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In the classic gain/loss framing effect, describing a gamble as a potential gain or loss biases people to make risk-averse or risk-seeking
decisions, respectively. The canonical explanation for this effect is that frames differentially modulate emotional processes, which in turn
leads to irrational choice behavior. Here, we evaluate the source of framing biases by integrating functional magnetic resonance imaging
data from 143 human participants performing a gain/loss framing task with meta-analytic data from >8000 neuroimaging studies. We
found that activation during choices consistent with the framing effect were most correlated with activation associated with the resting or
default brain, while activation during choices inconsistent with the framing effect was most correlated with the task-engaged brain. Our
findings argue against the common interpretation of gain/loss framing as a competition between emotion and control. Instead, our study

indicates that this effect results from differential cognitive engagement across decision frames.
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The biases frequently exhibited by human decision makers have often been attributed to the presence of emotion. Using a large
fMRI sample and analysis of whole-brain networks defined with the meta-analytic tool Neurosynth, we find that neural activity
during frame-biased decisions was more significantly associated with default behaviors (and the absence of executive control)
than with emotion. These findings point to a role for neuroscience in shaping long-standing psychological theories in decision

~
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Introduction

Psychologists have long described human experience as compris-
ing two dueling modes of thought: one process of quick emotion-
laden association and another of reasoned analysis (James, 1890).
More recently, a strand of research in behavioral economics has
adopted a dual-process approach that contrasts automatic and low-
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effort Type 1 decisions against analytic and effortful Type 2 decisions
(Kahneman, 2011). Efforts to identify the neural signatures of
Type 1 and Type 2 decision-making (Greene et al., 2001; Sanfey et
al., 2003; McClure et al., 2004; Sokol-Hessner et al., 2013) have
often focused on the framing effect, in which altering how a de-
cision is described (or “framed”) leads to systematic biases in
choice (Gonzalez et al., 2005; De Martino et al., 2006; Roiser et al.,
2009; Wright et al., 2012, 2013).

The canonical example of the framing effect is gain/loss fram-
ing, in which people are typically risk averse when financial out-
comes are presented as gains but are risk seeking when equivalent
outcomes are presented as losses (Tversky and Kahneman, 1981).
Previous studies of the neural basis of the framing effect (De
Martino et al., 2006; Roiser et al., 2009; Xu et al., 2013) found
amygdala activity during frame-consistent choices (i.e., risk seek-
ing for losses and risk avoidance for gains) and dorsal anterior
cingulate cortex (dACC) activity during frame-inconsistent choices
(i.e., risk avoidance for losses and risk seeking for gains). Because
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conversely, neural activation during

You Receive frame-inconsistent choices best matches a
$40 task-engaged neural network. Further-
(o] Keep $30 + more, we found .that trial-by-trial neural
similarity to resting or default networks
Charity Receives significantly predicted frame-consistent
$40 choices, whereas trial-by-trial neural sim-
> ilarity to emotion-related neural networks
Cue Decision Phase ITI did not. Thus, both Type 1 decisions and
1s 4 s (max) 2t06s Type 2 decisions in gain/loss framing are
B best characterized along a continuum of
You Receive engagement, such that Type 1 decisions
$40 reflect relative disengagement compared
with Type 2 decisions.
(or) Lose $10 +
Materials and Methods
Charity Receives Participants. Our analysis sample consisted of
$40 143 participants (mean age, 21.9 years; age
range, 1831 years; 78 females) with normal or
Cue Decision Phase ITI corrected-to-normal vision and no history of
1s 4 s (max) 2to6s psychiatric or neurological illness. These par-

Figure 1.

the amygdala has been historically associated with fear and anx-
iety (Davis, 1992) and dACC is often associated with effortful
control and conflict monitoring (MacDonald et al., 2000; Botvinick,
2007), these results have been seen as evidence for a rapid emo-
tional brain response (Type 1) that can be overridden by effortful
control (Type 2). Under this perspective, the behavioral inconsisten-
cies observed in the framing effect result from an intrusive emotional
bias (De Martino et al., 2006; Roiser et al., 2009; Xu et al., 2013).

Yet, other evidence points to an alternative to the standard
“reason versus emotion” model, namely, that framing effect
arises when people adopt behavioral strategies that involve low
cognitive effort. The treatise by Simon (1955) noted that “limits
on computational capacity” may be the main constraint imposed
upon human decision-makers, and heuristic-based models of
decision-making emphasize that heuristics save cognitive effort
(Gigerenzer and Gaissmaier, 2011; Mega et al., 2015). Emotional
processing does not enter such models; decision biases can arise,
itis argued, in the absence of any emotional response. Collectively,
such work provides an intriguing potential counterpoint to the
standard dual-process view of the framing effect: frame-biased
choices are best characterized not by high emotion but by low
cognitive engagement.

In this study, we distinguished the emotion- and engagement-
based explanations of the framing effect by integrating large-sample
empirical functional neuroimaging data with independent maps of
brain networks derived from meta-analytic tools. We analyzed
functional magnetic resonance imaging (fMRI) data from a final
sample of 143 participants who performed a risky decision-
making task that evoked a behavioral framing effect. The resulting
neural activation during frame-consistent and frame-inconsistent
choices was then compared with independent meta-analytic maps
from the Neurosynth database (www.neurosynth.org; Yarkoni et
al,, 2011). We found that neural activation during frame-
consistent choices does include the amygdala but, in fact, better
matches a network associated with the resting or default brain;

Experimental task. Participants engaged in a financial decision-making task. At the beginning of each trial, an initial
endowment indicated the target of the decision (self or charity). Following this cue, participants had the opportunity to choose
between an all-or-nothing gamble or a safe option with a guaranteed proportion of the initial endowment. 4, B, The safe option
was presented in the following two conditions: a gain frame (A); and a loss frame (B). Crucially, nearly all trials were matched to an
identical trial in the opposite frame that only differed in the presentation of the safe option (“keep” or “lose”). After the choice, a
fixation cross was presented for 2— 6 5. At the end of the experiment, one trial chosen at random was resolved for payment.

ticipants were drawn from a larger sample of
232 participants (see Inclusion criteria below).
All participants gave written informed consent
as part of a protocol approved by the Institu-
tional Review Board of Duke University Med-
ical Center. We note that this sample is much
larger than that in most human neuroimaging
studies, allowing us ample statistical power to
detect effects (Button et al., 2013).

Stimuli and task. Participants performed 126 trials of a risky decision-
making task (Fig. 1) adapted from previous studies of the neural basis of
framing effects (De Martino et al., 2006), split across three runs by short
breaks. On each trial, participants were shown a starting amount that
varied uniformly from $8 to $42. Participants were then asked to choose
between “safe” and “gamble” options with a button press. Left and right
positions of the safe and gamble options were randomized across trials.
Safe options were framed such that participants could keep (gain frame)
or lose (loss frame) a subset of the starting amount for sure. The gamble
option did not differ according to frame and was represented by a pie
chart reflecting probabilities to “Keep All” or “Lose All” of the original
starting amount (20—80%, 25-75%, 33—67%, 50-50%, 67—-33%, or 75—
25%). The expected value (EV) varied between the safe and gamble
options (safe/gamble EV range, 0.24-3.08). On half of the trials, par-
ticipants played for themselves, and on the other half of the trials they
played for a charity of their choice (Animal Protection Society of
Durham, Durham Literacy Center, Easter Seals UCP North Carolina,
or the American Red Cross: The Central North Carolina Chapter).
Nearly all trials (92%) were matched with an identical trial in the
opposite frame.

Stimuli were projected onto a screen at the back of the scanner bore, and
participants viewed the stimuli through mirrored goggles. Tasks were pro-
grammed using the Psychophysics Toolbox version 2.54 (Brainard, 1997).
At the end of the experiment, one trial was randomly selected to be per-
formed for potential payment to ensure incentive compatibility across all
trials. Participants also completed two additional fMRI tasks and a resting-
state scan (Utevsky et al., 2014) that were not analyzed for this article.

Behavioral analysis. The behavioral framing effect was calculated using
a standard metric: the difference between the percentage of gamble
choices in the loss frame relative to the percentage of gamble choices in
the gain frame (De Martino et al., 2006). Trials in which no choice was
made were excluded from the calculation of this metric.

For response time (RT) analyses, choices were classified as either frame
consistent or frame inconsistent. Frame-consistent choices were safe de-
cisions in the gain frame (Gain,,,) and gamble decisions in the loss frame
(L0SSyymple)- Frame-inconsistent choices were gamble decisions in the

gain frame (Gainy,,,;,,.) and safe decisions in the loss frame (Loss,g.)-
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Image acquisition. Functional MRI data were collected using a General
Electric MR750 3.0 tesla scanner equipped with an eight-channel parallel
imaging system. Images sensitive to BOLD contrast were acquired using
aT,*-weighted spiral-in sensitivity-encoding sequence (acceleration fac-
tor, 2), with slices parallel to the axial plane connecting the anterior and
posterior commissures [repetition time (TR), 1580 ms; echo time (TE),
30 ms; matrix, 64 X 64; field of view (FOV), 243 mm; voxel size, 3.8 X
3.8 X 3.8 mm; 37 axial slices acquired in an ascending interleaved fash-
ion; flip angle, 70°]. We chose these sequences to ameliorate susceptibil-
ity artifacts in ventral frontal regions (Pruessmann et al., 2001; Truong
and Song, 2008). Before preprocessing these functional data, we dis-
carded the first eight volumes of each run to allow for magnetic stabili-
zation. To facilitate coregistration and normalization of these functional
data, we also acquired whole-brain high-resolution anatomical scans
(T,-weighted fast spoiled gradient echo sequence; TR, 7.58 ms; TE, 2.93
ms; voxel size, 1 X 1 X 1 mm; matrix, 256 X 256; FOV, 256 mm; 206 axial
slices; flip angle, 12°).

Preprocessing. Our preprocessing used tools from the FMRIB Soft-
ware Library (FSL version 4.1.8, http://www.fmrib.ox.ac.uk/fsl/; RRID:
SCR_002823) package (Smith et al., 2004; Woolrich et al., 2009). We first
corrected for head motion by realigning the time series to the middle
time point (Jenkinson et al., 2002). We then removed nonbrain material
using the brain extraction tool (Smith, 2002). Next, intravolume slice-
timing differences were corrected using Fourier-space phase shifting,
aligning to the middle slice (Sladky et al., 2011). Images were then spa-
tially smoothed with a 6 mm full-width at half-maximum Gaussian ker-
nel. To remove low-frequency drift in the temporal signal, we then
subjected the functional data to a high-pass temporal filter with a 150 s
cutoff (Gaussian-weighted least-squares straight line fitting, with o =
50 s). Finally, each 4-dimensional dataset was grand-mean intensity
normalized using a single multiplicative factor. Before group analyses,
functional data were spatially normalized to the MNI avgl52 TI-
weighted template (2 mm isotropic resolution) using a 12-parameter
affine transformation implemented in FLIRT (Jenkinson and Smith,
2001); these transformations were later applied to the statistical images
before cross-run and cross-participant analyses.

fMRI analysis. Neuroimaging analyses were conducted using FEAT
(FMRI Expert Analysis Tool) version 5.98 (Smith et al., 2004; Woolrich
et al., 2009). Our first-level analyses (i.e., within-run) used a general
linear model with local autocorrelation correction (Woolrich et al., 2001)
consisting of four regressors modeling each frame and participant choice
(Gaing,g., Gaing,y,pie LSS, and Loss,, ). We defined the duration
of each regressor as the period of time from the presentation of the cue to
the time of choice. This procedure controls for confounding effects re-
lated to response time (Grinband et al., 2011a, 2011b). In this first-level
model, we also included two 0 s impulse regressors to account for the
presence of the initial cue and for the value of that cue, and we included
nuisance regressors to account for missed responses, head motion, and
outlier volumes. Except for the head motion and outlier volume nuisance
regressors, all regressors were convolved with a canonical hemody-
namic response function. We combined data across runs, for each
participant, using a fixed-effects model, and combined data across
participants using a mixed-effects model (Beckmann et al., 2003;
Woolrich et al., 2004).

Our group-level analyses included two contrasts of interest (De Martino
etal., 2006; Roiser etal., 2009; Xu et al., 2013). Neural activity associated with
the framing effect was modeled by contrasting frame-consistent choices over
frame-inconsistent choices (Eq. 1a). Frame-inconsistent neural activity was
modeled by the reversed contrast (frame-inconsistent choices contrasted
over frame-consistent choices; see Eq. 1b):

(Gainsafs + LOSSgamb]e) - (Gaingamblc + Losssafe)’ (la)
(Gaingamble + Lossye) — (Gaingge + Lossgamble)' (1b)

Statistical significance was assessed using Monte Carlo permutation-
based statistical testing with 10,000 permutations (Nichols and Holmes,
2002; Winkler et al., 2014). Additionally, we used threshold-free cluster
enhancement to estimate clusters of activation that survived a corrected
familywise error rate of 5% (Smith and Nichols, 2009). Statistical overlay
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images were created using MRIcron and MRIcroGL (Rorden and Brett,
2000). All coordinates are reported in MNI space.

Inclusion criteria. Given our sample size, we adopted stringent a priori
criteria for data quality to determine inclusion/exclusion of participants.
First, we estimated the average signal-to-fluctuation noise ratio (SFNR)
for each run (Friedman and Glover, 2006). Second, we computed the
average volume-to-volume motion for each run. Third, we identified
outlier volumes in our functional data. We considered a volume an out-
lier if its root mean square (rms) amplitude exceeded the value of 150%
of the interquartile range of rms for all volumes in a run. Using these three
metrics, we excluded runs in which any measure metric was extreme relative
to the other runs (i.e., SFNR <5th percentile of the distribution of SENR
values; outlier volumes >95th percentile the distribution of outlier vol-
umes; average volume-to-volume motion >95th percentile). Runs with
an excessive number of missed behavioral responses (>97.5th percentile
all runs or >26.2% of trials with no responses) were also excluded from
analyses. Data from two additional participants were excluded due to
poor registration to the template brain. This resulted in the exclusion of
28 participants.

After excluding runs based on the above criteria, our final analyses
excluded all participants who had fewer than two runs that each had at
least two trials of each regressor type (i.e., Gaing,g,, LSSy, mple, GaiNg, mpies
and Loss,,.). As examples, participants who always chose the safe option
or always chose the gamble option were not included in the analyses,
since no contrast could be constructed between their choices. This re-
sulted in the exclusion of an additional 61 participants, resulting in a final
model that included 143 participants, each with multiple runs of high-
quality data and behavior mixed between frame-consistent and frame-
inconsistent choices.

Neural similarity analysis. We used the fMRI meta-analysis software
package Neurosynth (version 0.3; RRID: SCR_006798; Yarkoni et al.,
2011) to construct metrics of neural similarity between our empirical
fMRI data and reverse-inference maps drawn from prior studies (i.e., the
>8000 published, peer-reviewed studies included in the Neurosynth da-
tabase at the time of our analyses).

We calculated Pearson correlation coefficients between the unthresh-
olded z-statistic map of our framing effect contrast (referred to as fram-
ing contrast; Eq. 1a) and each of the 2592 term-based reverse-inference
z-statistic maps of Neurosynth [referred to as neural profiles (NPs)] for
all voxels within our group-level brain mask using the Neurosynth
Decode tool (Yarkoni et al., 2011).

Using the Pearson correlation coefficients between our framing con-
trast and the Neurosynth term-based maps, we identified the 10 most
positively correlated and 10 most negatively correlated neural profiles
(referred to as NP+ and NP—, respectively, and NP* when referring to
both sets of maps), as well as six emotion-related neural profiles (the
Neurosynth maps for “emotions,” “feelings,” “emotion,” “emotionally,”
“amygdala,” and “feeling”; hereafter referred to as NPe). We then used
partial correlation analyses to compare the shared variance between our
empirical results and the maps drawn from Neurosynth (Fig. 2).

For each NP+, we quantified its unique neural similarity to the fram-
ing contrast as its partial correlation coefficient with our framing contrast
after controlling for the NPe, or 75 uming o np=+) - npe- We then subtracted this
partial correlation coefficient from the correlation coefficient between our
framing contrast and each NP ((gaming to NP=) ~ T(framing to NP=) - NPe)-
This absolute difference, or Ar(NPe), is the neural similarity between our
framing contrast and each NP= that is accounted for by each NPe.

Similarly, for each NPe, we quantified its unique neural similarity to
the framing contrast as its partial correlation coefficient with our framing
contrast map after controlling for each NP= 0r 7 yming 1o Npe) - np- We
then subtracted each partial correlation coefficient from the correlation
coefficient between our framing contrast and each NPe (7 aming to npe)
T (framing to NPe) - Np=-)- L his absolute difference, or Ar(NP=*), is the neural
similarity between our framing contrast and each NPe that is accounted
for by each NP=.

Trial-by-trial analysis. We estimated an additional first-level trial-by-
trial general linear model with a separate regressor for each trial (42 trials
per run) and the same impulse and nuisance regressors of our framing
contrast first-level model (excepting the missed response trial nuisance
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Part 2: Whole-brain voxel-wise correlations
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Part 3: Interpretation of neural similarity

Ar(NP%) =
Neural similarity between
Framing & NPe
accounted for by
NP+

partial
correlation

Figure 2.

Neural similarity
unique to NP

F(framing to NP+)eNPe

Neural similarity analysis using the meta-analytic database in Neurosynth. Neural similarity measures were obtained by correlating our whole-brain framing contrast with the

reverse-inference term-based maps in Neurosynth (Neural Profiles, or NPs). Unique neural similarity was calculated using partial correlation analyses for a specific term while controlling for
additional terms. The reduction in neural similarity following such partial correlation analyses was attributed to the controlling terms. For details, see Experimental procedures: neural similarity

analysis.
35 m self ' 100 self e e
m charity e W charity + e i P
3 . " ’ B - : : /
+ i - _ 80 | . | ‘ .
_— 1 | o I T | i o~ s
225 ! < | | : = . ‘o
[} i i 0 | | O 60 Fa
£ 3 ‘ S e | : &
2 e ’ ) i E u .
g s . l e N g£w
; ! . 5
2 ] 3 =" : ; g &
@ ‘ | : 1
g 1 4 § 3 % <
- 200 | | 3 )
0.5 i | i 1 0
0 = 3 o L P : ; .
ain 0SS ain 0SS -
Decision Frame Decision Frame 200 0. 200 4 60 80 100
Charity Framing Effect (%)
Figure3.  Decisionframe (loss or gain) but not decision target (charity or self) significantly affected behavioral response time and choice (n = 143 participants). 4, Participants responded more slowly during

the loss frame compared with the gain frame. This effect did not depend on whether the outcome of the decision was intended for the participant or the participant’s charity. Standard boxplots are shown.
B, When decisions were framed as a potential loss (relative to a potential gain), participants gambled more, indicating a robust framing effect. Notably, the magnitude of the framing effect—indexed by the
proportion of gamblesin the loss frame relative to the gain frame— did not depend on whether the outcome of the decision was intended for the participant or the participant’s charity. Standard boxplots are

shown. €, Individual differences in the magnitude of the framing effect (% 1055 ,mete — % aiNgopmp) Were consistent within participants for self and charity targets.

regressors). This approach allowed us to capture variance tied to each
individual trial and characterize trial-specific processes (e.g., frame-
consistent or frame-inconsistent choices). For each trial, we obtained a
whole-brain z-score map. These trial-level z-score maps were correlated
with each NP+ and NPe map to derive trial-by-trial fluctuations in neu-
ral similarity. We averaged the Pearson correlation coefficients for terms
within each NP+, NP—, and NPe group, thus yielding a single neural
similarity score for each NP group.

We then used these trial-level neural similarity scores as regressors in
two logistic regression models predicting frame-consistent decisions.
Our basic model used response time and neural similarity scores for the
NP+, NP—, and NPe as regressors. Our interaction model used response
time, neural similarity scores for the NP+, NP—, and NPe, and the
interaction of mean-centered NP+ and NPe as regressors. Thus, for each
participant, we obtained regression coefficients summarizing the degree
to which neural similarity to the NP+, the NP—, the NPe, the interaction
of NP+ and NPe, and response time predicted frame-consistent deci-
sions at the trial-by-trial level.

Data availability. Our group-level unthresholded framing contrast is
deposited in Neurovault (Gorgolewski et al., 2015; http://neurovault.
org/collections/ECNKKIIS/).

Results

Decision frames alter response time and gambling behavior
We examined response times as functions of decision target
(self and charity) and frame type (gain and loss) and as func-
tions of decision target and choice (frame consistent and
frame inconsistent) using 2 X 2 repeated-measures ANOVAs.
We found that participants were slower to respond in loss
frames (mean, 1.87 s; SEM, 0.04 s) compared with gain frames
(mean, 1.72 s; SEM, 0.03 s; F(; 145, = 175.55; p < 0.001; Fig.
3A). Participants were also slower to make frame-inconsistent
choices (Gaing, e and Lossg,g; mean, 1.92 s; SEM, 0.04 s)
than frame-consistent choices (Gain,g, and Lossg, 13 mean,
1.75 83 SEM, 0.03 s; F(; 145y = 180.54; p < 0.001). In contrast,
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decision target did not significantly A
modulate response times (self-mean,
1.81 s; SEM, 0.03 s; charity mean, 1.78 s;
SEM, 0.04 5; F(; 1 42) = 3.40; p = 0.0673).
Our analyses also indicated that the de-
cision target did not significantly inter-
act with frame type (F(, j45) = 2.63;p =
0.1072).

Participants exhibited a behavioral
framing effect and increased their gam-
bling behavior in loss frames (mean,
54.98%; SEM, 1.60%) relative to gain
frames (mean, 36.62%; SEM, 1.35%j;
Fiiia = 180.95 p < 0.001; Fig. 3B).
Though the task was originally designed
so that we could evaluate potential differ-
ences in the framing effect depending on C
the target of decisions (i.e., self vs charity),
participants showed no differences in
overall gambling behavior between the
self (mean, 45.56%; SEM, 1.42%) and
charity (mean, 46.04%; SEM, 1.40%) de-
cision targets (F(, 14,y = 0.21; p = 0.6454),
nor was there a target-by-frame interaction
(F(1,142) = 0.30; p = 0.5820). In addition,
although participants varied substantially
in their responses to the framing manipu-
lation, we found that the extent to which
the framing manipulation biased a partic-
ipant’s choices was largely consistent
across self and charity decision targets
(raary = 0.59; p < 0.001; Fig. 3C). To-
gether, these results confirm that our par-
ticipants exhibited the hallmarks of a
framing effect—increased risk aversion
for the gain frame and slower decisions for
frame-inconsistent choices—and that
framing effects were consistent across the
two decision targets. Because our behav-
ioral analyses indicated that framing effect
did not depend on decision target, we col-
lapsed across decision target in our neuro-
imaging analyses. This provides increased
power by doubling the number of trials in each condition.

0.05

Figure4.

Decision frames change brain networks associated with
cognitive engagement

Our framing contrast (frame-consistent choices > frame-
inconsistent choices) found activation during frame-consistent choices
that replicated the significant amygdala activation found in pre-
vious studies (De Martino et al., 2006), some of which used
region-of-interest analyses (Roiser etal., 2009; Xu et al., 2013). In
our model, this amygdala activation was bilateral and significant
after whole-brain correction (MNI coordinates: [26, 0, —22] and
[—22, —6, —18]; Fig. 4A). We also found, however, significant
and widespread activation during frame-consistent choices
throughout the brain after whole-brain correction, including but
not limited to bilateral insula, posterior cingulate cortex (PCC),
and dorsal medial prefrontal cortex (dmPFC; Fig. 5A).

Using the reverse of the framing contrast (frame-inconsistent
choices > frame-consistent choices) to identify neural activity asso-
ciated with frame-inconsistent choices, we replicated previous find-
ings of significant activation in dACC (De Martino et al., 20065

Amyg

P (corrected)
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L. Amyg Response (B)

@ Gamble [] Safe

Loss Gain

0.005 Decision Frame

dACC 8.0

@
=)

dACC Response (B)
N
o>

n
=)

Loss Gain
Decision Frame

Neural framing effects in amygdala (frame-consistent choices) and dACC (frame-inconsistent choices). A, We used an
interaction contrast (see Eq. Ta) to identify regions with greater activation to frame-consistent choices than to frame-inconsistent
choices. This analysis revealed widespread activation, including bilateral amyqgdala. B, Within the amygdala, we found increased
response to gamble choices relative to safe choices when the decision was framed as a potential loss. In contrast, when the decision
was framed as a potential gain, we observed increased responses to safe choices relative to gamble choices. ¢, We used an
interaction contrast (see Eq. 1b) to identify regions with greater activation to frame-inconsistent choices than to frame-consistent
choices. This analysis revealed activation within dACC. D, Within dACC, we found increased response to safe choices relative to
gamble choices when the decision was framed as a potential loss. In contrast, when the decision was framed as a potential gain, we
observed increased responses to gamble choices relative to safe choices. Reported activations are shown at p << 0.05 (corrected
two-tailed t test). Error bars reflect the SEM.

Roiser et al., 2009; Xu et al., 2013; Murch and Krawczyk, 2014; MNI
coordinates: [—4, 12, 46]; Fig. 4C). We also found significant activa-
tion in left inferior frontal gyrus during frame-inconsistent choices
(Fig. 5A).

Our neural similarity analyses found that our framing con-
trast was more correlated with neural profiles associated with
the default or resting brain (e.g., state, default, resting, mode,
PCC) than with neural profiles associated with emotion (e.g.,
emotions, feeling, amygdala). Conversely, the reverse of the
framing contrast was most correlated with neural profiles as-
sociated with effortful processing (e.g., working, task, execu-
tive, frontal, maintenance, load; Fig. 5B).

Additionally, our partial correlation analyses found that for
each NPe, the neural similarity accounted for by the NP=* or
Ar(NP=), was significantly greater than the neural similarity ac-
counted for by each NPe or Ar(NPe; for all NP*: mean, 0.043;
SEM, 0.003; for all NPe: mean, 0.022; SEM, 0.001; two-sided
paired f test: ¢(,35) = 6.323; p < 0.001). Thus, the variance shared
by our framing contrast with the NPe and NP= is better ac-
counted for by the NP=* than by the NPe (Fig. 6).



Li, Smith, et al. e Control Network Engagement Explains Framing Biases

J. Neurosci., March 29, 2017 - 37(13):3588 —3598 « 3593

A dACC
y=1
Frame-Inconsistent Frame-Consistent
I T 6
Z
B
(RankiNPe
1209 | [1jworking -039 [19] emotions 0.22 1] state 031
[2]1task -0.39 [28] feelings 0.20 [2] default 0.29
100 7 [3] executive -0.32 [42] emotion 0.19 [3]temporal 0.28
[4] frontal -0.31 [46] emotionally 0.19 [4] resting 0.28
w 07 [Bidosobternl | os1 [62lamygdala | 018 [51 heschl 026
€ [6] parietal -030 [234] feeling 0.14 [6] mode 026
g 807 I'proae 2030 7] pec 025
z [8]intraparietal | -0.30 8] spectral 025
40 [9] maintenance | -0.29 [9] autobiographical 0.25
50 4 [10] load — [10] spontaneous 0.25
=
0 = -—
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Pearson’s r

Figure5.

Neural activity during frame-consistent choices resembles the default brain, while neural activity during frame-inconsistent choices resembles the task-engaged brain. Given the diffuse

nature of our neural framing effects, we depict the unthresholded statistical images across the whole brain for both contrasts. A, Activation associated with frame-consistent choices (hot colors; see
Eq. 1a) resembled the default-mode network. In contrast, activation associated with frame-inconsistent choices (cool colors; see Eq. 1b) resembled the executive control network. Images are
unthresholded to show whole-brain activity. B, To systematically compare our activations with those of >8000 previously reported studies, we computed spatial correlations between the
unthresholded z-statistic map of our framing contrast and the reverse-inference z-statistic maps of each of the 2592 terms in the Neurosynth database (NP). Pearson’s r values for each paired
correlation are shown in the histogram. The 10 most correlated (NP+) and anticorrelated (NP —) terms are highlighted in blue, and emotion-related terms are highlighted in orange.

We additionally examined whether positive and negative
emotion-related terms were differentially associated with the
framing contrast map. We found that positive (or approach-
related) neural profiles exhibited low neural similarity scores:
affect (0.078); affective (0.167); anticipation (—0.061); approach
(0.107); arousal (0.076); gain (—0.115); and happy (0.157). We
also found that negative (or avoidance-related) neural profiles
exhibited similarly low neural similarity scores: anger (0.172);
angry (0.094); anxiety (0.065); avoid (0.098); disgust (0.172); fear
(0.141); fearful (0.147); loss (0.109); and pain (0.02). [We note
that other relevant terms (joy, trust, surprise) are not contained
in the Neurosynth database.] These results provide further sup-
port for the claim that neither emotion nor emotional valence are
robust predictors of the patterns of brain responses associated
with the framing effect.

Trial-by-trial cognitive disengagement predicts
frame-consistent choices

We used trial-by-trial fluctuations in neural similarity to the
NP+, NP—, and NPe to test whether trial-level neural similarity
to cognitive disengagement (or cognitive engagement) predicts
choices that are frame consistent (or frame inconsistent). Our

basic model found that frame-consistent choices were signifi-
cantly predicted by trial-level neural similarity to the NP+ (terms
associated with the disengaged brain) and response time (NP+:
mean (3, 2.51; SEM, 0.55; #(,4,) = 4.54; p < 0.001; RT: mean 3,
—0.60; SEM, 0.05; 4,y = —11.09; p < 0.001) but not by trial-
level neural similarity to the NP— or NPe (terms associated with
the engaged brain or emotion; NP—: mean, —0.49; SEM, 0.40;
taazy = —1.215p = 0.23; NPe: mean, —1.00; SEM, 0.62; t(,45) =
—1.62; p = 0.11; Fig. 7).

To test whether the relationship between trial-level neural
similarity to NP+ and NPe significantly predicted frame-
consistent choice, we conducted an additional logistic regression
analysis that added the interaction of NP+ and NPe to the basic
model. In this interaction model, response time and trial-level
neural similarity to NP+ still significantly predicted frame-
consistent choices (NP+: mean 3, 2.53; SEM = 0.57; t(14,) =
4.41; p < 0.001; RT: mean 3, —0.61; SEM, 0.05; #(; 4,y = —11.24;
p < 0.001), while trial-level neural similarity to NP—, NPe, and
the interaction of NP+ and NPe did not (NP—: mean 3, —0.57;
SEM, 0.41; t(145) = —1.40; p = 0.16; NPe: mean (3, —1.06; SEM,
0.65; t(142) = —1.64; p = 0.10; NP+*NPe: mean f3, 9.11; SEM,
5.91; t(142) = 1.54; p = 0.13). Furthermore, average Akaike infor-
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Figure 6.

Shared variance between fMRI statistical maps for the framing contrast and Neurosynth term-based maps is better accounted for by neural profiles associated with the default and

task-engaged brain (NP =) than by neural profiles associated with emotion-related terms (NPe). Orange bars show the neural similarity between the framing contrast and all NP == thatis accounted
for each NPe or | Ar(NPe)|. Blue bars show the neural similarity between the framing contrast and each NPe that is accounted for by all NP == or [Ar(NP=)].

mation criterion (AIC) and Bayesian information criterion (BIC)
values were significantly lower for the basic model (mean AIC,
149.97; mean BIC, 163.43) compared with the interaction model
(mean AIC, 150.79; mean BIC, 166.94; AIC paired ¢, ,,, = —6.34,
P <<0.001; BIC paired t(, 4,y = —27.11, p < 0.001), indicating that
the basic model had a better fit compared with the interaction
model.

We further investigated whether trial-level neural similarity to
cognitive disengagement was predictive of frame-consistent
choices within only the subset of gain-framed trials or only the
subset of loss-framed trials. The basic model results within gain-
framed and loss-framed subsets were qualitatively identical to the
results for all trials. That is, for both gain-framed and loss-framed
trials, frame-consistent choices were significantly predicted by trial-
level neural similarity to the NP+ and response time, but not by
trial-level neural similarity to the NP— or NPe (Table 1). We note
that these results indicate that neural similarity to NP+ predicts
opposing choices in the different frames: in gain-framed trials, it
predicts safe choices, while in loss-framed trials, it predicts gam-
ble choices.

We also investigated whether trial-level neural similarity to
cognitive disengagement was predictive of frame-consistent
choices within only the subset of self-target trials or only the
subset of charity-target trials. The basic model results within self-
target and charity-target subsets were qualitatively identical to
the results for all trials. That is, for both self-target and charity-

target trials, frame-consistent choices were significantly pre-
dicted by trial-level neural similarity to the NP+ and response
time, but not by trial-level neural similarity to the NP— or NPe
(Table 1).

Discussion

We show that choices consistent with a typical framing effect best
match neural profiles associated with the default mode network—
not with emotion—while choices inconsistent with the framing ef-
fect best match neural profiles associated with the task-engaged
brain. By combining a large-scale empirical dataset with indepen-
dent neural profiles drawn from meta-analysis, we not only rep-
licated patterns of activations found in previous studies but also
systematically tested the relationships of those patterns to cogni-
tive and emotional networks. This approach allowed us to con-
duct a rigorous neural test of dual-process models of the framing
effect.

Our conclusion follows the observation of significant neural
activation in PCC and dmPFC for frame-consistent choices, re-
gions associated with the default mode network that are active
when the brain is not engaged in performing a task (Gusnard and
Raichle, 2001; Hayden et al., 2009). This suggests that frame-
consistent choices require limited neural effort and engagement.
Note that while we replicate previous findings of amygdala acti-
vation during frame-consistent choices (De Martino et al., 2006;
Roiser et al., 2009; Xu et al., 2013), we show that neural activity
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Trial-by-trial neural similarity to neural profiles associated with the default brain (NP-+) and response time significantly predict frame-consistent choices. We used logistic

regression to predict whether a subject made a frame-consistent or frame-inconsistent choice on each trial. Four regressors were entered into the model (see Materials and Methods):
average similarity to neural profiles associated with the default brain (NP+), average similarity to neural profiles associated with the task-engaged brain (NP —), average similarity to
neural profiles associated with emotion-related terms (NPe), and RT. Greater neural similarity to NP+ (leftmost blue bar) and shorter response times (gray bar) significantly predicted

frame-consistent choices.

Table 1. Results of Basic Model using subsets of trials to predict frame-consistent
choice from trial-level neural similarity and response time

Trials subset Regressor Mean 3 (SEM) t statistic pvalue
Gain-framed NP+ 3.26 (0.96) 3.40 <0.001
NP— —0.31(0.90) —0.34 0.74
NPe —1.30(1.07) —-1.22 0.22
RT —1.05(0.10) —10.40 <0.001
Loss-framed NP+ 2.43 (1.05) 232 0.02
NP— —1.70(0.97) —1.75 0.08
NPe —2.17(1.32) —1.64 0.10
RT —0.31(0.09) —3.54 <<0.001
Self-target NP+ 4.00 (0.82) 4.89 <0.001
NP— —0.62(0.67) —0.92 0.36
NPe —0.98 (0.96) —1.01 0.31
RT —0.70(0.10) —6.97 <0.001
Charity target NP+ 2.41(0.96) 2.52 0.01
NP— —0.26 (0.57) —0.45 0.65
NPe —1.32(0.96) —-137 0.17
RT —0.67 (0.08) —859 <0.001

underlying the framing effect extends markedly beyond the
amygdala. Furthermore, we note that our framing contrast more
strongly resembles the neural profile of a task-disengaged brain
than the neural profile of emotional processes, even after ac-
counting for shared variance between neural profiles. Finally, we
note that at the trial level, neural similarity to the task-disengaged
brain significantly predicts a frame-consistent choice, whereas
neural similarity to emotional processes and the interaction of
neural similarity to disengagement and emotion do not signifi-
cantly predict choice.

Our results, coupled with a previous finding that patients with
complete bilateral amygdala lesions still exhibit a robust behav-
ioral framing effect (Talmi et al., 2010), indicate that the neural
basis of the framing effect is neither specific to the amygdala nor
wholly attributable to emotion. While emotions may contribute
to the biases seen in the framing effect, our results indicate that
susceptibility to the framing effect best reflects varying levels of
cognitive engagement during value-based decision-making and
does not depend on an interaction between engagement and
emotion.

The claim that decision frames drive processes of cognitive
engagement is consistent with the observed response time data, as
follows: choices made during the loss frame took longer than
choices made during the gain frame, and frame-inconsistent
choices took longer than frame-consistent choices. Increased re-
action time is often taken as a sign of increased cognitive effort,
and although such a reverse inference has been shown to be prob-
lematic (Krajbich et al., 2015), our study draws upon additional
neural profile analyses to substantiate our interpretation. While
we cannot rule out nonspecific attentional effects (e.g., time-on-
task) upon the observed activation in control-related regions
(Yarkoni et al., 2009; Brown, 2011; Grinband et al., 2011a,b;
Yeung et al., 2011), we note that our fMRI analyses modeled
response-time effects by basing the duration of the regressors of
interest upon the response time of each trial (Grinband et al.,
2011a,b). In this way, we minimized any direct effects of response
time upon the reported results and avoided modeling any “mind
wandering” that may occur after participants have reported their
choices. Furthermore, we note that our trial-by-trial analyses
controlled for response times and still found neural similarity to
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neural profiles associated with the default mode network to sig-
nificantly predict frame-consistent choices. Thus, neural signa-
tures of cognitive disengagement predict biased choice even after
accounting for the significant effect of response times. Finally,
given that the degree to which brain activation patterns resemble
cognitive disengagement significantly predicts choices within the
subsets of gain-framed and loss-framed trials, we can rule out the
alternative interpretation that frame itself explains both the brain
and behavior pattern.

Our conclusions are bolstered by our sample size (n = 143),
which is significantly larger than those of most other neuroimag-
ing studies, including prior studies of the gain/loss framing effect
(n = 20 in De Martino et al., 2006; n = 30 in Roiser et al., 2009;
n = 25in Xu et al., 2013). Our large sample provides confidence
in our ability to detect true results and makes it unlikely that our
null results are due to a lack of power (Button et al., 2013). Our
conclusions are also strengthened by our use of the large-scale
meta-analytic Neurosynth engine (Yarkoni et al., 2011) and our
derivation of inferences based on whole-brain networks, not se-
lected clusters of activation (Leech et al., 2011; Gordon et al.,
2012; Utevsky et al., 2014; Smith et al., 2015). These methods
allowed us to replicate the specific findings of previous studies to
establish a principled test of two competing hypotheses within
our new data and to establish an alternative explanation for fram-
ing effects.

We note that the neural profiles are created by an automated
tool that calculates probabilistic associations rather than deter-
ministic labels, and that they are subject to the biases of how
neural activation is interpreted and reported in the fMRI litera-
ture (Carter and Huettel, 2013; Chang et al., 2013). However,
Neurosynth has been found to be comparable to manual meta-
analyses (Yarkonietal., 2011), and the reporting biases present in
Neurosynth are also inherent to all meta-analytic approaches.
Therefore, we believe that the neural profiles of Neurosynth rep-
resent the current best synthesis of the interpretation of neural
activation in the fMRI literature.

Another limitation of our study involves the lack of simulta-
neous measurements of specific emotional processes. Though we
did not directly measure participants’ self-reported ratings of
emotional valence, neural profiles for positive and negative emo-
tions exhibited low neural similarity with our framing contrast.
Future work could build on our findings by obtaining self-report
ratings of emotional valence and arousal or trial-to-trial mea-
sures of physiological recordings (e.g., skin conductance re-
sponse). These measures could provide additional insight into
the extent to which emotional processes were engaged during
(and are predictive of) framing-consistent decisions.

Given the overlap between the default-mode network and so-
cial cognition (Whitfield-Gabrieli et al., 2011; Mars et al., 2012;
Jack et al., 2013; Spreng and Andrews-Hanna, 2015), one open
consideration is the extent to which our results are due to social
cognition rather than minimal cognitive processing. Other stud-
ies have found differences in neural framing effects to depend on
social context (e.g., receiving feedback from a friend compared
with a stranger; Sip et al., 2015). In addition, the effects of social
feedback on the framing effect have been associated with both the
executive control network and the default-mode network (Smith
etal.,2015). Given that we observed (1) no behavioral differences
between our social and nonsocial (charity or self) target condi-
tions, (2) no interaction effects between our target conditions
and our gain/loss frame conditions, (3) highly correlated behav-
ioral framing effects between the two target conditions, and (4)
trial-level neural similarity to cognitive disengagement to simi-
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larly predict choice within the subsets of only self-target and only
charity-target trials, it is unlikely that our framing contrast results
are due to an effect of the “socialness” of the decision target.
Instead, it may be that frame-consistent choices and social cog-
nition both evoke default neural networks because both are low-
effort cognitive processes.

Our results overturn the previous conceptualization of the
framing effect as being solely mediated by emotional, amygdala-
driven processes. We show that the framing effect is not uniquely
linked to that single region of interest and therefore cannot be
wholly attributed to emotional processes. Rather, the biases of the
framing effect correspond with differences in neural network ac-
tivation (e.g., within dACC) that more closely reflect differential
levels of cognitive engagement. We note that this finding of dif-
ferences in engagement does not necessarily imply that dACC
and other regions were “disengaged” during the task; on the con-
trary, activation levels for both frame-inconsistent and frame-
consistent choices were still greater than the implicit baseline of
task performance (i.e., the associated regressors had positive
signs). Because our event-related task was not designed to cleanly
model passive rest, conclusions about absolute levels of engage-
ment cannot be drawn from these data. Future studies could
build upon our results using paradigms with well defined blocks
of rest periods.

Though our conclusions are specific to the gain/loss framing
effect, future work should determine whether they generalize to
other supposed examples of Type 1 and Type 2 decision-making
biases that have been extensively studied using fMRI, such as loss
aversion (Tom et al., 2007; Sokol-Hessner et al., 2013) and impa-
tience in temporal discounting (McClure et al., 2004; Kable and
Glimcher, 2007).

Emotion versus reason has been a popular way to describe the
dueling components of Type 1 versus Type 2 decision-making
(Kahneman, 2011). Many influential theories of decision-making,
however, have accounted for Type 1 decisions without necessarily
invoking emotional processes (Simon, 1955; Gigerenzer and
Gaissmaier, 2011). Our study, using a large fMRI dataset and an
even larger meta-analytic database, suggests that “less cognitive
effort” versus “more cognitive effort” is the more accurate char-
acterization of decision-making processes. We show that data
from neuroscience can provide novel insights into the processes
that underlie well studied decision science phenomena (Levallois
etal., 2012).
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