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Abstract

Prompt and reliable detection of acute intracranial hemorrhage (ICH) is critical to treatment of a 

number of neurological disorders. Cone-beam CT (CBCT) systems are potentially suitable for 

detecting ICH (contrast 40-80 HU, size down to 1 mm) at the point of care but face major 

challenges in image quality requirements. Statistical reconstruction demonstrates improved noise-

resolution tradeoffs in CBCT head imaging, but its capability in improving image quality with 

respect to the task of ICH detection remains to be fully investigated. Moreover, statistical 

reconstruction typically exhibits nonuniform spatial resolution and noise characteristics, leading to 

spatially varying detectability of ICH for a conventional penalty. In this work, we propose a 

spatially varying penalty design that maximizes detectability of ICH at each location throughout 

the image. We leverage theoretical analysis of spatial resolution and noise for a penalized 

weighted least-squares (PWLS) estimator, and employ a task-based imaging performance 

descriptor in terms of detectability index using a nonprewhitening observer model. Performance 

prediction was validated using a 3D anthropomorphic head phantom. The proposed penalty 

achieved superior detectability throughout the head and improved detectability in regions adjacent 

to the skull base by ~10% compared to a conventional uniform penalty. PWLS reconstruction with 

the proposed penalty demonstrated excellent visualization of simulated ICH in different regions of 

the head and provides further support for development of dedicated CBCT head scanning at the 

point-of-care in the neuro ICU and OR.

I. Introduction

Intracranial hemorrhage (ICH) is associated with a variety of neurological disorders, 

including hemorrhagic stroke and traumatic brain injury [1]. Non-contrast-enhanced multi-

detector CT (MDCT) is the current front-line modality for diagnosis of acute ICH with high 

sensitivity but is commonly only available in a dedicated radiology suite or emergency 

department. Compared to MDCT, cone-beam CT (CBCT) systems typically have smaller 

footprint, greater portability, and lower cost, and therefore are potentially more suitable for 

diagnosis of acute ICH at the point of care (e.g., neurological ICU, urgent care, ambulance, 

and sports and military theatres). However, current CBCT systems face major challenges in 

image quality required for detecting ICH (blood-to-brain contrast 40-80 HU, size down to 1 

mm) [1].
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Recent research aims to develop high-quality CBCT for detection of ICH using mobile C-

arms or a dedicated head CBCT system designed specifically to provide optimal 

performance in ICH detection [2]. A high-fidelity artifact correction framework has also 

been proposed and demonstrates major reduction in artifacts in CBCT of the head, including 

scatter, beam hardening, and detector lag and glare [3]. Moreover, a statistical reconstruction 

method has been proposed to compute statistical weights that account for noise in the 

measurements following artifact corrections, demonstrating improved noise-resolution 

tradeoffs in CBCT of ICH compared to conventional filtered backprojection [4].

This work addresses two important questions with respect to high-quality CBCT of ICH. 

First, statistical reconstruction tends to produce nonuniform spatial resolution and noise in 

the image. For example, Figure 1 shows an image reconstructed using penalized weighted 

least-squares (PWLS) as in [4], and the conspicuity of the same ICH lesion in various 

locations of the head is seen to depend strongly on the local spatial resolution and noise 

characteristics. Various methods have been developed to address this problem by designing a 

spatially varying penalty that encourages uniform spatial resolution or noise. For example, 

Fessler et al. designed a penalty that includes a spatially varying certainty term to encourage 

a uniform point spread function (PSF), providing uniform spatial resolution throughout the 

image [5]. A second important consideration is that imaging performance should be defined 

with respect to a specific task [6]. In the case of ICH detection, the task is to discriminate a 

low-contrast, mid-frequency lesion from a relatively uniform background. One way in which 

statistical reconstruction can be leveraged to maximize performance is to design a penalty 

that maximizes detectability index (d′) [7] for a particular task. However, due to nonuniform 

spatial resolution and noise, a penalty designed to maximize detectability at one location 

may not necessarily maximize detectability at another. The two considerations described 

above are therefore intimately connected, and one may design a spatially varying penalty 

(analogous to the one in [5]) to maximize detectability.

In this work, we propose a spatially varying penalty that optimizes detectability for ICH 

detection at all locations through a CBCT image of the head. Previous related work by Qi et 
al. optimized directional weights in a penalty to improve detectability for breast lesion 

detection at an unknown location in 3D PET [8]. Gang et al. optimized a parameter that 

weights the regularization term in 2D CT to maximize detectability at an unknown location 

for a few generic detection tasks [9]. This work builds on the method in [9] but differs in two 

aspects. First, this work introduces a comprehensive and general framework to design a 

spatially varying penalty for maximal detectability. Second, we extend the design from 2D 

CT in [9] to 3D CBCT and focus on designing a penalty for a specific task in head imaging. 

We first validate prediction of spatial resolution and noise characteristics at various locations 

in 3D, and we then define a 3D detectability index that provides an objective function in 

penalty design. The performance of the proposed penalty is evaluated on a 3D 

anthropomorphic head phantom in comparison to a conventional penalty.
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II. Methods

A. Penalized Weighted Least-Squares Reconstruction

We choose a PWLS reconstruction method previously developed for CBCT head imaging 

[4], whose forward model assumes mono-energetic x-rays and independent measurements 

as:

(1)

where ȳ denotes the mean measurements, μ is the image estimate, A is the linear projection 

operator (and AT is the linear backprojection operator), g are the measurement-dependent 

gains, and D is an operator that converts a vector into a diagonal matrix.

The PWLS objective can be written as:

(2)

where l denotes line integrals derived from the measurements y, and W is a diagonal 

weighting matrix. The statistical weights in W are computed to account for noise in the 

measurements and noise following artifact corrections (if such corrections are present in the 

data processing) [4]. The regularization term in Eq. (2) penalizes differences between every 

voxel μj and its neighboring voxel μk by a penalty function ψ along with directional weights 

wjk, and is weighted by a scalar regularization parameter β. We refer to this penalty below as 

the “conventional penalty”.

To design a penalty that maximizes detectability, one can modify the regularization 

parameter, directional weights, and/or penalty function. In this work, we focus on designing 

a spatially varying β map while keeping the directional weights (wjk=1 for first-order 

neighbors) and penalty function (quadratic function) the same throughout the image. 

Optimization of the directional weights and penalty function for maximal detectability are 

subjects of future work. The proposed spatially varying penalty can be written as:

(3)

where R′ denotes the new regularization term.

As a point of reference, we consider another form of spatially varying penalty derived by 

Fessler et al. [5] that encourages uniform spatial resolution (referred to below as the 

“uniform resolution penalty”) and can be written as:
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(4)

where κj represents the certainty of all rays that intersect the jth voxel and aij denotes the (i, 
j)th element of matrix A.

B. Task-Based Performance Prediction

Previous work [5] shows that if the spatially varying term is spatially smooth, its effects on 

image quality are essentially local. Thus, while β will be spatially dependent in the resulting 

penalty, in the design stage, we assume β values at other voxels are the same as the β value 

at the voxel of interest (i.e., assumes a conventional penalty). One can then derive analytical 

expressions of the local PSF and local covariance for the PWLS estimator in Eq. (2) using a 

first-order Taylor expansion and the Implicit Function Theorem as in [5]:

(5)

(6)

where F is the Fisher information matrix defined as F(μ = ATD[ȳ(μ)]A, R is the Hessian of 

R(μ) in the PWLS objective (and is not dependent on the input image when a quadratic 

penalty function is used), ej is a unit vector specifying location in the image (with unity jth 

element and zero elsewhere). In real data when μtrue (truth image) and  (PWLS 

reconstruction of noiseless data) are not available, a “plug-in” method [5] can be used.

Since the local PSF and covariance are evaluated in a relatively uniform region (brain), the 

matrix of local PSF and covariance can be approximated as circulant in a small region-of-

interest (ROI). Their discrete Fourier transform are then the local modulation transfer 

function (MTF) and noise-power spectrum (NPS) within the ROI:

(7)

(8)

With predictions of local MTF and NPS, one may predict the task-based performance of the 

PWLS estimator in terms of detectability index d′ [7], which relates metrics of MTF and 
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NPS to a spatial-frequency-dependent task function and an observer model. Many observer 

models can be formulated - in this work, the nonprewhitening (NPW) matched filter 

observer model. This model does not bias the results according to the characteristics of the 

observer and has demonstrated reasonable agreement with human observer performance for 

simple tasks in tomosynthesis and CBCT [10]. The detectability index with a NPW observer 

model can be written as:

(9)

The task function WTask in this work is defined as the difference of two Gaussian functions, 

representing a low-contrast, mid-frequency task such as ICH detection expressed as follows:

(10)

where C is the blood-to-brain contrast (0.011 mm−1), σ1 = 0.35 mm−1, and σ2 = 0.25 mm−1 

corresponding to discrimination of a characteristic feature length of ~2 mm, approximated 

using the average of four standard deviations of each Gaussian function in the spatial 

domain.

C. Proposed Regularization Design Framework

While the design goal is to maximize d′ at every location in the image, one may start with 

maximizing d′ at one location. The optimization problem can be written as:

(11)

While directly solving Eq. (11) might be possible, we choose a simple scheme in this work 

to maximize d′ by evaluating d′ for different β values with regular spacing and choosing 

the β that yields the maximum d′.

Repeating the optimization at every voxel is computationally impractical for 3D CBCT. We 

accelerate the design process in two steps. First, we exploit the observation that the optimal 

β is slowly varying between neighboring voxels and therefore perform the optimization on a 

25×25×25 downsampled grid (internal to the cranium) and then interpolate β at intermediate 

voxels using radial basis functions. Second, since the local PSF reduces toward zero at 

voxels sufficiently far from the impulse, one may divide the grid into K subgrids, and in 

each kth subgrid place Nk unity impulses in the input ek and predict for Nk locations 

simultaneously. The prediction accuracy is not affected provided that the impulses are far 

apart. This applies to the prediction of the local covariance as well. The combination of the 

downsampled grid and simultaneous prediction reduced the number of calculations needed 

from the number of voxels (e.g., ~5123 in 3D CBCT) to the number of subgrids. In this 
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work, we placed impulses at 50 voxels apart, which divided the grid into 23=8 subgrids. A 

pseudocode outline of the design framework is shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

We evaluated the proposed penalty in simulation studies using the 3D digital head phantom 

shown in Fig. 2(a-b). The digital phantom was created by performing a CT scan of a realistic 

physical head phantom at high dose and setting all soft tissues (including the brain) to a 

constant value (40 HU). The resulting phantom preserves realistic bone attenuation and 

exhibits no noise or artifact in soft tissue. A system geometry previously identified for a 

dedicated CBCT head scanner [2] was used, with a 100 cm source-to-detector distance, 55 

cm source-to-axis distance, and 0.556 × 0.556 mm2 detector pixel sizes. Projections (N = 

720) without noise and with Poisson noise were simulated over 360° using 2×105 photons 

per detector pixel. Images were reconstructed with 390×485×498 voxels and 0.5×0.5×0.5 

mm3 voxel sizes. Artifact corrections were not considered in this work.

We first validated the prediction of 3D local MTF and NPS, including locations throughout 

the brain and adjacent to the cranium. Figure 2(c-d) shows the 3D local MTF and NPS at 

four locations denoted in Fig. 2 with a nominal β value for this dataset (106.4). In each plot, 

the left side shows the prediction from Eq. (5-8), and the right side shows the measurements 

from PWLS reconstructions. For prediction, we used 100 iterations of the conjugate gradient 

(CG) algorithm in Eq. (5) for complete convergence of the local PSF, and we applied the CG 

algorithm twice in Eq. (6) to achieve convergence in the local covariance. For 

measurements, the local PSF was measured by subtracting two PWLS reconstructions with 

and without an impulse (no noise added), and local covariance was measured from a large 

ensemble (n = 100) of PWLS reconstructions with different noise realizations following the 

method in [9]. 100 iterations of separable quadratic surrogate updates [11] were performed 

to achieve a nearly converged PWLS image. A ROI size of 21×21×21 voxels was large 

enough to cover the main extent of the local PSF and covariance and was therefore used in 

DFT operations. For both MTF and NPS, good overall agreement can be seen between 

prediction and measurements at all four locations in both x-y plane and z direction. The 

spatial dependence of MTF and NPS can also be seen. For example, the MTF broadens and 

is less isotropic near the periphery, whereas the NPS is reduced at certain frequencies 

according to the magnitude of line integrals from location 1 to 4.

To design a β that maximizes d′ at one location, we predicted the local MTF and NPS at 

different β values and computed d′ as a function of β. Figure 3(a) shows the 3D task 

function from Eq. (10). Figure 3(b) shows a calculation of d′ as a function of β at the four 

locations in Fig. 2. At each location, the function d′(β) exhibited a concave shape and a 

clear optimum, suggesting the possibility of directly solving for β - for example, using 

gradient-based optimization. For each location, the d′ reduced at lower β (dominated by 

high NPS) and higher β (dominated by over-smoothing). The optimal β is also seen to vary 

over an order of magnitude, suggesting the design of a spatially varying penalty. It is worth 

mentioning that we observed a lower level of agreement between prediction and 

measurement in the limit of very low β (~105.0), which is attributed to the high conditioning 

number of the matrices to be inverted in Eq. (5-6) and could potentially be solved by 
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preconditioning. However, such disagreement is not believed to affect the results, since those 

β values are much smaller than the range of interest about the optimal β value.

Figure 4 shows the results for the proposed penalty in comparison to the (spatially uniform) 

conventional penalty and the (spatially varying) uniform resolution penalty. For the 

conventional penalty, a scalar β value of 106.4 was chosen to achieve the highest mean d′ in 

the head. For the uniform resolution penalty (shown simply as a point of reference as 

another form of spatially varying penalty), regularization was such as to encourage uniform 

PSF width of 0.95 mm (FWHM averaged over all radial directions). Fig. 4(f) shows the β 
map resulting for the proposed d′ optimization penalty, which is seen to follow a similar 

overall trend as the uniform resolution penalty: penalty strength is lower in regions of high 

attenuation near the interior skull base and is higher at the periphery near the cranium. Fig. 4 

(b), (d), and (g) show the d′ map from each penalty, each exhibiting strong spatial variation 

in d′ with highest value near the periphery and reduced performance in the interior of the 

cranial vault. Fig. 4 (e) and (h) show the change in d′ (relative to the conventional penalty) 

achieved by the two spatially varying penalties. Compared to the conventional penalty, the 

uniform resolution penalty provides a 10% increase in d′ in the interior of the brain near the 

skull base but a slight (5%) reduction in d′ at the periphery adjacent to the cranium. This is 

somewhat expected, since the uniform resolution penalty was designed to achieve uniform 

spatial resolution (and not maximum detectability). Figure 4(h) shows that the proposed 

penalty improves d′ up to ~10% and preserves the highest d′ (i.e., does not reduce d′) in 

comparison to the best conventional penalty.

PWLS image reconstructions corresponding to each type of penalty are shown in Fig. 5. 

Three simulated 3D spherical ICH lesions of 2 mm diameter and 50 HU contrast were added 

to regions in the deep interior of the brain near the skull base and at the periphery adjacent to 

the cranium. The best conventional penalty exhibited good visualization of ICH adjacent to 

the cranium but yielded an over-smoothed image in the deep interior near the skull base. The 

uniform resolution penalty improved conspicuity of the lesion (particularly near the skull 

base) and achieved a more uniform appearance of spatial resolution in the image compared 

to the conventional penalty. The proposed d′-optimization penalty yielded improved 

visualization of ICH in both regions, particularly in the deep interior region near the skull 

base.

IV. CONCLUSION

Image reconstruction in a manner that specifically incorporates a formulation of the imaging 

task and optimizes penalty design with respect to local, task-based imaging performance 

presents a promising approach for “task-driven image reconstruction.” For high-quality 

CBCT imaging of the head, this paper shows that the spatially varying penalty strength 

could be reliably predicted with respect to an ICH detection task, providing optimal 

detectability at each location throughout the 3D image. The proposed penalty demonstrated 

improved or equivalent visualization of ICH in PWLS images compared to a conventional 

penalty and supports the application of CBCT for ICH detection at the point of care in the 

ICU and/or operating theater.
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Figure 1. 
Illustration of nonuniform spatial resolution and noise in a 3D image reconstructed by 

PWLS. The anthropomorphic head phantom containing simulated ICH was scanned on a 

FPD-CBCT test-bench at 24 mGy. Grayscale window: [−10, 110] HU.
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Figure 2. 
Validation of 3D MTF and NPS prediction. (a-b) 3D head phantom used in this work. 

Grayscale window: [0, 0.04] mm− (c-d) Predicted and measured 3D local MTF (c) and NPS 

(d) at location 1-4 denoted in Fig. 2. In each plot, the left half is prediction from Eq. (5-8), 

and the right half is measurements from PWLS reconstructions. Units are scalar for the 3D 

MTF and [(mm−1)2(mm)3] for the 3D NPS.
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Figure 3. 
(1) A 3D task function for ICH detection. Grayscale window: [0, 3.3×10−4] mm−1 

(b)Detectability index computed as a function of regularization parameter β at 4 locations 

denoted in Fig. 2. The optimal β were at  (j = {1,2,3,4}).
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Figure 4. 
Maps of penalty strength and detectability in ICH detection. (a-b) Scalar β and resulting d′ 
distribution for the conventional PWLS penalty. (c-e) For the uniform resolution penalty: (c) 

product of certainty ( ) and a scalar β (d) the resulting d′ distribution, and (e) relative 

change in d′ compared to the conventional penalty (f-h) For the proposed d′-optimization 

penalty: (f) the β map, (g) the resulting d′ distribution, and (h) relative change in d′ from 

the “best” conventional penalty.
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Figure 5. 
Image reconstruction of a 3D spherical ICH lesion of 2 mm diameter and 50 HU contrast. 

Grayscale: [−50, 130] HU.
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Algorithm 1

Spatially varying penalty design for maximum d′

Input precomputed R

for each subgrid k = 1 to K

    Construct ek with Nk unity elements (uniform spacing)

    Use Eq. (5-6) to predict local PSF and covariance for Nk locations simultaneously

        for each voxel j on the kth subgrid

            Use Eq. (7-9) to compute MTF, NPS, and d′ at different β

            Estimate β that maximizes d′

         end for

end for

for each voxel not on the grid

    Interpolate β based on the optimal β on the grid

end for

return a β map

Conf Proc Int Conf Image Form Xray Comput Tomogr. Author manuscript; available in PMC 2017 March 30.


	Abstract
	I. Introduction
	II. Methods
	A. Penalized Weighted Least-Squares Reconstruction
	B. Task-Based Performance Prediction
	C. Proposed Regularization Design Framework

	III. EXPERIMENTAL RESULTS
	IV. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Algorithm 1

