
Long-range electrostatic corrections in multipolar/polarizable 
QM/MM simulations

Eric G. Kratz1, Robert E. Duke1, and G. Andrés Cisneros1

1Department of Chemistry, Wayne State University, Detroit, MI 48202, USA

Abstract

Taking long-range electrostatic effects into account in classical and hybrid quantum mechanics–

molecular mechanics (QM/MM) simulations is necessary for an accurate description of the system 

under study. We have recently developed a method, termed long-range electrostatic corrections 

(LREC), for monopolar QM/MM calculations. Here, we present an extension of LREC for 

multipolar/polarizable QM/MM simulations within the LICHEM software package. Reaction 

barriers and QM–MM interaction energies converge with a LREC cutoff between 20 and 25 Å, in 

agreement with our previous results. Additionally, the LREC approach for the QM–MM 

interactions can be smoothly combined with standard shifting or Ewald summation methods in the 

MM calculations. We recommend the use of QM(LREC)/MM(PME), where the QM region is 

treated with LREC and the MM region is treated with particle mesh Ewald (PME) summation. 

This combination is an excellent compromise between simplicity, speed, and accuracy for large 

QM/MM simulations.
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1 Introduction

Long-range electrostatic (LRE) interactions are important for the accurate determination of 

enzyme structures and reaction paths [7, 8, 38, 51]. Unfortunately, directly incorporating 

LRE interactions in quantum mechanical–molecular mechanical (QM/MM) simulations can 

be challenging due to the necessity of modifying the Fock matrix elements.

The most straightforward approach for the treatment of electrostatic interactions in QM/MM 

simulations is to simulate only a small portion of the solvent around a protein or enzyme 

active site [5] (i.e., embedding a protein in a water droplet). The droplet’s liquid-like 

environment can be maintained by either freezing the positions of the molecules in the outer 

edge or applying a stochastic boundary potential [5]. Droplet simulations are efficient due to 
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the small number of atoms, although, the LRE interactions are neglected. However, some of 

the missing LRE effects can be implicitly included by embedding the droplet in a classical 

continuum [2–4, 11, 23, 41].

An alternative approach involves using Mulliken charges to approximate the QM charge 

distribution in periodic images, so that the QM/MM calculation can be carried out using the 

Ewald summation or smooth particle mesh Ewald (PME) methods [18, 27, 34, 47]. QM/MM 

calculations with Ewald/PME methods are effective and can readily be improved by 

replacing Mulliken charges with charges fit from the electrostatic potential. Similar 

approaches have been developed to extend the Ewald, Wolf, and isotropic periodic sum 

methods to calculations with semi-empirical, density functional tight binding, Hartree–Fock, 

and density functional theory [22, 35, 36, 40, 50]. Very recently, Giese and York have 

reported the ambient-potential composite Ewald method, where no approximations are 

employed to represent the QM charge density in reciprocal space [20]. Most of these 

QM/MM LRE methods require modifications to the self-consistent-field (SCF) matrix 

elements or post-SCF corrections. While these approaches can be quite accurate, modifying 

SCF routines can limit which QM packages can be used for the QM/MM calculations.

Recently, Fang et al. [14] introduced a cubic smoothing function to include long-range 

electrostatic corrections (LREC) in QM/MM simulations. The LREC approach uses a 

combination of a smoothing function and the minimum image convention to scale the 

electrostatic interactions such that the potential and forces smoothly decrease to zero at a 

finite cutoff radius. While energy and force shifting approaches also smoothly truncate the 

potential at a finite radius [16, 28, 29, 35, 36, 44, 49], LREC has an exceptionally simple 

implementation in the QM/MM Hamiltonian. In the LREC approach, the external MM 

monopoles are scaled based on their distance from the QM region, which does not require 

modifications to the matrix elements or post-SCF corrections. The LREC method has been 

shown to calculate energies and forces that are within 0.2 % of the PME results when using 

cutoffs of 20–25 Å [14].

The complications of treating LRE interactions of monopoles also affect potentials that 

include multipole moments and explicit polarization. Truncation, shifting, and smoothing 

approaches are appealing for multipolar/polarizable QM/MM simulations due to the relative 

simplicity of introducing these methods into the Hamiltonian [14]. However, each type of 

shifted multipole–multipole interaction requires a different correction term. As will be 

shown below, the LREC approach produces a single scale factor for each MM atom, and 

hence, does not require modifications to the underlying QM software.

In this paper, we extend the LREC approach to atomic multipole moments within the 

LICHEM software package and implement QM(LREC)/MM(LRE) calculations, where the 

QM and MM regions are treated with a different LRE approaches. In Sect. 2, we review 

multipolar/polarizable QM/MM simulations, followed by a discussion of LRE methods in 

Sect. 3. Our extension of the LREC method to multipolar/polarizable QM/MM simulations 

is presented in Sect. 4, and we conclude our discussion by examining the performance of 

multipolar LREC.
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2 Multipolar/polarizable QM/MM

2.1 Multipole moments

The electron density and nuclei in a molecule create a continuous, and often, anisotropic 

electrostatic potential. In classical simulations, interactions due to the diffuse electron 

density are generally approximated by a set of pair-wise electrostatic potentials. One of the 

simplest methods for modeling the molecular electrostatic field is to place point-charges 

(monopoles) on the atomic centers. Atomic monopoles are often inadequate [8, 25], and 

some models augment the field by adding massless charged dummy atoms to the molecule 

[24, 33]. However, the dummy atoms can complicate the potential/dynamics during the 

simulations.

An alternative approach is to add higher-order moments (multipoles) of the electrostatic 

potential to the model [8, 30, 43, 45]. A multipole expansion is a Taylor series representation 

of the continuous electrostatic potential (Velst) [45],

(1)

where r is the distance from the point of interest (e.g., nucleus, center of mass, etc) and n is 

the order of the moment. Typically, MM force fields truncate the Taylor series at the second 

order [8, 30, 43], and the moments can be determined from an analysis of the electron 

density or electrostatic potential.

The zeroth moment of the electrostatic potential is the monopole, which is equivalent to a 

point-charge. The first and second moments are referred to as the dipole and quadrupole, 

respectively. Multipole moments can produce an anisotropic electrostatic potential around 

individual atoms, as opposed to the spherical potential wells produced by monopoles. Thus, 

a set of atomic multipole moments, through the quadrupole moment, can reproduce the 

molecular electrostatic potential with a higher degree of accuracy than monopole moments 

alone [8, 45]. Atom centered multipolar models provide a reasonable compromise between 

computational cost and accuracy in the reproduction of the electrostatic potential at medium 

and long-range.

2.2 QM/MM Hamiltonian

The polarizable QM/MM Hamiltonian may be expressed as

(2)

where Hqm is the unperturbed Hamiltonian for the QM subsystem, Vmm is the potential for 

the MM–MM interactions, Vqmmm is the potential for the QM–MM interactions, and Vpol is 

the potential due to the polarization of the QM/MM system.

In practice [26], Eq. 2 can be expressed as
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(3)

where

(4)

and

(5)

Here  adds the MM multipole moments (Vqmmm,mtp) to the QM Hamiltonian,  adds 

the QM–MM bonded (Vqmmm,bnd) and van der Waals (Vqmmm,vdw) interactions to the MM 

potential, and Vmm,pol is the many-body MM polarization energy. Thus, Eq. 3 divides the 

QM–MM interactions and polarization between the QM and MM calculations.

The QM/MM Hamiltonian becomes more complicated when the system is periodic. Since 

the Coulomb interactions have a relatively long range, particles 20 Å or more from the QM 

region can have non-negligible contributions to the energy and forces [6, 14, 44, 48]. One 

would expect that monopole–monopole interactions in a neutral system would begin to 

cancel with interactions of the opposite sign. In fact, Wolf demonstrated [48] that the r−1 

dependence of isolated charged particles behaves as a r−5 potential in a homogeneous neutral 

environment. However, since the pair-wise terms in the electrostatic potential often have 

relatively large magnitudes beyond 10 Å, the potential cannot simply be truncated [1, 6, 8, 

15, 16, 37, 38, 42, 44, 48, 51]. As will be discussed below, many LRE methods can be 

integrated into the periodic QM/MM Hamiltonian.

2.3 Polarization

Polarizable QM/MM simulations combine quantum polarization (due to many-body 

electrostatic, exchange, and dispersion interactions) with classical polarization (induced 

dipoles, Drude oscillators, etc). Within LICHEM, the electron density is polarized by both 

the QM region and the static MM multipole moments [26]. A separate MM calculation is 

then performed to determine the response of the MM polarizable sites to the QM and MM 

electrostatic fields. In this manner, only one QM and two MM calculations (  and 

Vmm,pol) are required to calculate the relaxed QM/MM total energy and the underlaying QM 

and MM packages do not need to be modified. Additionally, this approach can easily be 

implemented for a variety of classical polarizable models.

3 Long-range electrostatics

In this section, some common approaches to calculate long-range electrostatic interactions 

will be reviewed. While the higher-order moments are neglected in most of this discussion, 
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these long-range methods can readily be extended to include the full multipole–multipole 

and polarizable interactions [28, 29].

3.1 Shifting

The Coulomb potential produces relatively long-range interactions due to the r−1 distance 

dependence. The potential is given by

(6)

where Vij,cl is Coulomb’s law in atomic units, qi is the monopole on atom i, and rij is the 

distance between atoms i and j. For periodic systems, the Coulomb potential is often only 

calculated up to a distance of 9–20 Å to reduce the computational cost [8, 31]. However, due 

to the length scale of the potential, the residual energy is often non-negligible at the cutoff 

radius (Rc) [6, 42, 44]. To mitigate some of the truncation artifacts, the potential can be 

shifted by a constant; such that it is equal to zero at the cutoff [44]. The energy shifted 

potential, Vij,es, is given by

(7)

The force, Fij, due to a general potential, Vij, is given by

(8)

where ∇ is the gradient operator, and thus,

(9)

and

(10)

Since Fij,cl = Fij,es, the use of energy-shifted potential still results in finite forces at the cutoff 

radius [44]. Thus, energy-shifted potentials produce artifacts in calculations which require 

forces, e.g., MD simulations or geometry optimizations.

The truncated potential can be further improved by shifting the force in a manner analogous 

to the shifted potential. The shifted force, Fij,fs, is given by [44]

Kratz et al. Page 5

Theor Chem Acc. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11)

and the force-shifted potential can be derived by integrating the shifted force [44],

(12)

where

(13)

The final force-shifted potential is given by

(14)

where both the energy and force are now zero at the cutoff.

Truncation and shifting schemes make the calculation of the Coulomb potential tractable for 

large systems, but they often produce artifacts due to the artificial nature of the finite cutoff. 

In principle, the shifting procedure could be continued for higher-order derivatives. 

However, as will be shown in Sects. 3.3 and 4.1, this approach can drastically alter the 

electrostatic potential. The energy and force shifting derivations given thus far are by no 

means the only shifting approaches. Polynomial or exponential damping functions are often 

applied to the Coulomb potential to shift the energy and accelerate the convergence of the 

LRE interactions. In general, any shifting approach can be rewritten as

(15)

where Vij,sm is the smoothed Coulomb potential and S(rij) is a damping function.

3.2 Ewald and PME

The calculation of the total electrostatic potential for an infinite periodic system involves a 

conditionally convergent sum [48]. However, this issue can be overcome by separating this 

sum into two absolutely convergent sums, which is the basis of the Ewald method [10]. 

Ewald summation methods divide the electrostatic potential into a short-range damped 

Coulomb potential and a long-range Fourier transformed Coulomb potential. The total 

Coulomb potential, Vtot,cl, may be calculated by [10]
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(16)

where Vsr is the sum of the damped short-range Coulomb potential,  is the Fourier 

transformed sum of the long-range Coulomb potential, Vself is the self-interaction potential 

of the multipoles, and εb is a correction term due to the boundary conditions that arises 

when the unit cell has a finite charge and/or dipole moment [10, 32].

The efficiency of the Ewald method can be improved by employing numerical Fourier 

transforms. One possibility is by using B-spline functions to interpolate the periodic 

potential onto a mesh of grid points [9]. This approach, termed (smooth) particle mesh 

Ewald summation, can be used in conjunction with a fast Fourier transform (FFT) algorithm 

[13]. The FFT can significantly speed up the calculation of the long-range Coulomb 

potential and reduces the theoretical computational cost from  to .

3.3 LREC

Our approach for treating LRE interactions is to scale the electrostatic potential based on the 

distance between the atoms [14]. This approach smooths the electrostatic potential and 

forces, which are zero at the cutoff radius. Conceptually, this is equivalent to the procedure 

used in shifted or Wolf approaches, except that the LREC smoothing function has been 

designed to produce energies and forces in good agreement with PME.

The smoothed Coulomb potential used by the LREC method, Vij,lrec, is given by

(17)

where

(18)

and

(19)

Here f is the LREC cubic smoothing function and s is an adjustable integer exponent (see 

Fig. 1). Unlike most LRE approaches where the damped forces are derived analytically from 

the damped energy, the LREC force calculations simply use a different exponent in the 

smoothing function,
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(20)

The use of different exponents is related to the length scale of the potential and the gradient. 

Since the forces act over a shorter range than the potential, it is beneficial to move the 

inflection point of the smoothing function closer to  by increasing the exponent (see 

Figs. 1, 2). Increasing the exponent reduces the damping at short ranges, while increasing 

the damping in the regions where the forces are small. In general, the LREC exponent and 

cutoff can be adjusted to control the convergence, cost, and accuracy of the method, similar 

to adjusting the short-range cutoff and damping parameter in the Ewald, PME, and Wolf 

methods. As shown by Fang et al. [14], the LREC approach produces energies (s = 2) and 

forces (s = 3) in good agreement with PME when the cutoff radius is larger than 20 Å.

4 LREC in QM/MM

4.1 Effective multipole moments

To easily implement any shifting or smoothing function in QM/MM simulations, the MM 

monopoles can be scaled to a value consistent with the smoothed Coulomb potential,

(21)

where  is the scaled monopole in the MM region, S is a generalized damping function, and 

rj is the distance between the MM atom and the QM center of mass. Scaling monopoles 

based on their distance from the QM region is a simple approach which avoids the need to 

modify the QM integrals or correct the energies. Since the QM external field contains the 

damped multipole moments, forces on the QM atoms can be calculated using the QM 

gradients without further corrections. Additionally, there is no need to modify the forces 

when  is slowly varying, which is the case for iterative QM/MM geometry optimizations 

[52]. However, one needs to be cautious when performing QM/MM–MD simulations, when 

there is a small number of QM atoms, or when the cutoff radius is small; since  will no 

longer be slowly varying. Figure 3 reports scale factors calculated for a selection of 

smoothing and shifting methods. It is clear that the LREC approach faithfully represents the 

electrostatic potential over a longer length scale than other shifting approaches. At , 

the LREC approach retains 75 % of the original Coulomb energy, while the force shift 

potential has been reduced to 25 %.

Higher-order multipole moments can be scaled in the same manner as the monopole 

moments:
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(22)

and

(23)

where Sdpl and Sqpl are the dipole and quadrupole damping functions, respectively. This 

approach can easily be implemented to produce smoothed multipole expansions. In the 

LREC approach, Eqs. 22 and 23 reduce to

(24)

and

(25)

where f and r′ have the same form as in Eqs. 18 and 19. The work Fang et al. [14] and our 

exploratory calculations (see supporting information) have shown that setting s = 2 is 

sufficient for QM/MM calculations with only monopoles, while setting s = 3 significantly 

improves LREC performance for multipolar QM/MM calculations. Within LICHEM, the 

scaled monopole, dipole, and quadrupole moments can be further approximated as a set of 6 

point-charges in an octahedral arrangement [12, 19]. As was shown previously [26], the 

point-charge approximation is a simple and accurate method for including multipole 

moments in QM software that can only employ point-charges for the external field.

4.2 Mixed LRE methods

Since QM/MM simulations separate the QM–QM, MM–MM, and QM–MM electrostatic 

interactions, the long-range electrostatics can be treated with different approximations in 

each part of Eq. 3. For example, the QM–MM interactions may be treated with the LREC 

approach while the MM–MM interactions can be calculated with PME. The resulting 

QM(LREC)/MM(PME) calculations take advantage of the simplicity of the LREC 

smoothing function in quantum calculations and the speed/accuracy of PME [8, 9, 21] for 

classical models. It is, perhaps, not intuitively clear why two different LRE approaches can 

be combined in QM/MM simulations. Separability is key to the validity of smoothly mixing 

two LRE methods. Two distinct types of separability appear in the QM/MM calculations.

1. Separation of the optimizations: LICHEM employs the iterative QM/MM 

optimization algorithm [26, 52] shown in Fig. 4. Since the QM and MM degrees 

of freedom are optimized independently, only a single LRE method is used to 

calculate the forces during each optimization procedure. Thus, two different LRE 

approaches are only used simultaneously while calculating the total energy.
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2. Separability of the energies: The QM/MM total electrostatic energy, εtot, can be 

written as

(26)

where

(27)

and

(28)

Here ε represents the electrostatic component of the energies calculated with the 

QM/MM Hamiltonian (Eq. 3). The QM–MM interaction energies in Eq. 27 are 

calculated using Gaussian integrals in the QM software, while the electrostatic 

interactions in Eq. 28 are calculated using the MM force field. Since the QM–

MM, MM–MM, and polarization portions of Eq. 26 are already calculated with 

different algorithms (i.e., Gaussian integrals and force fields), using two 

sufficiently accurate LRE methods does not significantly affect the total energy. 

Test calculations with MM(FS)/MM(PME), where the QM region was treated 

with a force-shifted MM potential, confirmed that there are negligible errors (not 

reported) compared to full PME calculations.

QM and polarization calculations are inherently many-body and must include enough of the 

multipole moments for the calculations to converge. On the other hand, the charges on the 

QM atoms can simply be neglected in the MM–MM calculations. Since the MM potential is 

pair-wise additive, calculating the electrostatic interactions without the presence of QM 

charges generally does not affect the MM–MM interactions.

5 Results

5.1 Computational details

The QM calculations were performed using the 6–31++G(d,p) basis set, and each QM/MM 

system was solvated using a cubic box of liquid water (32,000 molecules, box length: 

98.646 Å). We have tested the LREC method with a variety of cutoff radii up to the 

maximum cutoff (Rc = 49.323 Å) allowed by the minimum image convention. The QM–MM 

and MM–MM vdW interactions, on the other hand, were calculated using the default 

settings of the TINKER software package [39] (polynomial smoothing with Rc = 9 Å). 

Additionally, we have tested LICHEM’s QM(LREC)/MM(PME) implementation using both 

the non-polarizable TIP3P [24] and the polarizable AMOEBA [43] potentials.
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5.2 QM–MM interactions

To examine the convergence of multipolar LREC calculations, QM/MM calculations were 

performed on the box of liquid water using the NWChem [46]–TINKER interface in 

LICHEM. A collection of 5 water molecules in the center of the box were taken as the QM 

subsystem, and all remaining water molecules were designated as the MM region. The QM–

MM interaction energy, Eint, is given by

(29)

where Etot is the QM/MM total energy, Eqm is the energy of the QM subsystem in the gas 

phase, and Emm is the MM energy of the system with the QM atoms removed.

Figure 5 reports the convergence of the QM–MM interaction energy as the electrostatic 

cutoff is increased. The interaction energies from the long-range corrected QM/MM 

calculations are in good agreement with the results taken from the AMOEBA force field 

and, as was shown previously [14], the QM/MM energies converge with a cutoff between 20 

and 25 Å. The computational cost of LRE methods is almost entirely determined by the cost 

of the QM calculations and the LRE cutoff radius. As can be seen in Fig. 6, the 

computational cost of QM/MM simulations can increase rapidly as the cutoff radius is 

extended. Since multipolar QM/MM simulations are both more expensive and slower to 

converge than monopolar QM/MM simulations, it is beneficial to use a higher exponent to 

accelerate the convergence (see supporting information).

Additionally, PBE0(LREC)/TIP3P(LREC) calculations, using the in-house modified 

versions of Gaussian and TINKER, confirmed that the QM/MM total energy was within 

0.01 % of the PBE0(LREC)/TIP3P(PME) energy. The excellent agreement between the 

QM(LREC)/MM(LREC), QM(LREC)/MM(PME), and MM(PME) calculations confirms 

that the LREC method can be smoothly combined with other LRE methods.

5.3 Reaction barriers

Generally, the determination of reaction barriers is one of the main objectives in QM/MM 

simulations. To test the QM(LREC)/MM(PME) method on chemical reactions, we have 

chosen to use the aspartic acid dimer double proton transfer reaction from our previous work 

[14]. The acid dimer reactant, transition state, and product structures were solvated using the 

water box from Sect. 5.1 and re-optimized at the ωB97xD/AMOEBA (Rc = 25 Å level of 

theory.

The reaction barriers were calculated using LICHEM’s Gaussian [17]–TINKER interface 

for single-point energy calculations with Rc = {2, 5, 10,…, 45, 50} Å. The proton transfer 

barriers reported in Fig. 7 show large fluctuations with small cutoffs before stabilizing with 

Rc ≥ 20 Å, around 6.06–6.18 kcal/mol. While the barrier continues to increase beyond Rc = 

20 Å, the total change induced by further increasing the cutoff from 20 to 50 Å is ∼0.1 kcal/

mol. Furthermore, extrapolating to Rc = ∞ yields a barrier of 6.30 kcal/mol. Thus, the 

approximate error at Rc = 20 Å is only 0.25 kcal/mol, which is well below the so-called 

chemical accuracy (1 kcal/mol).
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6 Conclusion

We have demonstrated that the LREC approach can be extended to multipolar/polarizable 

models in a straightforward manner. The interaction energies and reaction barriers from the 

LREC approach converge as the cutoff radius is increased and, in agreement with our 

previous results, Rc = 20–25 Å is sufficient to obtain converged QM/MM energies. Using 

multipolar LREC for QM/MM simulations is an easy-to-implement approach for calculating 

long-range electrostatic interactions, which does not require modifications to the underlying 

QM software. Furthermore, the QM(LREC) calculations can readily be combined with 

efficient and accurate long-range electrostatics methods, such as PME, for the MM 

calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
LREC damping function (Eq. 18) with s = 2 and s = 3. Increasing the exponent moves the 

inflection point of the LREC function closer to the cutoff radius
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Fig. 2. 
Energy and force for the Coulomb potential with different damping functions, S(rij). At 

short-range, the LREC smoothing function produces energies and forces nearly identical to 

those from the true potential, while heavily damping the interactions at longer length scales
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Fig. 3. 
Monopole scaling factors (Eq. 21) from different electrostatic potentials (CL Coulomb’s law, 

ES energy shifted, FS force shifted, LREC ). LREC faithfully represents the 

electrostatic field over a larger range than the two shifting approaches
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Fig. 4. 
QM/MM optimization procedure (Refs. [26, 52]) implemented in LICHEM. The LRE 

methods used in each step are shown for QM(LREC)/MM(PME). Based on the change in 

the atomic positions after optimization; skipped on the first step
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Fig. 5. 
Convergence of the QM–MM interaction energy (Eq. 29) as the LREC cutoff is increased. 

For comparison, MM(PME) interaction energies are shown for TIP3P and AMOEBA
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Fig. 6. 
Computational cost of PME0(LREC)/MM(PME) relative to the cost of PBE0(LREC)/

TIP3P(PME) with Rc = 0 Å (i.e., the QM region is in the gas phase)
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Fig. 7. 
Aspartic acid double proton transfer reaction barriers calculated with s = 3 and different 

values of the LREC cutoff. Between Rc = 20 and 50 Å, the total change in the barrier height 

is less than ∼ 0.1 kcal/mol, which is within chemical accuracy
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