleanolic acid upregulated DR5 expression in the treated colon
cancer cells. Indeed, also markedly enhanced levels of caspase-8 and caspase-3 were noticed in
those cells [104].

Synthetically-designed cyanoenone of methyl boswellates (CEMB), a triterpenoid compound, was
also reported to exert its anticancer effects via upregulation of DR4. Gene silencing strategy confirmed
that CEMB-mediated apoptosis was dramatically reduced in DR4-silenced prostate cancer cells [105].

Another synthetically designed triterpenoid that has entered into clinical trials is methyl-2-cyano-
3,12-dioxoolean-1,9-dien-28-oate (CDDO-Me). CDDO-Me transcriptionally upregulated DR5 by an
important protein, namely C/EBP homologous protein (CHOP). CHOP binding sites have previously
been identified in the promoter region of DR5. Research data showed that CDDO-Me-induced
apoptotic effects were significantly impaired in CHOP silenced cancer cells [106]. CDDO-imidazolide
potentiated the expression of DR4 and DR5 in acute myeloid leukemia cells, and downregulated decoy
receptors (TRAIL-R3/TRAIL-R4) [107].

Overall, accumulating evidence clearly suggests that oleanolic acid plays a significant role
in improving TRAIL-mediated cytotoxic activity via upregulation of death receptors, elevation of
pro-apoptotic proteins, and inhibition of anti-apoptotic proteins in treated cancer cells.

4.4. Oleanolic Acid Inhibited Angiogenesis, Invasion and Metastasis

Oleanolic acid inhibited invasion of tumor cells, angiogenesis and metastasis in several cancer
models. For instance, oleanolic acid reduced the rate of lung metastasis in vivo in osteosarcoma [65]
and NSCLC [53], as well as inhibited the angiogenesis in colorectal cancer [108].

From an angiogenic perspective, oleanolic acid suppressed the activation of the signal transducer
and activator of transcription 3 (STAT3) and sonic hedgehog signaling pathways, which are key
pathways in angiogenesis, and downregulated proangiogenic vascular endothelial growth factor A
and basic fibroblast growth factor [108].

Pharmacophore modeling study of oleanolic acid was performed to identify novel analogs
of oleanolic acid with the aim to improve the inhibition of human breast cancer cells migration,
proliferation, and invasion [109]. This study also discovered that Brk/Paxillin/Rac1 pathway
plays an essential role in the antimigratory and anti-invasive effects of oleanolic acid and its
derivatives [99]. Twelve semi-synthetic analogues of oleanolic acid were tested from which
carbamate derivatives, 3-O-[N-(30-chlorobenzenesulfonyl)-carbamoyl]-oleanolic acid and 3-O-[N-(50-
fluorobenzenesulfonyl)-carbamoyl]-oleanolic acid showed strong and selective anticancer activities
against breast cancer cells. The authors concluded that the existence of a sulfonyl-carbamoyl moiety
with an optimal bulkiness of electron-deficient phenyl ring was predominantly responsible for the
increased antineoplastic activity [98].
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4.5. Oleanolic Acid Suppressed Multi-Drug Resistance Proteins

Oleanolic acid has antiproliferative and proapoptotic effects in a time- and dose-dependent
manner on various multi-drug resistance cancer cell lines in in vitro conditions associated with
a down-regulation of apoptosis antagonistic proteins, including Bcl-2, Bcl-xL, and survivin [110].
Oleanolic acid inhibited the effect of the multi-drug resistance-associated protein 1 (MRP1) [111]
and was also cytotoxic to the multi-drug resistant erythroleukemic cells overexpressing permeability
glycoprotein (P-gp) [112]. Oleanolic acid was able to modulate MRP1 activity without altering its gene
expression, but no effects were reported in P-gp activity in a renal cell line expressing constitutively
both proteins [111]. Multiple drug resistance is considered to be one of the leading reasons of failure of
chemotherapy in cancer patients; therefore, oleanolic acid has potential as a chemotherapeutic agent
itself in tumors with high expression of efflux transporters, such as MRP1 or P-gp, or as a co-adjuvant
in the chemotherapy of P-gp/MRP1 expressing tumors [111]. However, P-gp and MRPs are also found
in non-tumoral tissues. For this reason, it seems to be a prudent approach to use non-toxic inhibitors
of efflux transporters, such as oleanolic acid, which is likely to maintain normal physiological function
in healthy tissues.

4.6. Oleanolic Acid Exerted Synergistic Activity with Chemotherapeutic Drugs

Combined use of oleanolic acid and 5-fluorouracil synergistically potentiated the cytotoxicity on
pancreatic cancer cells as well as acted in pro-apoptotic fashion [61]. In a similar manner, oleanolic
acid could be combined with other chemotherapeutic agents.

4.7. Oleanolic Acid Displayed Radiosensitizing Effects

Oleanolic acid increased the radiosensivity of tumor cells by inhibiting the synthesis of cellular
glutathione (GSH) with concurrent inhibition of γ-glutamylcysteine synthetase (γ-GCS), a key enzyme
in GSH synthesis [113].

5. Increased Selective Toxicity of Novel Oleanolic Acid Derivatives

Importantly, novel oleanolic acid derivatives have been recently synthesized and tested against
various human cancer cell lines, and several of those compounds had cytotoxic activity against cancer
cells in the low micromolar range (EC50 = 3–6 µM) and cytotoxicity against non-cancer cells in high
micromolar range (EC50 > 120 µM) providing the conditions for selective toxicity [114,115]. Various
oleanolic acid derivatives, including lactams, ketones, oximes, and nitriles, were tested in different
cancer cell lines with evidence that lactams and oximes exerted the most cytotoxicity effects [114].
The introduction of acetyl groups at positions C-2 and C-3 and the existence of (2β,3β)-configured
centers appears to be necessary for the cytotoxic effects and to obtain the best selectivity between cancer
cells and normal mouse fibroblast cells [115]. These results show rationale to employ oleanolic acid
and its derivatives as lead compounds in anticancer drug discovery. In addition, novel drug design
forms, such as solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins [116],
multivesicular liposomes for oleanolic acid [117], or oleanolic acid-loaded PEGylated polylactic acid,
and polylactic-co-glycolic acid nanoparticles [118], improved oleanolic acid bioavailability and, thus,
increased its anticancer potency.

6. Perspectives on Using Oleanolic Acid as an Adjuvant of Cancer Treatment

Natural product chemistry has undergone substantial broadening and many of the phytochemicals
have entered various phases of clinical trials. Oleanolic acid has attracted considerable attention
because of its cancer inhibitory roles via regulation of different signaling cascades (summarized in
Table 2). However, the existing information related to how oleanolic acid modulates different proteins
of different intracellular signaling networks is still incompletely studied. We still need to intensely
study cell-type specific and context-dependent effects exerted by oleanolic acid on different proteins
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either to inhibit cancer progression, or to induce apoptosis. Importantly, how oleanolic acid re-balances
pro-apoptotic and anti-apoptotic protein stoichiometric ratios needs detailed future research. The most
consistent pathway reported involves the induction of autophagy by oleanolic acid via suppressing
mTOR through inhibition of the PI3K/AKT and ERK/p38 MAPK signaling pathways and activation
of the AMPK signaling pathway. Certain hints have also emerged highlighting how oleanolic acid
differentially modulates oncogenic and tumor suppressor miRNAs. Nevertheless, we have to develop
a better understanding of the miRNAs which are activated or inhibited in oleanolic acid-treated
cancer cells. Different signaling cascades particularly, Wnt, sonic hedgehog, TGF, Notch, and Janus
kinase-STAT, have to be comprehensively investigated in different cancers. These aspects will provide
a better comprehension regarding to molecular targets underlying anticancer effect of oleanolic acid.
Several studies have also documented that plant extracts belonging to different families and containing
oleanolic acid are effective against many cancer cell lines. However, up to date no comparisons
between the extract and the isolated compounds have been designed in order to determine additive or
synergistic effects of the extracts with respect to the individual compounds.

Table 2. Main anti-cancer effects of oleanolic acid.

Inhibition of tumor initiation
and promotion

Cell cycle arrests [52,60,71]
Inhibition of PI3K/Akt/mTOR/NF-κB signaling pathway [55]
Inhibition of mitogen-activated protein kinase (ERK/JNK/p38 MAPK)
signaling pathways [55,68,73]
Activation of AMPK signaling pathway [74]
Inhibition of TGF-β by binding to its receptors [76,78]
Inhibition of topoisomerase I and IIα proteins [63]

Apoptosis induction

Elevation cytochrome c release [51,55]
Decrease anti-apoptotic Bcl-2 proteins [51,55,87,90]
Increase pro-apoptotic Bax proteins [55,87,90]
Up-regulation of caspases [21,51,53,61,62,66,86,91]
Poly (ADP-ribose) polymerase (PARP) cleavage [55–66]
Induction of autophagy [50,55,73,87]
Disruption of Warburg metabolism [91,92]
Induction of TRAIL mediated apoptosis [104,105,107]
Inhibition of the multi-drug resistance associated proteins effects [110–112]

Metastasis inhibition
Suppression of STAT3 and sonic hedgehog signaling pathways [67,108]
Downregulation of proangiogenic vascular endothelial growth factor A and
basic fibroblast growth factor [108]

7. Conclusions

Oleanolic acid has the potential to be employed in clinical practice in adjuvant anticancer treatment
because: (i) it has direct anticancer activity and can act synergistically with chemotherapeutic drugs;
(ii) it inhibits efflux transporters, thereby increasing the intracellular concentration of chemotherapeutic
drug; (iii) it exhibits a radiosensitizing effect for irradiation-induced cell death, thereby increasing
the efficacy of radiation therapy; and (iv) it has relatively low toxicity and does not have any adverse
effects when combined with chemotherapeutic agents. Additionally, anticancer properties of oleanolic
acid was in the low micromolar range, which corresponds to the physiologically relevant values
obtainable upon oleanolic acid-enriched diet, thereby offering the potential to use oleanolic acid as a
vital part of healthy diet. The main limitation of the potential therapeutic use of oleanolic acid is the
absence of clinical trials which are necessary to confirm the promising data about its chemoprotective
and anticancer effects. In addition, similar to other phenolic compounds, the poor bioavailability limits
its potential effects and makes it necessary to find new formulations that increase its bioavailability
and effectiveness.
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