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Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of
single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual
scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-
level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the
population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically
organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF
center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels.
We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these
findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surpris-
ingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than
changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-
level representations in visual cortex.
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Introduction
Spatial receptive fields (RFs) are a core component of visual in-
formation processing throughout the visual system. They are
modified by selective visual attention to improve the fidelity of

sensory representations, likely enabling more precise, accurate
perception (Desimone and Duncan, 1995; Anton-Erxleben and
Carrasco, 2013). Prior studies in nonhuman primates have found
that covert spatial attention changes the position, size, and am-
plitude of responses in single-cell RFs in early cortical areas, such
as V1, V4, and MT (Moran and Desimone, 1985; Connor et al.,
1996, 1997; Womelsdorf et al., 2006, 2008; Roberts et al., 2007;
David et al., 2008). Recent neuroimaging studies have also shown
that single-voxel RFs (vRFs) undergo similar response changes
with attention, shifting toward the attended target or changing in
size (Klein et al., 2014; de Haas et al., 2014; Kay et al., 2015;
Sheremata and Silver, 2015). Most accounts suggest that these RF
modulations improve the spatial representations of the attended
target, either by boosting the signal-to-noise ratio by increasing re-
sponse amplitude, or by increasing the spatial resolution by decreas-
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Significance Statement

Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such
hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate
changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts
contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests
that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual informa-
tion. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on
distributed inputs rather than single neuron-to-neuron mappings.
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ing RF size (Desimone and Duncan, 1995; Anton-Erxleben and
Carrasco, 2013; Cohen and Maunsell, 2014). These mechanisms are
akin to turning up the volume (gain increase) or to using smaller
pixels to encode a digital image (size decrease).

Despite these documented modulations, it is not yet clear how
different types of RF modulations are combined to facilitate robust
population codes. Recent studies have only begun to explore how
interactions between neurons may affect the coding properties of the
population (Anton-Erxleben and Carrasco, 2013; Cohen and
Maunsell, 2014). Yet analyzing these data at a population level is
crucial for understanding how spatial attention changes the overall
representation of an attended area. Prior fMRI studies that measured
many voxel RFs (vRFs) across space were often unable to report the
full pattern of response modulations with respect to the attended
target because subjects attended to the mapping stimulus, rather
than to a fixed point in space (Sprague and Serences, 2013; Kay et al.,
2015; Sheremata and Silver, 2015). Studies that fixed the locus of
attention have reported mixed results on vRF modulations (Klein et
al., 2014; de Haas et al., 2014). The first aim of this study was thus to
evaluate how properties of vRFs in retinotopic areas change with
attention, especially near the peripheral attention target.

The second aim of the study was to evaluate how different
types of RF modulations contribute to population-level enhance-
ments of an attended region of space. Single RFs in early visual
areas are fundamentally local encoding models that are relatively
uninformative about regions outside their immediate borders.
To study their relationship to a population-level representation
of space, other metrics are needed to integrate information across
all local encoding units (e.g., vRFs) to evaluate how attentional
modulations impact the quality of population codes. Here, we
used two different population-level metrics of spatial encoding
fidelity to investigate these questions, and to determine how
changes in vRF amplitude, size, or position affect the population-
level representations. First, we used a measure related to Fisher
information to evaluate the spatial discriminability of population
codes. Second, we used a spatial encoding model that incorpo-
rates information across voxels to form representations of stimuli
in the mapped visual field (Brouwer and Heeger, 2009; Sprague
and Serences, 2013; Sprague et al., 2015).

We found that vRF position shifts increase both the spatial dis-
criminability around the attended region as well as the fidelity of
stimulus reconstructions near the attended target. Surprisingly,
shifts in vRF position accounted for more of the population-level
enhancements with attention than changes in vRF size or gain. This
finding is unexpected in the context of “labeled-line” models of in-
formation processing, which posit that visual representations rely on
RFs that transmit consistent “labels” for visual features, such as spa-
tial position. Our findings suggest that apparent shifts in the labels of
RFs play an important role in the attentional enhancement of visual
information.

Materials and Methods
Task design and participants
We collected data from 9 human participants (4 female), 6 of whom had
previously completed a set of retinotopic mapping scans in the labora-
tory (Participants AA, AB, AC, AI, and AL in Sprague and Serences, 2013;
Participants AA, AC, and AI in Sprague et al., 2014; all participants in
Ester et al., 2015). All participants provided written informed consent
and were compensated for their time ($20/h) as approved by the local
University of California, San Diego Institutional Review Board. Partici-
pants practiced both the attention task and the localizer task before en-
tering the scanner. A minimum of 4 h of scanning was required to
complete the entire analysis, so one participant was excluded due to
insufficient data (they only completed 2 h). Another participant was

excluded for inconsistent behavioral performance, with average task ac-
curacy at chance (48.6%). This yielded a total of 7 participants who
completed the entire experiment (3 2 h scan sessions per participant).

Participants centrally fixated a gray rectangular screen (120 � 90 cm)
viewed via a head-coil mounted mirror (�3.85 m viewing distance).
They attended one of three fixed locations on the screen: the fixation
point or a target to the lower left or lower right of fixation. During each
2000 ms trial, subjects reported a change in the attention target. When
subjects attended fixation, they reported whether a brief contrast change
(100 – 400 ms, starting 300 –1000 ms into the trial) was dimmer or
brighter than the baseline contrast. The peripheral attention targets were
two pentagons (0.17° radius; 50% contrast) centered 2.1° to the left and
right of fixation (Fig. 1a). When subjects attended a peripheral target,
they reported whether it rotated clockwise or counterclockwise (rotation
duration 100 –300 ms, starting 300 –1600 ms into the trial). Intertrial
intervals randomly varied between 1000 and 3000 ms in 500 ms incre-
ments (mean intertrial interval: 2000 ms). The magnitude of the contrast
change or the rotation was adjusted on each run to keep task perfor-
mance for each participant near 75% (mean � 75.90%, bootstrapped
95% CI [72.46%, 79.20%]), with no significant difference between
conditions as evaluated with a one-way repeated-measures ANOVA
randomization test (F(1,11) � 0.220, randomized p � 0.800). For 4 par-
ticipants, we collected 6 runs on the attend periphery tasks without a
change in the luminance of the fixation stimulus. Performance on the
attend periphery tasks was stable across runs with and without the lumi-
nance change (repeated-measures ANOVA with run type � random
participants factor; p � 0.439, null F distribution using randomized la-
bels for 10,000 iterations). Therefore, these data were collapsed across
scan sessions with and without changes in fixation luminance.

On 51 of the 61 trials in each run, a full-contrast 6 Hz flickering checker-
board (0.68° radius; 1.67 cycles/deg) appeared for 2000 ms at 1 of 51 different
locations across the screen to map the spatial sensitivity of visually responsive
voxels. These mapping stimuli covered a region of the screen approximately
subtending 9° horizontal and 6° vertical when their position was jittered.
When one of these checkerboards overlapped with any of the static attention
targets, they were partially masked with a small circular aperture the same
color as the screen background (0.16°/0.25° radius aperture for fixation/
pentagon, respectively) that allowed the stimulus to remain visible. Partici-
pants were instructed to ignore the task-irrelevant flickering checkerboards
throughout the experiment. During the 10 null trials on each scan, the par-
ticipant continued to perform the attention task but no checkerboard was
presented. Null trials and mapping stimulus trials were presented in a pseu-
dorandom interleaved order.

The location of the checkerboard mapping stimulus on each trial was
determined by generating an evenly spaced triangular grid (0.84° be-
tween grid points) and centering the checkerboard on one of these grid
points. The location of the checkerboard mapping stimulus was then
jittered a random amount from these grid points (�0.42°/0.37° horizon-
tal/vertical). When subjects attended the peripheral target, half of the
runs were presented at the discrete grid positions so that we could achieve
more stable stimulus reconstructions (see Stimulus reconstructions us-
ing an inverted spatial encoding model).

MRI
We obtained all structural and functional MR images using a GE 3T
MR750 scanner at the University of California, San Diego. We collected
all functional images (19.2 cm � 19.2 cm FOV, 64 � 64 acquisition
matrix, 35 interleaved slices, 3 mm 3 voxels with 0 mm slice gap, 128
volumes per scan run) using a gradient echo planar pulse sequence (2000
ms TR, 30 ms TE, 90° flip angle) and a 32-channel head coil (Nova
Medical). Five dummy scans preceded each functional run. A high-
resolution structural image was acquired at the end of each session using
a FSPGR T1-weighted pulse sequence (25.6 cm � 25.6 cm FOV, 256 �
192 acquisition matrix, 8.136/3.172 ms TR/TE, 192 slices, 9° flip angle, 1
mm 3 voxels). All functional scans were coregistered to the anatomical
images acquired during the same session, and this anatomical was in turn
coregistered to the anatomical acquired during the retinotopy scan.

EPI images were unwarped with a custom script from UCSD’s Center
for Functional Magnetic Resonance Imaging using FSL and AFNI. All
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subsequent preprocessing was performed in BrainVoyager 2.6.1, includ-
ing slice-time correction, six-parameter affine motion correction, and
temporal high-pass filtering to remove slow signal drifts over the course
of each run. Data were then transformed into Talairach space and resa-
mpled to have a 3 � 3 � 3 mm voxel size. Finally, the BOLD signal in each
voxel was transformed into z scores on a scan-by-scan basis. All subse-
quent analyses were performed in MATLAB using custom scripts (avail-
able online on Open Science Framework: osf.io/s9vqv).

Independent localizer task
We constrained our analyses to visually responsive voxels in occipital and
parietal cortex using a separate localizer task (3–5 runs per participant).
On 14 trials, participants fixated centrally and viewed a full-field flicker-
ing checkerboard (10 Hz, 11.0/8.3° width/height) for 8000 ms. Partici-
pants detected whether a small area (2D Gaussian, � � 0.2°) within the
checkerboard dimmed in contrast. Contrast dimming occurred between
500 and 4000 ms after the start of the trial and lasted between 2000 and

3000 ms (all uniformly sampled in 500 ms steps). This contrast change
occurred infrequently (randomly on 5 of 14 trials) at a random location
within the checkerboard. The average contrast change was varied be-
tween runs to maintain consistent performance at �75% accuracy
(mean performance 78.0%). On 8 trials, participants simply fixated
throughout the trial without a checkerboard being presented. We then
used a standard GLM with a canonical two-gamma HRF ( peak at 5 s,
undershoot peak at 15 s, response undershoot ratio 6, response disper-
sion 1, undershoot dispersion 1) to estimate the response to the check-
erboard stimulus in each voxel. For all subsequent analyses, only voxels
in the retinotopically defined areas V1, V2, V3, V4, V3A/B, and IPS0 with
a significantly positive BOLD response to the localizer task (at FDR q �
0.05) were included (Benjamini and Yekutieli, 2001).

Estimating single-trial BOLD responses
For all subsequent analyses, we used trial-wise BOLD z scores. We esti-
mated these by creating a boxcar model marking the duration of each
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Figure 1. Covert spatial attention task and fMRI-based analyses used to link single voxels to population-level measurements. a, Subjects fixated centrally and attended to brief rotations in the
pentagon stimulus on the left or right while a flickering checkerboard probe stimulus appeared at 1 of 51 grid locations across the visual field. On control runs, subjects attended to a contrast change
at fixation. fMRI data measured during this attention task are used to create visualizable estimates of vRFs and stimulus reconstructions. b, A receptive field model is fit to the responses of each voxel
and can be described by its x and y position (center), response baseline, response amplitude, and size (FWHM). c, Given a population of voxels in a retinotopic region, such as V1, we examine two
different measures of spatial information in the population. The first, a spatial discriminability metric, scales with the slope of the tuning curve at a given location in space (see Materials and
Methods). The second relies on a multivariate IEM for space. By reconstructing images of the mapping stimulus on each test trial, we can measure how population-level spatial information changes
with attention. We then can model how changes in individual vRFs affect both of these population measures.
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checkerboard mapping stimulus and convolving it with a canonical two-
gamma HRF ( peak at 5 s, undershoot peak at 15 s, response undershoot
ratio 6, response dispersion 1, undershoot dispersion 1). To standardize
our data across runs, we z scored the BOLD responses within each run
and concatenated the z scores across runs. We then solved a GLM to find
the response to each predictor.

Statistical procedures
All reported CIs are computed by resampling the data with replacement
(i.e., bootstrapping). The number of iterations for each bootstrapping
procedure varied (depending on available computing power and time for
that procedure) and are therefore reported with each result. For tests
comparing a bootstrapped distribution against zero, p values were
computed by conducting two one-tailed tests against 0 (e.g., mean-
( param_change � 0) and mean( param_change � 0)) and doubling the
smaller p value. All repeated tests were FDR corrected (q � 0.05).

vRF estimation, fitting, and parameter analysis
We first estimated vRFs for each attention condition to investigate
(1) how vRF parameters changed when participants attended to different
locations and (2) the spatial pattern vRF changes across visual space. We
note here that prior reports have referred to similar vRF models as pop-
ulation receptive fields to emphasize the fact that each voxel contains a
population of spatially tuned neurons (Dumoulin and Wandell, 2008;
Wandell and Winawer, 2015). However, because we are comparing mod-
ulations at different scales in the present study (i.e., modulations in single
voxels and in patterns of responses across many voxels), we will refer to
these single voxel measurements as vRFs, and will reserve the term “pop-
ulation” exclusively for multivariate measures involving several voxels,
allowing our terminology to align with theories of population coding
(Ma et al., 2006).

We estimated vRFs using a modified version of a previously described
technique (Sprague and Serences, 2013). This method estimates a single
voxel’s spatial sensitivity by modeling its BOLD responses as a linear
combination of discrete, smooth spatial filters tiled evenly across the
mapped portion of the visual field. These spatial filters (or spatial chan-
nels) form our modeled basis set. We then regressed the BOLD z scores (v
voxels � n trials) onto a design matrix with predicted channel responses
for each trial (C, k channels � n trials) by solving Equation 1 as follows:

B � WC (1)

for the matrix W (v voxels � k channels).
Each of the k channels in the basis set was defined as a 2D cosine that

was fixed to reach 0 at a set distance from the filter center as follows:

f�r	 � � 0.5� cos�r�

s � � 0.5��7

for r � s (2)

where r is the distance from the filter center and s is the size constant.
Setting a zero baseline in this function ensured that we could estimate a
stable baseline for each voxel by restricting the response of the channel to
a known subregion of the visual display. Because the estimated vRF size
depends on the size of the filters, we made the filters fairly small (1.08°
FWHM) and dense (91 filters arranged in a 13 horizontal/7 vertical grid,

each spaced 0.83° apart). We then discretized the filters by sampling them
in a high-resolution 2D grid of 135 � 101 pixels spanning 10° � 5°. The
discretized filters (k filters � p pixels) were multiplied with a mask of
the checkerboard stimulus on every trial ( p pixels � n trials) so that the
design matrix C contained predictions of the spatial channel responses
on every trial of the mapping task.

To fit our estimated vRFs with a unimodal function, we used ridge
regression to solve Equation 1. This is a common regularization method
that sparsifies the regression solution by penalizing the regressors with
many small weights (Hoerl and Kennard, 1970; Lee et al., 2013). This
meant solving for an estimate of W by the following:

ŴT � �CCT � �I	
1CBT (3)

where � is the ridge parameter penalty term and I is a k � k identity
matrix. We estimated an optimal � for each voxel by evaluating Equation
3 over a range of � values (0 –750) for a balanced number of runs of the
attention task (e.g., an equal number of runs from each attention condi-
tion). We then computed the Bayesian Information Criterion for each of
these � values, estimating the degrees of freedom in the ridge regression
as follows:

df � trace �C�CTC � �I	
1CT	 (4)

The � with the smallest Bayesian Information Criterion was selected for
each voxel. Because the attention comparisons are done within voxels,
the varying � penalty across voxels could not explain the attention effects
we observed.

To select reliable voxels for analysis, we next implemented a set of
conservative thresholding steps (Table 1). We first needed to select voxels
with reliable visual responses, so we only kept voxels with trial � weights
that predicted at least 50% of the BOLD time courses in each scan session.
Second, we only used voxels that could be successfully regularized with
ridge regression. Any voxels with the maximum � (750) were discarded,
as this indicated that the ridge regression solution had not converged.
Finally, we verified that the resulting regression model could predict an
independent dataset, so we performed exhaustive leave-one-run-out
cross validation for each attention condition. This ensured that the �
estimated across attention conditions produced reliable data for each
condition separately. We estimated W using data from all but one run
(Eq. 3) and used this to predict the BOLD GLM trial estimate of the
left-out run (Eq. 2), separately for each condition. We then computed the
mean correlation between the predicted and real BOLD GLM trial esti-
mates across cross-validation folds for each voxel. It is not possible to
calculate a coefficient of determination on regularized data because the
process of ridge regression changes the scale of the predicted data (Huth
et al., 2012). We only kept voxels where this cross-validation r � 0.25 for
all 3 conditions.

To quantify each vRF, we fit the spatial RF profile of each voxel with a
smooth 2D function with four parameters: center, size, baseline, and
amplitude (Fig. 1b; Eq. 2). Here, we define the vRF baseline as the voxel’s
response that does not reliably depend on the position of the mapping
stimulus (i.e., its constant offset). The vRF amplitude is defined as the
spatially selective increase in a voxel’s response above this baseline. To-

Table 1. vRF selection statistics, pooled across participants (N � 7)

ROI
Total no. of
localized voxels

No. of voxels after
GLM thresholding

No. of voxels after
regularizability threshold

No. of voxels after
cross-validation threshold

No. of voxels after
removing difference
score outliers

Percentage that survive
all thresholds

RMSE fit error for
surviving voxels

V1 3723 3540 2438 989 931 25.01 0.1105
V2 4154 3970 3115 1405 1339 32.23 0.1087
V3 3698 3519 2839 1520 1435 38.81 0.0994
V4 1702 1492 1118 361 336 19.74 0.0783
V3A/B 1988 1922 1440 443 416 20.93 0.0893
IPS0 1567 1492 800 114 110 7.02 0.0882
V1-V4 13,277 12,521 9510 4275 4041 30.44 0.1032
V3A/B and IPS0 3555 3414 2240 557 526 14.80 0.0894
Total 16,832 15,935 11,750 4832 4567 27.13 0.1016
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gether, these two parameters index how much of the voxel’s response is
due to a change in mapping stimulus position. Finally, the size and loca-
tion parameters estimate the spatial selectivity and the spatial position
preference of the vRFs, respectively. We first downsampled the vRFs by
multiplying the estimated weights Ŵ for each voxel (a 1 � k channel
vector) by a smaller version of the spatial grid that contained the basis set
(68 � 51 pixel grid; 10° � 5°). This speeded up the process of fitting the
pixelwise surface with Equation 2. This fitting process began with a
coarse grid search that first found the best fit in a discrete grid of possible
vRF parameters (center sampled in 1° steps over the mapped portion of
the visual field; size constant logarithmically sampled at 20 points be-
tween FWHM of 10 0.01 degrees and 10 1 degrees). At each grid point, we
estimated the best fit amplitude and baseline using linear regression. The
grid point fit with the smallest root mean square error (RMSE) provided
the initialization seed to a continuous error function optimization algo-
rithm (fmincon in MATLAB). This fit had several constraints: the final
solution must place the center within 2 grid points of the seeded fit
(parameterized by position and size) and within the mapped visual field;
the amplitude must be between 0 and 5; the baseline must be between 
5
and 5 BOLD z score units. Occasionally, this nonlinear fitting algorithm
did not converge and resulted in a larger error than the original seed. In
this case, we took the best fit grid point as the final fit.

To test whether vRF fit parameters changed when participants focused
spatial attention at different positions, we compared fits during each
attend periphery condition with fits during the attend fixation condition.
We computed a difference score (attend peripheral 
 attend fixation) to
describe the magnitude of the attentional modulation. For example, a
difference score of 
2° in the FWHM of the vRF would indicate that the
response profile width decreased when the participant attended to the
peripheral target. This analysis revealed a subset of voxels with very large
difference scores, which we determined to be due to noisy data or poor
fits via manual inspection. Accordingly, we performed a final threshold-
ing step for all vRF-based analyses: an elimination of outlier voxels with
difference scores �3 times the SD of the population mean, where the
population consists of the parameter difference scores for a given region
of interest (ROI) (Table 1). After removing these outliers, we tested
whether the vRF parameter difference scores differed significantly from 0
within a visual ROI by bootstrapping the distribution of difference scores
across participants 10,000 times.

To determine whether these vRF changes were modulated by their
position in the visual field, we first calculated each vRF’s distance from
the attended location (v_dist_attn) using its position during the fixation
task. We then fit an nth order polynomial to the vRF difference scores as
a function of v_dist_attn, where n � 0, 1, or 2. This corresponds to a
constant offset (0th order), a linear fit (first order), or a quadratic or
parabolic fit (second order). These fits were cross-validated by fitting on
50% of the vRF difference scores and calculating goodness-of-fit (resid-
ual sum of squares and R 2) on each of the 10,000 cross-validation
iterations. These cross-validation iterations also provided CIs on the
coefficients for each polynomial. The most parsimonious fit was chosen
by performing a nested F test on the average residual sum of squares for
each polynomial model.

We also tested whether vRF attentional modulations depended on
hemisphere or visual hemifield, akin to the results reported for IPS0-IPS5
in Sheremata and Silver (2015). We sorted the voxels in each attention
condition as contralateral or ipsilateral to the attended target. We then
performed a series of nonparametric bootstrapped tests similar to a two-
way ANOVA with attended hemifield and voxel hemisphere as factors.
The vRFs were resampled with replacement across subjects 10,000 times.
We then evaluated the two main effects and the interaction by computing
a difference in the means of the groups or a difference in the slope be-
tween the group means, respectively. None of the tests for the effect of
hemisphere and the interaction survived FDR correction, so we do not
report those results here. We speculate that this null result is likely due to
a lack of reliable voxels in anterior parietal cortex areas IPS1–5 in our
study, where previous reports have found larger laterality effects (Shere-
mata and Silver, 2015).

Population analysis
Fine spatial discriminability metric. To compute the spatial discriminabil-
ity of a population of vRFs, we estimated the spatial derivative of each
vRF at every point in the mapped visual field in 0.1° steps (Fig. 1c). This
was done by taking the slope of the vRF along the x and y direction at each
pixel in the image of the visual field and squaring this value (Scolari and
Serences, 2009, 2010). This measurement is a descriptor of how well a
population code can discriminate small changes in the spatial arrange-
ment of the stimulus array, which depends on the rising and falling edges
of a tuning curve rather than the difference between the peak response
and a baseline response (Regan and Beverley, 1985; Pouget et al., 2003;
Butts and Goldman, 2006; Navalpakkam and Itti, 2007; Scolari and Ser-
ences, 2009, 2010). To restrict our measurements to the relevant area
near the peripheral target, we computed discriminability values within 1
degree of the center of each target across both spatial dimensions (x and
y). These were summed and divided by the maximum discriminability
value in that population to make the results comparable despite changes
in vRF coverage or responsiveness.

Stimulus reconstructions using an inverted spatial encoding model. In
addition to computing the discriminability metric described above, we
also reconstructed an image of the entire visual field on each trial using a
population-level encoding model. Compared with the local spatial
discriminability index, this is a more sensitive method of assessing the
amount of spatial information encoded in an entire population of voxels
because it exploits the pattern of response differences across voxels,
rather than treating each voxel as an independent encoding unit (Ser-
ences and Saproo, 2012; Sprague et al., 2015).

We trained the spatial encoding model using a procedure similar to the
vRF estimation analysis described above (see Fig. 4a). This yields an
estimated matrix of weights, Ŵ2, which specifies how much each voxel in
a region of interest responds to each of the spatial channels (Brouwer and
Heeger, 2009; Serences and Saproo, 2012; Sprague and Serences, 2013;
Sprague et al., 2015). We then solved Equation 1 using the Moore-
Penrose pseudoinverse with no regularization as follows:

Ŵ2 � BCT�CCT	
1 (5)

C was constructed using a set of 54 evenly tiled spatial filters (Eq. 2; 9
horizontal/6 vertical; spaced 1.25° apart; 1.56° FWHM). Ŵ2 was esti-
mated using the data from the jittered position runs. This was done
separately for each participant, using a training set balanced across the
conditions of interest (e.g., an equal number of attend left and attend
right runs and all attend fixation runs because fixation is the neutral
condition).

To reconstruct a representation of the mapped visual space, we in-
verted the model and multiplied the pseudoinverse of the estimated
weight matrix Ŵ2 with a test dataset from the discrete position runs (B2),
yielding estimated channel activations for each trial (C2; k2 channels by t
test trials) (Eq. 6). Thus, we refer to this analysis as the inverted encoding
model (IEM) as follows:

Ĉ2 � �Ŵ2
T Ŵ2	


1Ŵ2
T B2 (6)

Because of mathematical constraints on inverting W2 (number of voxels
must be greater than number of channels), we included all voxels in each
ROI instead of just the subset of well-fit voxels used in the vRF analyses
described above. We computed Equation 6 twice using different test
datasets, once for the discrete position attend left runs and once for the
discrete position attend right runs.

When we multiply the resulting channel activations by a grid of pixels
that define the spatial channels, we obtain a spatial representation of the
entire visual field on each trial. This image contains a stimulus recon-
struction showing where the checkerboard should have been given the
trained model and the activation pattern across all voxels in the indepen-
dent test set. The stimulus reconstructions were then fit in the same
manner as the vRFs, using Equation 1 to estimate the center, size, ampli-
tude, and baseline (mean fit RMSE across all ROI reconstructions 0.114;
95% CI [0.102, 0.312]). Here, the baseline is an estimate of the multivar-
iate reconstruction that is spatially nonselective (i.e., not significantly
modulated by the position of the mapping stimulus). The amplitude
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describes the maximal increase in that reconstruction relative to baseline
when the mapping stimulus is on the screen.

To assess how attention changed reconstructions of the mapping
stimulus across the visual field, we first computed a difference score that
described the effect of attention by folding the visual field in half (i.e.,
collapsing across hemifield) and comparing parameters in the attended
vs ignored hemifield. We excluded the reconstructions that fell along the
vertical meridian (3 of 51 stimulus positions). This allowed us to control
for the overall effect of eccentricity while remaining sensitive to other
spatial patterns in stimulus reconstruction modulations.

We then set up a single factor repeated-measures omnibus ANOVA to
determine which pairs of ROI and parameter (e.g., V1 size, V1 ampli-
tude) were affected by either attention or Euclidean distance from the
target stimuli. The attention factor had two levels (attend/ignore) and the
distance factor had 6 levels (6 evenly spaced distance bins from 0° to
2.54°). Based on the results of this omnibus test, we tested any significant
ROI-parameter combination in a two-way repeated-measures ANOVA
of attention � distance. To estimate the p values for these tests, we
generated empirical null distributions of the F scores by randomizing the
labels within each factor 10,000 times within each participant. Reported
p values are the percentage of the randomized F scores that are greater
than or equal to the real F scores.

Layered spatial encoding model to link vRFs to multivariate stimulus
reconstructions. To test how changes in the response properties of the under-
lying vRFs contributed to changes in the fidelity of region-level stimulus
reconstructions, we generated simulated patterns of voxel activity on every
trial by predicting the response to each stimulus based on the vRF fit param-
eters. We then used this simulated data to estimate and invert a population-
level spatial encoding model, as described above (see Fig. 6a).

For these simulations, we could only use well-fit voxels to generate
simulated BOLD time series. This constrained the analysis to ROIs with
at least as many vRFs as spatial filters used to estimate the spatial encod-
ing model. To ensure that we could include most participants in the
layered encoding model analysis, we created two large ROIs by merging
the smaller retinotopically defined regions described above. The occipital
ROI consisted of V1, V2, V3, and V4 defined for each subject. The pos-
terior parietal ROI consisted of V3A/B and IPS0. The vRFs in the parietal
ROI show distinct patterns of attentional modulations (see Fig. 2e), sug-
gesting that V3A/B and IPS0 are both anatomically and functionally
distinct from the occipital regions (see also de Haas et al., 2014). Al-
though merging ROIs increased the number of voxels available for the
encoding model analysis, we still did not have enough voxels in the
parietal ROI to estimate the layered encoding model for 3 of the 7 par-
ticipants (AL, AR, AU). However, the remaining data from 4 participants
were sufficient to produce stable subject-averaged results.

To simulate each voxel’s BOLD response on every trial that the partic-
ipant completed in the real experiment, we first created a high-resolution
set of spatial channels (21 � 11 channels spaced 0.5° apart, FWHM �
0.65°) and generated weights for each channel based on the vRF fit ob-
tained from prior analysis. That is, we evaluated Equation 2 for each
channel at the vRF’s fit center and adjusted the response gain by multi-
plying this result by the fit amplitude and adding the fit baseline. We then
added independent Gaussian noise to each of these channel weights,
simulating a small amount of variance in the voxel’s response (� � 0.5).
Each voxel’s channel weights were then multiplied by the idealized chan-
nel response on each trial (i.e., the channel filter convolved with the
stimulus mask), effectively simulating the BOLD response on each trial
for the entire population of voxels based on their measured vRFs. We
added Gaussian noise to this simulated response as well (� � 0.5). We
then computed stimulus reconstructions using the same method as de-
scribed above (the IEM in Stimulus reconstructions using an inverted
spatial encoding model), averaging resulting reconstructions across par-
ticipants and like positions before fitting.

To ensure the stability of the reconstructions that were based on sim-
ulated data, we repeated the simulations 100 times and averaged across
the fits of all iterations to generate the plots in Figure 6b. Then, to com-
pare how well the layered model reproduced the attentional modulations
observed in stimulus reconstructions generated with real data, we calcu-
lated an error metric between the layered IEM and the real data. We first

calculated reconstruction difference scores across attention condition
(attended 
 ignored; see Stimulus reconstructions using an inverted
spatial encoding model). This yielded 24 difference scores each for both
attention conditions in both the layered IEM data and the empirical data.
Because the empirical data did not have any repeated iterations, we av-
eraged across all 100 iterations of the layered model to match the dimen-
sionality of the real reconstructions (2 conditions � 24 difference
scores � 4 parameters). We could then calculate the RMSE between the
difference scores from the full empirical dataset (i.e., the data shown in
Fig. 5) and the modeled data. This was used as a metric to describe the
goodness-of-fit of each layered IEM.

We then tested how different vRF attentional modulations contrib-
uted to changes in the population-level stimulus reconstructions. To test
how shifts in vRF centers contributed to population-level information,
we modeled voxels that had the same fit center across both attention
conditions, simulated their BOLD responses on each trial, and generated
stimulus reconstructions from these data. The voxel’s vRF center was
defined as the vRF center fit from the neutral attend fixation data. A
similar procedure was repeated for all reported combinations of param-
eter changes across conditions. Again, whichever parameter was held
constant took its value from the neutral attend fixation condition.

To calculate the confidence intervals on the RMSE changes in Figure
6c, we resampled with replacement across the 100 model iterations and
refit the average across these 100 instances. This resampling procedure
was repeated 500 times to generate a distribution of fits to the model data.
We then took the difference between the RMSE of the null model, in
which no parameters varied between attention conditions, and the RMSE
of the model which held some number of vRF parameters constant across
attention conditions.

Results
Modulations of vRF properties with spatial attention
We estimated single vRFs for each voxel in 6 retinotopically iden-
tified visual areas from V1 to IPS0. The estimation of vRFs was
done independently for each attention condition so that we could
compare a single voxel’s spatial tuning across conditions.

To confirm that the fit sizes were consistent with previous
results, we fit a line to the estimated sizes as a function of the vRF
center eccentricity. First, we combined all vRFs across partici-
pants and conditions in each ROI. We then binned the vRF cen-
ters every 0.25° from fixation and calculated the mean size (Fig.
2b). We first replicated an increase in vRF size with increasing
eccentricity, and an increase in the slope of this relationship
across visual regions (Gattass et al., 2005; Dumoulin and Wan-
dell, 2008; Amano et al., 2009; Harvey and Dumoulin, 2011) (Fig.
2b). These observations confirm that our method produced rea-
sonable vRF estimates that were consistent with previous reports.

Next, we examined how covert attention to the peripheral
attention targets modulated vRF properties, relative to the attend
fixation condition. Overall, the center position of vRFs shifted
significantly closer to the attended location (p � 0.005 in all
ROIs, Fig. 2d). This finding is consistent with previous reports in
humans and in monkeys for both covert attention tasks and sac-
cade tasks (Womelsdorf et al., 2006, 2008; Klein et al., 2014; Zirn-
sak et al., 2014).

Although we did observe changes in the size of individual vRFs,
the mean change was not significantly different from zero (p � 0.05
in all ROIs). Size increases have been previously reported in tasks
that required subjects to attend to the mapping stimulus, which
moved on each trial (Sprague and Serences, 2013; Kay et al., 2015;
Sheremata and Silver, 2015). Accordingly, if attention causes the
center of RFs to shift toward the attended target, these combined
shifts in position would average out to form a larger RF estimate. In
contrast, mapping vRFs while maintaining a fixed locus of attention
would nullify the size increase, consistent with the results we ob-

Vo et al. • Spatial Attention from Units to Populations J. Neurosci., March 22, 2017 • 37(12):3386 –3401 • 3391



served (Fig. 2d). Another study which also found increases in vRF
size with attention required subjects to attend the fixation point
while they manipulated the perceptual load, or difficulty, of the at-
tention task (de Haas et al., 2014). In our study, we intentionally kept

task performance constant and could not evaluate effects of difficulty
on the parameters of vRFs.

We also found an overall increase in vRF amplitude with at-
tention (p � 0.001 for all tests). Because these measures were
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Unless otherwise specified, figure data are averaged across subjects. Error bars indicate 95% CIs computed by resampling the data distribution. a, An example vRF shows that attending covertly to
the left location shifts the center of the receptive field profile to the left compared with the neutral attend fixation condition. Voxel is from Subject AR in area V3A/B. b, Our vRF estimates reproduced
the canonical size-eccentricity relationship (positive slope in all ROIs, p � minimum possible p value, 1/10,000 iterations) and the increase in slope between visual regions. c, Preferred position
changes of V4 vRFs with covert spatial attention. We binned each vRF by its position during the attend fixation condition. The origin of each arrow is the center of each position bin. The end of the
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vRF parameter plotted by the vRF’s distance from the attention target computed from its position during the attend fixation task (Table 2).
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calculated relative to a fixation task, these data suggest that covert
spatial attention to a peripheral location caused widespread po-
sition and gain modulations in all vRFs across the visual field.

It is unclear whether these attentional modulations are limited
to areas near the attended target, or whether they are uniform
across the visual field. For example, vRF position shifts could
result in a radial convergence of RFs toward the attended target,
or a uniform shift of RFs along a vector extending from fixation to
the attention or saccade target (Tolias et al., 2001; Klein et al.,
2014; Zirnsak et al., 2014). Furthermore, reports of other RF
properties (such as size) modulating with attention have been
mixed (Connor et al., 1996, 1997; Womelsdorf et al., 2008;
Niebergall et al., 2011; Sprague and Serences, 2013; Klein et al.,
2014; de Haas et al., 2014; Kay et al., 2015; Sheremata and Silver,
2015). We therefore examined whether each of the vRF parame-
ter changes was dependent on the vRF’s location in the visual
field, relative to the attended location. First, we created radial
distance bins centered on the left or right attended locations, and
sorted voxels into these bins based on their preferred position
during the fixation condition. After this sorting procedure, data
from the right condition were flipped and collapsed with the left
condition.

When we plotted vRF position changes in each bin, we
found that spatial attention caused vRF position shifts that
converged on the attended location (two-tailed sign test on
vector direction, p � 0.001 in all ROIs). That is, vRFs shifted
closer to the attended location (Fig. 2c), compared with when
subjects attended fixation (mean shift across all vRFs and
ROIs: 
0.239°, 95% CI [
0.566, 
0.048], Fig. 2d). Small eye
movements toward the attended location cannot explain re-
ceptive field convergence: this would cause all vRFs to shift in
the same horizontal direction, rather than radially converging
on one point. These data are consistent with results from both
humans (Klein et al., 2014) and macaques (Connor et al.,
1996, 1997; Womelsdorf et al., 2006, 2008) that use a similar
task. However, the prior study in humans focused only on
vRFs with preferred locations that were foveal to the attended
location, and the studies in macaques only report RF position
changes in V4 and MT. By contrast, our data show that vRF
centers converge on the attended location across all visual
areas, including primary visual cortex, and that this pattern of
modulations includes vRFs peripheral to the attended target.

These plots (Fig. 2a,d) also suggested that vRFs farther
from the attended location underwent larger position changes
than vRFs near the attended location. That is, the magnitude
of the attentional modulation may be dependent on the dis-
tance between the vRF and the attended target. To test for this,
we fit a polynomial to the vRF parameter changes as a function
of distance from the attended location (see Materials and
Methods). We selected the most parsimonious fit ranging
from a mean change in vRF parameter (0th order polynomial)
to a parabolic change (second-order polynomial) by conduct-

ing a nested F test (Table 2). The best polynomial fits are
plotted in Figure 2e.

This analysis allowed us to characterize trends in vRF atten-
tional modulations across space. It also implicitly tests whether
voxels contralateral to the attended target respond differently
than ipsilateral voxels. This is because vRFs near the attended
target will mostly originate from the contralateral side of visual
cortex. Therefore, any fit lines with a significant slope imply there
is a difference between contralateral and ipsilateral voxels (Shere-
mata and Silver, 2015). A separate test described in Materials and
Methods confirmed that contralateral voxels differed signifi-
cantly from ipsilateral voxels in the areas where we saw the high-
est fit slopes in Figure 2e (FDR-corrected p � 0.05 for position:
V1, V2; size: V3; amplitude: V3, IPS0). However, because the fit
lines illustrate how these changes occur over space, we discuss
those data here instead (Fig. 2e).

In early visual areas V1–V3, vRFs near the attention target
were slightly repelled from the target, whereas vRFs farther from
the target were attracted toward the target. In later visual areas,
vRFs were uniformly attracted toward the attention target. We
saw a similar pattern of results with size modulations: early visual
areas showed an increase in vRF size near the attention target, and
decreased size farther away. However, in areas V3A/B and IPS0,
vRF size decreased near the attention target.

The pattern of vRF amplitude modulations was also segre-
gated between the early and later visual areas. All vRFs increased
in amplitude with attention, but the slope of this relationship
inverted from early to later visual areas. In V1–V3, the slope if
positive, such that voxels �2° away from the attention target
increase in amplitude more than voxels right at the target posi-
tion. The amplitude increase is constant in V4 and V3A/B. Fi-
nally, in IPS0, the slope inverts to become negative, so that voxels
near the attention target increase in amplitude more than voxels
farther away. Last, we found an increase in vRF baseline near the
attended target in V1-V4, but a uniform increase in baseline in
IPS0. Overall, we found that the type and magnitude of the atten-
tional modulation in different visual areas changes as a function
of the spatial relationship between vRFs and the attended target.
This is consistent with findings from macaque neurophysiology,
which had suggested that amplitude and size changes depend on
where the RF is located in relation to the attended target (Connor
et al., 1996; Niebergall et al., 2011).

These fits only describe the modulations with respect to the vox-
el’s position during the attend fixation task. However, these param-
eter changes likely interact with one another, such that a voxel that
shifts toward the attended location will also increase in amplitude.
Hence, to determine how the joint patterns of vRF modulations
change the spatial information content of a representation, in the
next section we discuss two different population-level measures that
combine data across the population of vRFs in each ROI.

Table 2. Mean coefficients for polynomial fits of how vRF parameter change is modulated by distance from the attended location (v_dist_attn)a

Position Size Amplitude Baseline

V1 
0.069, 0.095 
0.064 
0.019, 0.137, 0.135 0.011, 
0.073, 0.010
V2 0.015, 
0.133, 0.082 
0.064, 0.160 
0.016, 0.125, 0.046 0.011, 
0.066, 0.061
V3 0.017, 
0.135, 0.033 
0.073, 0.163 
0.025, 0.170, 0.032 0.009, 
0.053, 0.054
V4 
0.162 
0.181 0.308 0.011, 
0.078, 0.085
V3A/B 
0.318 
0.091, 0.461, 
0.520 0.210 �0.001
IPS0 
0.425 
0.445 
0.076, 0.495 0.073
aNumber of reported coefficients in the table correspond to the polynomial order, which has yielded the most parsimonious fit to the data (e.g., 1 coefficient for n � 0, 2 coefficients for n � 1, etc.).

Vo et al. • Spatial Attention from Units to Populations J. Neurosci., March 22, 2017 • 37(12):3386 –3401 • 3393



Increases in spatial discriminability depend primarily on vRF
position shifts
Next, we assessed how different types of RF modulations influ-
enced the precision of population-level codes for spatial position.
We first computed a discriminability metric that described the
ability of a population of tuning curves (here, vRFs) to support
fine spatial judgments (see Materials and Methods). When we
computed this metric based on the measured vRF properties
from each condition, spatial discriminability near the attended
target increased relative to the ignored target in the opposite
visual hemifield (Fig. 3a).

We then tested how different types of vRF modulations (such
as size changes or position shifts) affected this spatial discrim-
inability metric. As a baseline comparison, we first computed
discriminability based on vRFs estimated during the attend fixa-
tion runs for each subject. We then added different sets of
observed attentional modulations to the population before re-
computing spatial discriminability. For example, we shifted all
the vRF centers to match the measurements when a subject was
attending to the left target and computed discriminability near
the attended target. Because the response baseline of a vRF does
not affect the discriminability metric, we excluded this type of
attentional modulation from these analyses.

Across all ROIs, we found that vRF position shifts played the
biggest role in increasing fine spatial discriminability compared
with changes in size or changes in amplitude (Fig. 3b). Position
modulations alone led to a large increase in spatial discriminabil-
ity, whereas other combinations of parameter modulations only
had an impact if we added in position shifts (i.e., a change in size
and position increased discriminability, but size alone did not).

The only departure from these patterns was observed in IPS0,
where all attentional modulation types increased spatial discrim-
inability, but position changes increased spatial discriminability
the most.

Spatial attention increases the fidelity of population-level
stimulus reconstructions
By design, the spatial discriminability metric we computed is only
informative about local spatial representations and cannot assess
how different patterns of vRF modulations might result in repre-
sentational changes across the visual field. To address this point,
we built a multivariate spatial encoding model to measure how
attention changes the representations of visual information in
disparate parts of space. This also allowed us to further test the
effects of vRF modulations on the encoding properties of the
population, including response baseline changes that were not
captured by our discriminability metric.

The spatial IEM reconstructed an image of the entire visual
field on each test trial. We first trained the model using the re-
sponses of each voxel on a set of training trials with known map-
ping stimulus positions. We then created image reconstructions
on independent test trials by inverting the model and multiplying
it by the voxel responses during each test trial (Fig. 4a; see Mate-
rials and Methods). Each image contained a representation of
where the mapping stimulus should have been given the pattern
of voxel activations on that particular trial. The IEM successfully
reconstructed the task-irrelevant mapping stimuli using activa-
tion patterns across voxels in each visual area from V1 through
IPS0 (Fig. 4b; grand mean error between fit and actual position
2.40°, 95% CI 0.55°, 4.97°).
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We used these stimulus reconstructions as a proxy for the
quality of the spatial representations encoded in a population
of voxels. This is line with previous studies showing that stim-
ulus reconstructions change in amplitude or size as a function
of cognitive demands. (Brouwer and Heeger, 2013; Ester et al.,

2013; Sprague and Serences, 2013; Sprague et al., 2014, 2015,
2016).

First, we compared how reconstructed representations of each
mapping stimulus changed as subjects shifted their spatial atten-
tion. We ran a repeated-measures ANOVA of attention � dis-
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left, and on the right when attending right. c, Average reconstruction sizes and amplitudes for each stimulus position (collapsed across condition; left, attended). The diameter of the circle depicts
the average fit FWHM of the reconstructions at that spatial position. Reconstruction amplitude was greater in the attended hemifield compared with the ignored hemifield in areas V3A/B and V4
( p � 0.005; Table 3; Fig. 5).
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tance bin for each reconstruction fit parameter (see Materials and
Methods). Here, a main effect of attention would suggest that
stimulus reconstructions in the attended hemifield changed in a
consistent way compared with the ignored hemifield. A main
effect of distance would suggest that stimulus reconstruction
changes had a consistent spatial pattern across both the attended
and ignored hemifields. This would occur when a stimulus’ rep-
resentation was altered with distance from the attention target.
For example, the stimulus reconstruction center should vary lin-

early with the stimulus’ true distance from the attention target.
And last, an interaction effect would suggest that the distance
effect was dependent on whether the reconstruction belonged to
the attended or ignored hemifield. In our task, the reconstructed
stimuli are always irrelevant to the task of the observer. We there-
fore predicted an interaction effect where spatial attention would
selectively modulate stimulus reconstructions within the hemi-
field of the attended location, but not the opposite hemifield
(Connor et al., 1996, 1997).
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Figure 5. Reconstruction parameters as a function of mapping stimulus distance from the covertly attended locations and attention hemifield (attended vs ignored). For complete list of p values,
see Table 3.

Table 3. Two-way ANOVA results for reconstruction parameter changes (s_dist_attn � attention hemifield)

V1 V2 V3 V4 V3A/B IPS0 V1-V4 V3A/B and IPS0

Omnibus test
Position �0.001a �0.001a �0.001a �0.001a �0.001a 0.001a �0.001a �0.001a

Size 0.216 0.565 0.019 0.428 0.006a 0.121 0.001a 0.110
Amplitude 0.174 0.579 0.024a �0.001a �0.001a 0.008a 0.016a �0.001a

Baseline 0.088 0.734 0.934 �0.001a 0.001a 0.937 0.015a 0.241
Main effect of distance

Position �0.001a �0.001a �0.001a �0.001a �0.001a 0.192 �0.001a �0.001a

Size — — — — 0.484 — 0.019a —
Amplitude — — 0.140 0.002a 0.005a 0.478 0.100 0.002a

Baseline — — — 0.829 0.916 — 0.210 —
Main effect of attention

Position 0.371 0.916 0.346 0.067 0.005a 0.254 0.401 0.343
Size — — — — 0.003a — 0.005a —
Amplitude — — 0.069 �0.001a 0.005a 0.158 0.049a 0.004
Baseline — — — 0.001a �0.001a — 0.004a —

Interaction of distance and attention
Position 0.052 0.588 0.541 0.657 �0.001a �0.001a 0.121 0.026
Size — — — — 0.077 — 0.271 —
Amplitude — — 0.064 �0.001a �0.001a 0.004a 0.224 �0.001a

Baseline — — — 0.019 0.011 — 0.370 —
ap value passed FDR correction (q � 0.05, corrected across ROIs and comparisons within each parameter).
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We found that reconstruction amplitude was selectively in-
creased near the attended location in V4, V3A/B, and IPS0 (in-
teraction effect, bootstrapped p � 0.005; Fig. 5; Table 3). This can
be interpreted as a local boost in signal-to-noise ratio. Prior re-
ports found that attending to the mapping stimulus, as opposed
to attending to a peripheral target in the current experiment,
caused an increase in the amplitude of all stimulus reconstruc-
tions (Sprague and Serences, 2013). That is, representations of
task-relevant stimuli increased in signal-to-noise ratio. We find
here that even representations of task-irrelevant stimuli near the
attended region of space increase in amplitude, consistent with
the idea of an attentional “spotlight,” which boosts the fidelity of
spatial representations near the attention target.

Although the amplitude interaction effect was present in most
visual areas we tested (Fig. 5), we found other effects limited to
V3A/B and IPS0 that involved modulations in stimulus represen-
tations in the ignored hemifield. In these regions, we found that
stimulus reconstructions in the ignored hemifield shifted away
from the ignored target location (interaction, bootstrapped p �
0.005). We also observed a relative size increase near the ignored
attention stimulus in IPS0 (interaction, bootstrapped p � 0.005).
These results suggest that stimulus reconstructions in the ignored
hemifield are less spatially precise in posterior parietal cortex.
Finally, there was also a main effect of attention on reconstruc-
tion size and baseline in areas V3, V4, and V3A/B (bootstrapped
p � 0.005). However, unlike the interaction effect in IPS0, these
size and baseline changes did not vary as a function of distance
between the reconstruction and the attended target location.

Using a layered encoding model to explore how single vRFs
change population-level codes
In our final analysis, we used a layered spatial encoding model to
determine how changes in vRF properties affected the represen-
tations of mapping stimuli in the multivariate reconstructions
discussed in the previous section (Figs. 1c, 4a). The goal of this
analysis was to determine which vRF modulations contribute the
most to the observed increase in the amplitude of stimulus rep-
resentations around the attended location (Fig. 5). This analysis
thus complements our analysis of the spatial discriminability
metric, which demonstrated that vRF position changes signifi-
cantly increased the ability of the population to make fine spatial
discriminations near the attention target (Fig. 3b).

The layered spatial encoding model we built links the response
properties of single voxels to the encoding properties of a whole
population of voxels in a region of visual cortex (Fig. 6a). In the
first layer of the model, we used the fit vRFs to generate simulated
BOLD data from each voxel under different attention conditions.
We then repeated the multivoxel stimulus reconstruction analy-
sis on this simulated data to model population results for the
second layer of the model. This approach allowed us to perform
virtual experiments to test how changes in the first layer impacted
the second layer. That is, we manipulated which vRF parameters
changed with attention (first layer) and observed the resulting
changes in the population-based stimulus reconstructions (sec-

ond layer). For example, we could test whether an overall increase
in vRF response gain with attention would be necessary or suffi-
cient to reproduce the amplitude increases observed in the em-
pirical stimulus reconstructions reported in Figure 5. These
virtual experiments also allowed us to compare the relative im-
pact of one type of response modulation (e.g., size changes) with
other types of response modulations (e.g., position shifts).

Because the population-level stimulus reconstructions re-
quire many voxels from each subject to produce stable and reli-
able results, we combined the data across several regions in each
individual subject before estimating the IEM (for a longer discus-
sion, see Materials and Methods). This yielded one occipital re-
gion that combined data from areas V1, V2, V3, and V4, and one
posterior parietal region that combined data from V3A/B and
IPS0. We repeated the IEM analysis described in the previous
section on these larger regions and found that the pattern of
attentional modulations observed earlier was consistent in the
large ROIs (Fig. 5). Next, to verify whether we could perform the
layered IEM using a reduced number of voxels, we reran the IEM
analysis but only used the data from voxels with well-fit vRFs. The
reduced dataset with fewer voxels reproduced the main pattern of
results we observed in the previous section. In particular, covert
attention led to an increase in the amplitude of reconstructions
near the locus of attention (Fig. 6b, black vs gray bars).

We then investigated the contribution of each vRF parameter
to the population-level stimulus reconstructions, in a compari-
son akin to the spatial discriminability analysis in Figure 3. A
model that only simulated the observed vRF amplitude or vRF
size modulations did not predict the observed increase in recon-
struction amplitude near the attention target (Fig. 6b, red lines).
However, a layered model that only simulated vRF position
changes did predict a large increase in reconstruction amplitude
near the attention target in the parietal ROI (Fig. 6b, blue line on
right). This is consistent with the effects observed in the full da-
taset (Fig. 5; Table 3), where we only observed an interaction of
stimulus distance and attention in the parietal ROI.

To more formally quantify each manipulation of the layered
IEM, we calculated an error metric to describe how well each
model reproduced the attentional modulations in the empirical
data (using the RMSE) (Table 4). We compared each model’s
RMSE with a baseline model, which did not simulate any vRF
attentional modulations (Fig. 6c, far left). This null baseline
should have the highest error, and any good models should de-
crease the RMSE between the simulated data and the empirical
data. Conversely, a model with higher RMSE is worse at account-
ing for the empirical data compared with the null model. In both
the occipital and parietal ROIs, adding vRF position shifts to the
layered model decreased RMSE while abolishing position shifts
generally increased the model error (Fig. 6c). These data are con-
sistent with the results from the spatial discriminability analysis.
Together, they suggest that shifts in vRF position have the largest
impact on population-level representations, whereas changes in
vRF size or gain play smaller roles in changing the fidelity of the
population code.

Table 4. RMSE (and 95% CIs) between reconstructions from the reduced dataset (only using voxels with RFs) or from different versions of the layered IEM using the same
voxelsa

Reduced data p/s/a/b p/a/b p/s/b s/a/b p/a

Combined occipital V1–V4 0.133 (0.109, 0.170) 0.146 (0.146, 0.146) 0.148 (0.147, 0.148) 0.142 (0.141, 0.143) 0.194 (0.194, 0.194) 0.148 (0.148, 0.148)
Combined parietal V3A/B and IPS0 0.834 (0.744, 0.959) 0.415 (0.410, 0.419) 0.426 (0.422, 0.431) 0.411 (0.407, 0.416) 0.443 (0.439, 0.447) 0.425 (0.421, 0.430)
aTo generate CIs, the resampling of the real data is performed at the level of the fits to the reconstructions, whereas resampling layered IEM RMSEs is described in Materials and Methods. Abbreviations for vRF changes included in each
model: None, vRF parameters identical to fixation condition; a, amplitude; s, size; p, position; b.
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Discussion
By simultaneously measuring the response properties of both
single voxels and populations of voxels within retinotopic areas
of visual cortex, we could link attentional modulations of spatial
encoding properties across scales. Our data provide an initial
account of how different types of RF modulations improve the
quality of population codes for visual space. First, we show how
vRF attentional modulations depended on the distance between
the vRF’s preferred position and the static attention target (Fig.
2). We then found that shifts in the preferred position of vRFs
near the attended target increased the spatial discrimination ca-
pacity of a population of voxels (Fig. 3), as well as the amplitude
of stimulus reconstructions based on response patterns across all
voxels in a ROI (Figs. 5, 6).

Attentional modulations of spatial RFs
We provide new data on how vRF responses are modulated
around a covertly attended static target (Sprague and Serences,
2013; Klein et al., 2014; de Haas et al., 2014; Kay et al., 2015;
Sheremata and Silver, 2015). Like prior macaque studies, we find
that vRF position shifts depend on the vRF’s distance from the
attended target (Connor et al., 1996, 1997). However, we also
found that the pattern of attentional modulations differs across
the visual hierarchy. In V4, V3A/B, and IPS0, voxels shift toward
the attended target, whereas in earlier areas, vRFs near the at-
tended target are slightly repelled from it (Fig. 2e). We also found
distinct patterns of size modulations: vRF size increased near the
attention target in early visual areas but decreased in parietal
areas V3A/B and IPS0. Comparison with the existing literature
suggests that patterns of RF size modulations likely depend on the
nature of the spatial attention task. In fMRI tasks where subjects
attended to the mapping stimulus, rather than a static position,
researchers report that average vRF size increases with attention
(Sprague and Serences, 2013; Kay et al., 2015; Sheremata and
Silver, 2015). RFs in macaque area MT shrink when measured
with a mapping probe smaller than the stimulus but increase in
size when macaques track the mapping probes as they move
across the screen (Womelsdorf et al., 2006, 2008; Anton-Erxleben
et al., 2009; Niebergall et al., 2011). This may be because the RFs
shift position to track the probe, causing an apparent increase in
overall size. Last, manipulating perceptual load at fixation also
increases vRF size in human visual cortex (de Haas et al., 2014).
Together, these observations demonstrate that the pattern of RF
response modulations depends both on task demands and on the
spatial relationship between the attended target and the encoding
unit’s RF.

We note that, although the similarity between attentional
modulations of single cell RFs and single vRFs is compelling, their
properties are derived from different input signals and are not
interchangeable. fMRI voxels in retinotopically organized re-
gions of visual cortex sample from a broad array of neurons with
approximately the same spatial tuning preferences, so a position
shift in a vRF could either be driven by a change in the preferred
position of single neurons, or by a change in the gain profile
across neurons tuned to slightly different locations in the visual

field. Similarly, single neuron RFs receive input from smaller RFs
in earlier visual areas, and a position shift could arise from
either mechanism described above (McAdams and Maunsell,
1999; Baruch and Yeshurun, 2014; Dhruv and Carandini,
2014). Because of this inherent ambiguity when measuring the
encoding properties of a locally tuned unit, it is useful to
compare them with attentional modulations of population-
level representations.

Attention boosts the spatial encoding fidelity of a population
We first measured the overall capacity of a population of voxels to
make fine spatial discriminations in a region of space. We found
that attention increased spatial discriminability near the attended
target, relative to the ignored target. We then performed virtual
experiments on the vRFs contributing to the population to deter-
mine how they affected the spatial discriminability metric. We
report that vRF position shifts increased spatial discriminability
significantly more than vRF size changes or gain changes (Fig. 3).

Because the spatial discriminability metric (Fig. 3) is only in-
formative about a local portion of space, we performed a second
population analysis to reconstruct an image of the entire visual
field on each trial using a multivariate IEM. Attention increased
the amplitude of stimulus reconstructions near the attention tar-
get, indicating an increase in representational fidelity that accom-
panied the increase in spatial discriminability. In addition, a
layered spatial encoding model revealed that shifts in vRF posi-
tion could account for these attentional enhancements in the
population-level stimulus reconstructions, but changes in vRF
size could not. Together, our data demonstrate that shifts in po-
sition of many RFs may be a dominant way that single encoding
units alter the properties of a population spatial code.

Although population-level information increased the most
with changes in vRF position, we reiterate that these position
changes could arise from spatially specific patterns of gain mod-
ulations in input RFs. If this is true, it is possible that gain mod-
ulations with attention may exert their largest effects on the
downstream population, where these patterns of gain changes
become apparent shifts in vRF position. However, this remains
an open question for future work to address.

Our findings also underscore the fact that changes in the spa-
tial encoding properties of single units do not directly translate
into analogous changes in the encoding properties of a popula-
tion of those same units. For example, an overall change in vRF
size does not necessarily change the size of the population-level
representation (Sprague and Serences, 2013; Kay et al., 2015).
Although we found that single units shifted their preferred posi-
tion toward the attended target, population-level representations
did not generally shift with attention. When the population code
did shift its encoded position, we found that it was typically rep-
resentations of the ignored stimulus that shifted farther from the
true stimulus location (Fig. 5), consistent with more error-prone
representations of irrelevant stimuli. These types of differences
further emphasize the need to understand the effects of cognitive
state on population codes for the entire visual scene, rather than
focusing solely on single units.

Table 4. Continued

s/a p/s p a s None

0.194 (0.194, 0.194) 0.141 (0.141, 0.141) 0.143 (0.143, 0.143) 0.194 (0.194, 0.194) 0.194 (0.194, 0.194) 0.193 (0.193, 0.193)
0.451 (0.447, 0.456) 0.410 (0.405, 0.416) 0.410 (0.406, 0.414) 0.441 (0.437, 0.445) 0.447 (0.442, 0.452) 0.834 (0.744, 0.959)
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Last, we note that our population-level data do not address the
open question of whether RF attentional modulations have per-
ceptual consequences because it is not clear how the spatial en-
coding models measured here are linked to visual perception and
behavior (Koenderink, 1990; Rose, 1999; Anton-Erxleben and
Carrasco, 2013; Klein et al., 2016). Further investigation into
these topics should include task manipulations to investigate how
attentional modulations of both vRFs and population-level met-
rics track psychophysical performance.

Tuning shifts and labeled lines
Historically, shifts in the tuning of a RF have not been considered
one of the main mechanisms by which attention modulates
population-level information, although recent reports suggest
that this view is being reconsidered (David et al., 2008; Anton-
Erxleben and Carrasco, 2013). This may be due to “labeled-line”
theories of visual information processing, which posit that a sin-
gle neuron has a consistent feature label, which downstream
neurons rely on to perform computations and transmit stable
information (Barlow, 1972; Doetsch, 2000; David et al., 2008).
When a spatial RF shifts position as a function of cognitive state
(e.g., attention), that single neuron’s feature label is no longer
consistent. Without an accompanying shift in the downstream
neurons receiving the changing feature label, such a change could
disrupt the stability of the population code. However, our results
suggest that population-level spatial representations remain rel-
atively stable, and are even enhanced, when the tuning of the
underlying vRFs shift in position, size, and gain.

An alternate proposal to a labeled line code relies on the joint
information encoded across a population of cells (Erickson,
1982; Doetsch, 2000). This may occur at several scales; for exam-
ple, V2 could use the pattern of information from V1 inputs to
form a visual representation. This idea is more akin to an
encoder-decoder model in which the downstream decoder does
not need information about the altered representations in each of
the encoder units but instead relies on a population readout rule
(Seriès et al., 2009). The population readout rule could incorpo-
rate knowledge about the “labels” of the encoder units but could
perform equally well by relying on relative changes in the pattern
across units to resolve the information encoded in the popula-
tion. However, further exploration of population readout rules in
visual cortex are needed to test this hypothesis.

In conclusion, the spatial encoding properties of the visual sys-
tem can be measured and modeled at many different spatial scales.
Here, we report how these properties change with attention for sin-
gle voxels and for a group of voxels in each ROI. Notably, single vRF
modulations do not propagate directly to analogous changes in
large-scale codes. Instead, we observed that attentional modulations
of vRF position play a dominant role in modulating the amplitude of
population-level representations. Future research is needed to re-
solve how shifts in RF labels are generated, how information is read
out from a population, and how these multiscale attentional modu-
lations affect visual perception and behavior.

Notes
Supplemental material for this article is available at https://osf.io/s9vqv/.
This repository includes Supplemental Methods and Figures, along with
the full dataset and code needed to reproduce the analysis. This material
has not been peer reviewed.
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