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Aging
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Normal aging is associated with a decline in episodic memory and also with aggregation of the �-amyloid (A�) and tau proteins and
atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that A� is associated
with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly
understood. Using in vivo human A� and tau imaging, we demonstrate that increased A� and tau are both associated with aberrant fMRI
activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated
with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy
was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related
protein aggregation as an underlying mechanism of age-related memory impairment.
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Introduction
Successful episodic memory processes require a large-scale net-
work of medial temporal lobe (MTL) structures, central to which
are the hippocampus and entorhinal cortex. This network is
highly susceptible to age-related decline, as evidenced by changes
in cognition, structure, and function. Older adults often have
difficulty forming new memories (Small et al., 1999; Hedden and

Gabrieli, 2004) and neuroimaging studies have repeatedly found
that MTL volumes decrease across the lifespan (Jernigan et al.,
1991; Pruessner et al., 2001; Raz et al., 2004). The structures
leveraged by the episodic memory network are also disrupted in
Alzheimer’s disease (AD). The formation of tau neurofibrillary
tangles is first seen in the transentorhinal and entorhinal cortex
(Braak and Braak, 1991, 1997), whereas �-amyloid (A�) plaques
accumulate in a number of neocortical regions that are ultimately
reciprocally connected to the hippocampus via the entorhinal
cortex and perforant pathway (Braak and Braak, 1991; Thal et al.,
2002). In conjunction with these two aggregated proteins, atro-
phy of the hippocampus and entorhinal cortex are hallmarks of
the disease (Laakso et al., 1996; Scheltens, 2001).

Recent fMRI studies of age-related memory decline have dem-
onstrated that hippocampal hyperactivity is often observed in
older adults compared with young controls (Miller et al., 2008;
Yassa et al., 2011). Because AD pathology is commonly observed
in cognitively normal individuals (Bennett et al., 2006), some
degree of what is considered as normal age-related decline may be
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Significance Statement

Alterations in episodic memory and the accumulation of Alzheimer’s pathology are common in cognitively normal older adults.
However, evidence of pathological effects on episodic memory has largely been limited to �-amyloid (A�). Because A� and tau
often cooccur in older adults, previous research offers an incomplete understanding of the relationship between pathology and
episodic memory. With the recent development of in vivo tau PET radiotracers, we show that A� and tau are associated with
different aspects of memory encoding, leading to aberrant neural activity that is behaviorally detrimental. In addition, our results
provide evidence linking A�- and tau-associated neural dysfunction to brain atrophy.
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attributable to AD pathology. In fact, multiple studies have re-
ported alterations in the hippocampal memory network that are
associated with A�. Elevated A� has been linked to increased
hippocampal activation (Mormino et al., 2012), increased ento-
rhinal cortex activation (Huijbers et al., 2014), and reduced task-
induced deactivation (Sperling et al., 2009) in cognitively normal
older adults. A� is thought to be excitotoxic, potentially leading
to aberrant cellular activity (Mattson et al., 1992; Busche et al.,
2008); however, A� is unlikely to be the sole contributor to mem-
ory impairment. Tau is more closely associated with AD symp-
toms than is A� (Arriagada et al., 1992; van Rossum et al., 2012)
and, whereas MTL tau pathology is common as an isolated pa-
thology in older people (Crary et al., 2014), A� often cooccurs
with tau pathology (Price and Morris, 1999; Chabrier et al., 2012)
and may be involved in its spread to neocortex (Schöll et al.,
2016). Neuroimaging studies to date have been limited in that
they do not fully account for the role of both A� and tau in
relation to MTL function.

To examine the effect of AD pathology on memory network
function and decline in normal aging, we used a lure discrim-
ination paradigm specifically designed to tax the hippocampal
formation. A core function of the hippocampus is to orthogonal-
ize information into noncompeting representations or pattern
separation (Marr, 1971; Treves and Rolls, 1994; O’Reilly and
Norman, 2002). However, older adults, when confronted with
stimuli that are similar but not identical to those previously ob-
served, frequently misidentify these lures as older representations
(pattern completion). This age-related behavioral change has
been associated with both increased hippocampal activation and
structural degradation of the perforant pathway and limbic
tracts, potentially disconnecting hippocampus from neocortex
(Yassa et al., 2010a, 2011; Bennett et al., 2015). Because tau accu-
mulation in cognitively normal older adults usually occurs in the
entorhinal cortex and hippocampus (Braak and Braak, 1997), a
reasonable hypothesis is that tau accumulation provokes hip-
pocampal dysfunction and produces memory impairment in ag-
ing. In addition, our previous work, as well as other work cited
above, implicates A� involvement in hippocampal hyperactiva-
tion. Therefore, our goal was to explore relationships between
tau and A� accumulation, measured with 18F-AV-1451 (Xia et
al., 2013) and 11C-Pittsburgh compound B (PIB; Price et al.,
2005) PET, to task-related brain activation, episodic memory,
and brain structure in cognitively normal older adults. We hy-
pothesized that increased task-related activation would be
associated with impaired cognitive performance, atrophy of the
MTL, and both tau and A�.

Materials and Methods
Participants. Sixty healthy older adults (OA) aged 64 –93 years (40 fe-
male) and 24 young adults (YA) aged 18 –30 years (16 female) were
recruited from the Berkeley Aging Cohort, an ongoing longitudinal study
of cognitive aging, to participate in PET and MRI imaging. All partici-
pants underwent a detailed medical interview and a battery of neuropsy-
chological assessments before enrollment. To be eligible, OA were
required to be 64 years of age or older, living independently in the com-
munity, free of neurological and major medical illness, and have normal
performance on neuropsychological tests (within 1.5 SD of the mean).
Seventeen OA and 4 YA were excluded because of poor performance
(below chance on lure discrimination, n � 2), problems with data col-
lection (behavioral and MRI, n � 8) or image normalization (n � 3), and
excessive motion (n � 8), resulting in 43 OA and 20 YA for subsequent
data analysis (Table 1). All OA received MRI and 11C-PIB PET for amy-
loid imaging and a subset received 18F-AV-1451 PET (n � 35) for tau
imaging. YA only participated in MRI imaging. MRI scans were acquired

within an average of 97.58 � 94.81 d from PIB and 123.66 � 198.97 d
from AV-1451 PET scans. All participants provided informed consent in
accordance with the Institutional Review Boards of the University of
California, Berkeley, and the Lawrence Berkeley National Laboratory
(LBNL).

Behavioral task. The episodic memory paradigm used was adapted
from Yassa et al. (2011). Across six runs in the scanner, participants were
shown color photographs of novel, repeated, and similar (i.e., lure) ob-
jects. Participants were told to identify the objects seen as new (first), old
(repeat), or similar but not identical (lure). Objects were presented one at
a time for 2000 ms, followed by a black fixation cross with a fixed 500 ms
intertrial interval. Each run contained 16 repeated pairs, 16 lure pairs,
and 44 novel objects, with no objects duplicated between runs. Objects
were fully randomized and the distance between repeated and lure
pairs was randomly varied between 10 and 40 trials. PsychoPy (RRID:
SCR_006571) was used for stimulus presentation and behavioral data
collection.

PET acquisition. PIB was synthesized at the LBNL Biomedical Isotope
Facility. PIB-PET imaging was performed at LBNL using an ECAT EX-
ACT HR or BIOGRAPH PET/CT Truepoint 6 scanner (Siemens Medical
Systems) in 3D acquisition mode. Thirty-five dynamic acquisition
frames were obtained over 90 min (4 � 15 s, 8 � 30 s, 9 � 60 s, 2 � 180 s,
10 � 300 s, and 2 � 600 s) immediately after injection of 10 –15 mCi of
PIB into an antecubital vein. Ten-minute transmission scans for attenu-
ation correction or x-ray CT were obtained for each PIB scan. Data were
reconstructed using an ordered subset expectation maximization algo-
rithm with weighted attenuation and smoothed with a 4 mm Gaussian
kernel with scatter correction.

AV-1451 was synthesized at LBNL using a GE TracerLab FXN-Pro
synthesis module with a modified protocol based on that supplied by
Avid Radiopharmaceuticals. AV-1451 PET imaging was performed on
the BIOGRAPH PET/CT scanner. After the injection of 10 mCi of AV-
1451, 1 of 2 acquisition schemes were acquired: 0 –100 min of dynamic
data (4 � 15 s, 8 � 30 s, 9 � 60 s, 2 � 180 s, and 16 � 300 s frames),
followed by 120 –150 min (6 � 300 s frames, n � 18) or 75–115 min (8 �
300 s frames, n � 17). Analyzed data from both acquisition schemes used
only frames from 80 –100 min. A CT scan was performed before the start
of each emission acquisition. Data were reconstructed using an ordered
subset expectation maximization algorithm with weighted attenuation
and smoothed with a 4 mm Gaussian kernel with scatter correction.

MRI acquisition. High-resolution fMRI was performed at the Henry H.
Wheeler Jr. Brain Imaging Center (BIC) on a 3T TIM/Trio scanner (Sie-
mens Medical Systems) using a 32-channel head coil. Each of the six
functional runs used a T2*-weighted echoplanar imaging sequence
(TR � 1500 ms; TE � 34 ms; flip angle � 70°; matrix � 132 � 132;
FOV � 200; voxel size � 1.5 � 1.5 � 1.5 mm; duration � 5 min). A
parallel imaging reduction factor of 2 was used to reduce acquisition time
and minimize distortion due to magnetic susceptibilities near the tem-
poral lobes. Nineteen slices oriented parallel to the primary axis of the
hippocampus were acquired in interleaved order, covering the entirety of
the MTL. A total of 196 volumes were acquired during each run. The first
10 volumes were discarded because they were used to ensure signal equi-

Table 1. Participant demographics

YA OA

n 20 43
Age 23.25 (3.21) 78.80 (5.75)
Sex (M/F) 7/13 12/31
Education 15.21 (1.58)a 16.63 (1.98)
MMSE 29.00 (1.26) 28.86 (1.21)
APOE (0/1/2 �4 allele) N/A 28/14/0 (1 N/A)
PIB DVR N/A 1.12 (0.18)
AV-1451 SUVR (Braak I/II) N/A 1.51 (0.19)
Days between MRI and PIB N/A 97.58 (94.81)
Days between MRI and AV-1451 N/A 123.66 (198.97)

All values are mean (SD) unless stated otherwise.

MMSE, Mini-Mental State Examination; APOE, Apolipoprotein E.
aSignificantly different from OAs (two-sample t test, p � 0.05).
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librium and minimal subject motion during the parallel imaging
normalization template acquisition. A T1-weighted volumetric magne-
tization prepared rapid gradient echo image (MPRAGE; TR � 2300 ms;
TE � 2.98 ms; matrix � 256 � 256; FOV � 256; sagittal plane; voxel
size � 1 � 1 � 1 mm; 160 slices) was collected and used during coregis-
tration of functional data. An MPRAGE image (TR � 2110 ms; TE �
3.58 ms; matrix � 256 � 256; FOV � 256; sagittal plane; voxel size � 1 �
1 � 1 mm; 160 slices) was also collected at LBNL on a 1.5T Magnetom
Avanto (Siemens Medical Systems) for PET coregistration purposes.

PET processing. PET data were processed using the SPM12 software
package (RRID:SCR_007037). PIB-PET data were realigned and frames
corresponding to the first 20 min of acquisition were averaged and
used to guide coregistration with the participant’s LBNL MPRAGE. The
coregistration matrix was applied to realigned frames and data were
resliced to MRI space. Distribution volume ratio (DVR) images of PIB-
PET data 35–90 min after injection were created using Logan graphical
analysis and a FreeSurfer-derived gray cerebellum reference region (Lo-
gan, 2000). Global PIB DVR values were calculated for each participant,
defined as the mean DVR within regions of interest (ROIs) in the frontal,
parietal, temporal, and cingulate cortices (Mormino et al., 2011). Previ-
ous work demonstrated that global PIB DVR values did not differ signif-
icantly between the two scanners used for data collection (Elman et al.,
2014).

AV-1451-PET data were realigned and the mean of all frames was used
to coregister data to the participant’s LBNL MPRAGE. Standard uptake
value (SUV) images representing data 80 –100 min after injection were
created and normalized by a gray cerebellum reference region to gener-
ate native space SUV ratio (SUVR) images. SUVR images were partial
volume corrected using the Rousset approach (Rousset et al., 1998).
Volume-weighted mean SUVR values within anatomically approxi-
mated Braak staging were calculated using a method described previ-
ously (Schöll et al., 2016). Briefly, Braak ROIs were created by combining
FreeSurfer segmentations (see below) into nonoverlapping stages used to
describe AD-related tau pathology (i.e., I/II transentorhinal, III/IV lim-
bic, and V/VI isocortical).

MRI processing. BIC and LBNL MPRAGE data were processed using
FreeSurfer version 5.3 (RRID:SCR_001847) to define native space ROIs
for each participant (Dale et al., 1999; Fischl et al., 2001, 2002; Ségonne et
al., 2004). FreeSurfer ROIs obtained using LBNL data were used to create
Braak ROIs and to calculate PIB DVR values. FreeSurfer ROIs obtained
using BIC data were used to measure thickness of MTL subregions, av-
eraged across hemispheres. Hippocampus and entorhinal, parahip-
pocampal, and perirhinal cortices were segmented manually for each
participant on BIC MPRAGE images following previously established
guidelines (Insausti et al., 1998; Pruessner et al., 2002; Duvernoy, 2005).
These segmentations were used to quantify average hippocampal vol-
ume. Hippocampal volume was corrected for total intracranial volume
(ICV) using a covariance approach, as defined by the following formula:
adjusted volume � raw volume � � * (ICV � mean ICV), with � being
the regression coefficient when raw volume is regressed against ICV and
mean ICV being the group average (Mathalon et al., 1993).

fMRI processing. fMRI data were processed and analyzed using a com-
bination of Advanced Normalization Tools (RRID:SCR_004757) and
SPM12. For a given run, images were realigned to the first volume
and smoothed with a 5 mm Gaussian kernel. Motion vectors were created
and used to identify significant motion spikes (�2 mm displacement � 1
TR). A mean fMRI image was created, bias corrected, and thresholded to
exclude surrounding nonbrain tissue and skull. The resulting image was
used in a two-step spatial normalization process. First, the mean fMRI
image was linearly registered to the participant’s skull-stripped BIC
MPRAGE. Second, the BIC MPRAGE was nonlinearly registered to the
skull-stripped MNI ICBM 152 Nonlinear Asymmetric template (Fonov
et al., 2009). The two transformations were combined and applied to the
participant’s fMRI data as one transformation.

fMRI analysis. Individual runs were modeled using FSL’s FEAT ver-
sion 6.0 (RRID:SCR_002823). Trials were categorized into eight bins.
Four of these represented activity upon the first presentation of the
stimuli: (1) novel objects (stimuli presented only once), (2) subsequent
hits (sH), (3) subsequent correct rejections (sCR), and (4) subsequent

false alarms (sFA). Three represented activity upon presentation of the
paired stimuli: (5) hits (repeat presentation correctly identified as
old), (6) correct rejections (lure presentations correctly identified as sim-
ilar), and (7) false alarms (lure presentations incorrectly identified as
old), with an eighth category of errors and omissions. Data were con-
volved with a double-gamma hemodynamic response function and each
bin, their corresponding temporal derivatives, six rigid body motion
parameters, and outlier volumes (those with excessive motion) were en-
tered in a general linear model to predict fMRI signal. The resulting
contrasts reflect activity for a given task-related bin relative to the non-
zero, novel object baseline condition. Second-level contrasts were cre-
ated for each participant by combining all six runs using a one-sample t
test with fixed effects. Third-level group statistics were created for all sH,
sCR, and sFA by combining all individual subject data using one-sample
t tests. All third-level statistics were masked to only include hippocampus
and the entorhinal, parahippocampal, and perirhinal cortices (98,256 1.5
mm 3 voxels) as defined above; a threshold of p � 0.05 uncorrected and
k � 250 cluster extent was used. Each condition’s significant activations
or deactivations were binarized and used to extract data from individual
participants. Differences between groups were quantified using two-
sample t tests.

Statistical analyses. Statistical analyses and plots were performed using
R version 3.2.3 (RRID:SCR_001905). Group differences were assessed
using t tests. Multiple regression was used to assess relationships among
cognition, task activation, and biomarker data within OAs. All regression
analyses were controlled for age, sex, and education. Regression models
involving PET biomarkers were additionally controlled for hippocampal
volume to account for spatial resolution differences between high-
resolution fMRI and PET. Mediation analyses were performed using the
“mediation” package in R. Dice’s coefficient was calculated to quantify
the similarity between clusters of task-related activation. Significant re-
lationships were reported at p � 0.05 and trends of p � 0.1 were
addressed.

Results
Memory performance
All participants were administered the memory paradigm out-
lined in Figure 1A during fMRI data acquisition. Differences were
found between OA and YA for all but one behavioral condition,
repeated objects called new, with the most pronounced differ-
ences seen for lure objects called similar (Fig. 1B). To assess task
performance, a lure discrimination index (LDI) was defined as
(p[similar�lure] � p[new�lure]) � p(similar�first). This measure
generally describes the likelihood that a lure was correctly iden-
tified and corrects for response bias within participants. Overall,
OA performed worse compared with YA (t(52) � �5.70, p �
0.001; Fig. 1C).

Activation and deactivation patterns in older adults
Neural activity during stimulus encoding for three conditions
was compared with activity for novel stimuli presented only
once using one-sample t tests in the OA group (Fig. 2). Activa-
tions associated with sH (correctly identified as old on the subse-
quent presentation) were found in left entorhinal cortex and
bilateral parahippocampal cortex. Clusters of sH deactivations
were found in left perirhinal cortex near the border of the ento-
rhinal cortex, bilateral anterior hippocampus, and right posterior
hippocampus. For sCR (correctly identified as similar on the
subsequent presentation), activations were found in bilateral
perirhinal cortex, left anterior hippocampus, left posterior
hippocampus, and right parahippocampal cortex. No clusters of
voxels exceeded the threshold for deactivations. sFA (subse-
quently incorrectly identified as old upon presentation of a lure)
activations were found in bilateral perirhinal cortex, left anterior
hippocampus, left posterior hippocampus, left parahippoca-
mpal cortex, and right entorhinal cortex. sFA deactivations were
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found in right entorhinal cortex and right anterior and posterior
hippocampus.

Differences in activation and deactivation patterns between
older and young adults
To determine whether neural activity differed between the OA
and YA groups, we first quantified activity in YA within the con-
trasts identified using one-sample t tests of OA. Compared with
OA, YA had significantly reduced activation in the sH (t(43) �
�2.58, p � 0.01) and sFA (t(54) � �3.64, p � 0.001) contrasts. A
nonsignificant trend was observed in the sCR contrast (t(30) �
�1.88, p � 0.07). In addition, we performed two-sample t tests to
explore explicit differences between groups (Fig. 3). Numerous
clusters of increased activation were found in OA for all trial
types. Specifically, clusters were found in right anterior hip-
pocampus, bilateral entorhinal and bilateral parahippocampal
cortex for sH; bilateral hippocampus (both anterior and poste-
rior) and right parahippocampal cortex for sCR; and right ento-
rhinal cortex, bilateral anterior hippocampus, and bilateral
parahippocampal cortex for sFA. Only one cluster of activity in
left anterior hippocampus was associated with increased activity
in YA during sH trials. Finally, we sought to compare patterns of
activation derived from both analyses by calculating Dice’s coef-

ficient for each trial type. Values associated with sH, sCR, and sFA
activations were calculated to be 0.28, 0.10, and 0.45, respectively.
Although these values indicate that the two analyses do not com-
pletely overlap, there is likely shared neural activity between
groups that may not arise using t tests, but is required to perform
lure discrimination. Therefore, we chose to assess further rela-
tionships with task-related activation using the contrasts defined
within OA only.

Amyloid and tau characteristics in older adults
Approximately 45% of OA were classified as A�� using a cutoff
of 1.07, which has been detailed previously (Villeneuve et al.,
2015). This percentage is higher than most studies of cognitively
normal older adults because the participants were recruited to
enrich for A� to better test our hypotheses. Tau was quantified
into three measures that closely approximated anatomically de-
fined Braak staging. Specifically, Braak I/II contained entorhinal
cortex and hippocampus; Braak III/IV contained limbic struc-
tures including inferior temporal cortex, amygdala, and thala-
mus; and Braak V/VI contained isocortical structures including
the frontal, parietal, and occipital cortices. Of the 35 total partic-
ipants included in analyses, 6 OA were classified as Braak 0, 23 OA
were classified as Braak I/II, and 6 OA were classified as Braak

Figure 1. Lure discrimination paradigm and behavioral performance. A, Participants were instructed to identify objects as being new (first presentation of object), old (repeated object), or similar
(lure object resembling a previous trial). Objects were presented for 2000 ms, followed by a 500 ms intertrial interval. Similar lures acted as the primary trials for assessing memory performance.
B, Proportion of response for each trial type. Responses to all trial types differed between YA and OA, with OA generally performing worse. C, LDI, quantifying the likelihood of correctly identifying
lure objects, was significantly lower for OA compared with YA. Data presented as means � SE.
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III/IV. No OA had substantial tau in Braak V/VI regions. Because
the majority of OA had tau deposition in the Braak I/II regions,
the other stages were excluded from further analyses. Age was
significantly associated with Braak I/II tau such that older partic-
ipants had more tau (r(33) � 0.48, p � 0.002). Representative PIB
and AV-1451 images are shown in Figure 4.

Relationships with task-specific activation
To determine whether early AD pathology influences brain
function during memory encoding, we sought to relate measures
of tau and A� pathology with task-related activation. No signifi-

cant relationships were found with sCR activations. Reduced sH
deactivations were associated with increased global PIB DVR
(r(36) � 0.47, p � 0.05; Fig. 5A), with females deactivating more
than males (t(28) � �2.77, p � 0.01). Increased activations during
sFA were associated with elevated tau in Braak I/II (r(28) � 0.41,
p � 0.01; Fig. 5B). The results would not survive a Bonferroni-
adjusted p-value of 0.005.

Although older participants showed greater activation than
younger for all three task conditions, we chose to examine patholog-
ical effects (as opposed to age-related effects) by combining neural
measures that were uniquely susceptible to A� and tau. Therefore,

Figure 2. Patterns of fMRI activation during memory encoding in OA. Shown are one-sample t tests of activation (shown in warm colors) and deactivation (shown in cool colors) in OA during trials
of sH (A), sCR (B), and sFA (C) compared with novel stimuli presented only once. Data are presented as t statistics.

Figure 3. Differences in fMRI activation during memory encoding between OA and YA. Patterns of activation associated with group difference between OA (warm colors) and YA (cool colors)
during trials of sH (A), sCR (B), and sFA (C). Data are presented as t statistics.
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we generated a pathological activation composite measure by com-
bining z-transformed data for sH deactivations and sFA activations.
To determine whether elevated pathological activation was detri-
mental to memory, average activation from the composite measure
was related to the LDI. There was a significant relationship with LDI
such that OA with increased pathological activation performed
worse on the memory paradigm (r(38) � 0.35, p � 0.05, Fig. 6A).
Based on extensive data linking AD pathology to MTL brain struc-
ture, we sought to explore whether hippocampal volume and the
thickness of surrounding cortical regions were also associated with
pathological activation. Thinner average entorhinal cortex (r(38) �
0.44, p � 0.007; Fig. 6B), as well as marginally smaller hippocampal
volume (r(37) � 0.34, p � 0.07), was associated with increased path-
ological activation in OA. The relationship with entorhinal thickness
survived a Bonferroni-adjusted p-value of 0.01. Older age was addi-
tionally associated with thinner entorhinal cortex (r(41) � 0.39, p �
0.006) and smaller hippocampal volume (r(40) � 0.29, p � 0.04).

Relationships between pathology, cortical thickness, and
pathological activation
We sought to better understand the relationship between MTL
structure, AD pathology, and pathological activation; therefore, we

performed a mediation analysis to better de-
fine the relationships between MTL tau,
pathological activation, and average ento-
rhinal cortical thickness, as depicted in Fig-
ure 7. First, the total effect of pathological
activation correlating with entorhinal thick-
ness was significant in the OA with tau im-
aging (� � �0.09, p � 0.02). Second, as
expected, pathological activation was signif-
icantly associated with Braak I/II tau (� �
0.05, p � 0.02). Third, Braak I/II tau was
significantly correlated with entorhinal
thickness (� � �0.67, p � 0.03). Fourth,
pathological activation was no longer asso-
ciated with entorhinal thickness when con-
trolling for Braak I/II tau (� � �0.05, NS).
The indirect effect was tested using a Monte
Carlo simulation with 5000 simulations.
The effect was measured to be �0.03 with
95% confidence intervals of �0.08 to
�0.002, indicating that the indirect effect
was significant. Increased pathological acti-
vation was associated with a 0.03 decrease in

entorhinal thickness as mediated by Braak I/II tau pathology. A sec-
ondary analysis assessing whether A� also mediated the relationship
between pathological activation and entorhinal cortical thickness
was not significant.

Discussion
The presence of AD pathology in cognitively normal older adults
may contribute to the disruption of memory function commonly
observed in aging. This study explored the relationship among
cognition, MTL memory network structure and function, and in
vivo measures of tau and A�. We confirmed previous reports that
older adults exhibit impaired lure discrimination ability, reflect-
ing a bias toward pattern completion. We also found that tau and
A� pathology are related to two different components of memory
encoding, hits and false alarms, which we combined to describe a
disruption in network function. The combined pathological ac-
tivation measure was associated with both worse memory and
atrophy of the MTL. Furthermore, a mediation analysis revealed
that tau in the hippocampus and entorhinal cortex explained the
relationship between pathological activation and cortical thick-
ness. These results suggest that the cooccurrence of tau and A�

Figure 4. PIB and AV-1451 PET imaging. DVR and SUVR images of PIB and AV-1451 binding in representative participants are shown. Areas of significant A� burden were seen in
frontal and parietal cortices and posterior cingulate. Significant tau burden was largely restricted to the MTL.

Figure 5. Relationship between fMRI activation and AD pathology. A, Positive relationship between PIB DVR (measure of
A�) and sH deactivations (r(36) � 0.47, p � 0.05). B, Positive relationship between AV-1451 Braak I/II SUVR (measure of
tau) and sFA activations (r(28) � 0.41, p � 0.01). Data are residuals controlling for age, sex, education, and hippocampal
volume.
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plays a critical role in the development of
age-related memory decline, particularly
by leading to aberrant activity throughout
the hippocampal memory network and to
atrophy of crucial brain structures.

Task activation in older adult cohorts
Increased task-induced activation has
been a frequent finding in cognitively nor-
mal older adults and individuals with
mild cognitive impairment (MCI). Multi-
ple studies have reported hippocampal
hyperactivity during episodic memory
(Miller et al., 2008; Yassa et al., 2010b,
2011), which may be interpreted as aber-
rant due to its frequent negative associa-
tion with memory performance. Using
the same lure discrimination paradigm,
Bakker et al. (2012) reported increased
hippocampal activation in amnestic MCI
subjects in relation to cognitively normal
older adults that was negatively associated
with task performance. Although our results and numerous aging
studies have reported increased hippocampal activation, others
have reported decreased activation (Cabeza et al., 2004; Dennis et
al., 2008) or no difference in activation (Sperling et al., 2003;
Duverne et al., 2009) compared with young controls. These dis-
parate findings are likely related to differences in task and task
difficulty, varied subject demographics, and the uncertain path-
ological status of participants.

Task activation as a function of Alzheimer’s pathology
Our results are in agreement with existing literature indicating
that measurement of pathological proteins explains increased ac-
tivation during memory encoding above the effects of chronolog-
ical age. Specifically, several studies have linked elevated A� to
altered brain function during episodic memory (Sperling et al.,
2009; Mormino et al., 2012; Vannini et al., 2012; Elman et al.,
2014; Huijbers et al., 2015). Mormino et al. (2012) reported in-
creased hippocampal activation in cognitively normal older
adults with significant A� burden, whereas Sperling et al. (2009)
demonstrated that reduced task-induced deactivations were as-
sociated with elevated A� deposition. A recent study reported an
association between increased A� and decreased task activation,
but the hippocampus and broader MTL were not implicated
(Kennedy et al., 2012). Animal models of AD have suggested that
A�-related increased neural activity is epileptiform in nature (Pa-
lop et al., 2007) and is associated with the deposition of A� (Cir-
rito et al., 2005; Bero et al., 2011), potentially leading to a vicious
cycle. Human neuroimaging data demonstrating that the antiepi-
leptic drug levetiracetam both reduced hippocampal activity and
improved memory support this interpretation (Bakker et al.,
2012).

However, some studies have suggested that increased neural
activity may play a compensatory role (Miller et al., 2008). We
previously reported that increased activity in parietal and
occipital cortex, but not hippocampus, was associated with better
memory performance in A�� individuals (Elman et al., 2014).
Differences in interpretation may depend to some extent on
which brain regions are examined. For example, aberrant hip-
pocampal activity may better reflect pathological changes,
whereas activation outside of the MTL might be indicative of
other processes. Regardless of the precise cause, accumulating

evidence supports the view that this increased MTL activity is
detrimental. Because neural activity is associated with A� depo-
sition (Cirrito et al., 2005; Bero et al., 2011), it is possible that this
increased hippocampal activation is driving neural activity in
other cortical regions, such as the retrosplenial cortex and precu-
neus, which are highly connected to the hippocampus and prone
to A� deposition. Furthermore, some have suggested a compo-
nent of excitotoxic damage in the AD pathophysiological cascade
(Hynd et al., 2004; Ong et al., 2013) and the observed increased
activation may be related to this process, to which the hippocam-
pus is uniquely susceptible. This idea is supported by recent evi-
dence linking increased hippocampal activation and atrophy in
AD-signature regions in cognitively normal older adults and pa-
tients with MCI (Putcha et al., 2011).

The current findings build on past studies by including mea-
sures of tau pathology along with A�. Decades of neuropatholog-
ical investigation and recent clinical data support a model in
which tau accumulation becomes ubiquitous in the MTL/ento-
rhinal cortex in normal older adults, spreads to limbic regions
and neocortex with the deposition of A�, and strongly parallels
cognition (Johnson et al., 2016; Cho et al., 2016; Ossenkoppele et
al., 2016; Schöll et al., 2016; Schwarz et al., 2016). Relationships
between tau deposition and hippocampal function appear rea-
sonable in light of its topographical localization, along with
evidence of its association with impaired memory (Schöll et al.,
2016). For example, tau-related neurodegeneration (Spires-

Figure 6. Relationships between pathological activation, memory, and cortical thickness. A, Negative relationship
between pathological activation (as defined by combining sH deactivations and sFA activations) and lure discrimination
index (r(38) � 0.35, p � 0.05). B, Negative relationship between pathological activation and average entorhinal cortex
thickness (r(38) � 0.44, p � 0.007). Data are residuals controlling for age, sex, and education.

Figure 7. Mediation analysis of pathological activation, Braak I/II tau, and cortical thickness.
Mediation analysis with pathological activation (red), mediated by Braak I/II AV-1451 standard
uptake volume ratio (blue), predicting right entorhinal cortical thickness (green) are shown.
Pathological activation positively predicted Braak I/II AV-1451, Braak I/II AV-1451 negatively
predicted entorhinal cortical thickness, which resulted in a significant mediation. Numerical
values are regression coefficients (�) from models controlling for age, sex, and education. See
text for more details. *p � 0.05.
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Jones and Hyman, 2014) and the resulting disconnection of
entorhinal cortex from the hippocampus may potentiate the re-
current auto-associative fibers within the hippocampal circuitry
that lead to pattern completion. In addition, there is strong evi-
dence that tau accumulation is integral to producing aberrant
neural activity in the presence of A� (Roberson et al., 2011). This
process may be exacerbated by an age-related reduction in hip-
pocampal inhibitory interneurons (Vela et al., 2003; Stanley and
Shetty, 2004), shifting the balance of excitation and inhibition
within hippocampal subfields and leading to further aberrant
activity.

Experimental limitations
There are limitations to the current study. A liberal cluster thr-
eshold was used for all task-related activation analyses, which
could allow for false positives (Eklund et al., 2016). We feel that
this concern is mitigated by the fact that our major findings re-
flect associations between activation and other biological vari-
ables. For example, the specific regional localization of activation
within the MTL is not crucial, but rather we found that molecular
pathology is associated with different aspects of a larger hip-
pocampal memory network. Previous studies implementing the
same task have examined only dentate gyrus and CA3 subfield
function (Bakker et al., 2008; Yassa et al., 2011; Bakker et al.,
2012); therefore, they use hybrid functional/structural ROIs,
which are generated by masking thresholded F statistics (p �
0.05– 0.07, k � 10 –100 voxels) with hippocampal subfield ROIs.
Their use of liberal thresholds suggests that the effects associated
with this paradigm are small and may not be fully captured by
strict cluster correction. However, we tried to address false posi-
tives by restricting voxelwise analyses to the hippocampus, ento-
rhinal, perirhinal, and parahippocampal cortices. By doing so, we
drastically limit the number of voxels and enhance signal-to-
noise. We also acknowledge that our definition of the lure dis-
crimination index may not reflect explicit pattern separation by
including lure stimuli called new. Although a response of similar
or new both reflect correct responses (because a response of new
could result from judging lure stimuli to be dissimilar), it is also
possible that a new response indicates inadequate encoding of
the paired stimulus. We chose to include these responses to in-
crease the number of trials associated with the measure;
therefore, the measure may better reflect a failure of pattern com-
pletion. In addition, not all results could be corrected for multiple
comparisons using Bonferroni correction. Specifically, relation-
ships between individual measures of task-related activation and
AD pathology would be nullified. Nevertheless, the association
between A� and reduced deactivation replicates previous reports
and the task-related activation associations with behavior and
brain structure suggests their biological relevance. Finally, both
PET tracers have limitations. PIB binds only to aggregated fibril-
lar forms of A�, neglecting the pathological soluble forms. Pre-
vious work demonstrates that soluble and fibrillar forms of A�
may exist in equilibrium (Cirrito et al., 2003). However, because
we have no measure of soluble A�, it is possible that our results
underestimate the strength of relationships with A�. Off-target
binding of AV-1451 in the choroid plexus also poses a problem
when quantifying hippocampal tau, but this problem was ad-
dressed through partial volume correction.

Conclusions
In summary, our results suggest that tau and A� are associated
with aberrant activity within the MTL during memory encoding.
Given the nature of AD pathology and the onset of its accumula-

tion, longitudinal studies across the lifespan need to be per-
formed to fully understand the influence of pathology on age-
related memory decline. However, these results indicate that both
A� and tau play different but complementary roles in increasing
neural activity during memory encoding, specifically in a manner
that appears to be behaviorally detrimental and associated with
structural brain change. These findings broaden the concept
of cognitive aging to include evidence of AD-related protein
aggregation as an underlying mechanism of age-related memory
impairment.
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