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Coupled Decision Processes Update and Maintain Saccadic
Priors in a Dynamic Environment
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Much of what we know about how the brain forms decisions comes from studies of saccadic eye movements. However, saccadic decisions
are often studied in isolation, which limits the insights that they can provide about real-world decisions with complex interdependencies.
Here, we used a serial reaction time (RT) task to show that prior expectations affect RTs via interdependent, normative decision processes
that operate within and across saccades. We found that human subjects performing the task generated saccades that were governed by a
rise-to-threshold decision process with a starting point that reflected expected state-dependent transition probabilities. These probabil-
ities depended on decisions about the current state (the correct target) that, under some conditions, required the accumulation of
information across saccades. Without additional feedback, this information was provided by each saccadic decision threshold, which
represented the total evidence in favor of the chosen target. Therefore, the output of the within-saccade process was used, not only to
generate the saccade, but also to provide input to the across-saccade process. This across-saccade process, in turn, helped to set the
starting point of the next within-saccade process. These results imply a novel role for functional information-processing loops in
optimizing saccade generation in dynamic environments.
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Saccades are the rapid, ballistic eye movements that we make approximately three times every second to scan the visual scene for
interesting things to look at. The apparent ease with which we produce saccades belies their computational sophistication, which
can be studied quantitatively in the laboratory to provide insights into how our brain manages the interplay between sensory input
and motor output. The present work is important because we show for the first time how this interplay operates both within and
across saccades to ensure that these eye movements are guided effectively by learned expectations in dynamic environments. More
generally, this study shows how sensory-motor decision processes, typically studied in isolation, interact via functional
information-processing loops in the brain to produce complex, adaptive behaviors. j

ignificance Statement

times (RTs) are affected when the expected location of a visual
saccade target is cued in advance, such as as in the Posner cueing
task (Posner etal., 1980; Posner, 1980), or learned implicitly from
the statistical structure of a recent sequence of events, such as in
the serial RT task (Nissen and Bullemer, 1987; Reed and Johnson,
1994; Schwarb and Schumacher, 2012). These effects imply
a dynamic process that can establish appropriate expectations
from one saccade to the next. However, the computational prin-
ciples that govern this sequential-updating process are not yet

Introduction

The generation of goal-directed saccadic eye movements, like
other aspects of sensory, cognitive, and motor processing, can be
sensitive to expectations (Friston, 2010; O’Reilly, 2013; Series and
Seitz, 2013; Pezzulo et al., 2015). For example, saccadic reaction
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fully understood.

To identify these principles, we measured saccadic RT distribu-
tions of human subjects performing a dynamic auditory location-
discrimination task that required them to look in the direction (left
or right) of a virtual sound source that varied probabilistically for
sequences of sounds (see Fig. 1A). Our analyses focused on two sets
of complementary questions. First, what specific aspect of saccade
processing was affected by trial-by-trial, state-dependent expecta-



Kim et al.  Coupled Decisions Update Saccadic Priors

tions? Consistent with previous reports, we found that saccadic RT's
were sensitive to state-dependent transition probabilities (in this
case, the conditional probabilities that a sound would come from the
right or left on the current trial given its location on the previous
trials; see inset in Fig. 1A) (Nissen and Bullemer, 1987; Reed and
Johnson, 1994; Schwarb and Schumacher, 2012). We extended
those results by analyzing the RT distributions using versions of the
Linear Approach to Threshold with Ergodic Rate (LATER) model
(Carpenter and Williams, 1995; Reddi et al., 2003; Nakahara et al.,
2006; Oswal et al., 2007; Noorani and Carpenter, 2016). This kind of
“rise-to-threshold” model has been used to analyze saccadic RT data
under a broad range of conditions, including how expectations are
learned gradually in response to changes in the relative frequencies of
occurrence of particular saccade targets (Anderson and Carpenter,
2006; Noorani and Carpenter, 2016). We used it to show that expec-
tations based on learned, state-dependent transition probabilities
have consistent effects on the expected (prior) probability of making
a particular saccade, but not on how the instructive sensory cue is
processed to initiate the saccade (see Fig. 1B).

Second, how were these prior probabilities updated on a trial-by-
trial basis? Here, we extended the LATER model to include a dy-
namic process for updating priors based on normative principles of
sequential inference in unpredictable environments (see Fig. 1C)
(Glaze et al., 2015). This kind of sophisticated inference process is
consistent with how human subjects solve a range of cognitive, per-
ceptual, and motor tasks, but has not yet been related directly to the
saccadic system (Courville et al., 2006; Behrens et al., 2007; Nassar et
al., 2010; Wilson et al., 2010; Haith and Krakauer, 2013; Payzan-
LeNestour et al., 2013; Gallistel et al., 2014; Glaze et al., 2015; Otto et
al,, 2015). We tested key features of these models, including how
estimates of state-dependent transition probabilities are updated ac-
cording to the strength of evidence provided on each trial about the
current state. These analyses show that saccadic priors are updated
sequentially according to normative principles that can involve
functional information-processing loops that couple within- and
across-saccade decision processes (see Fig. 1B,C). These findings
provide new insights into, not just how the brain promotes speeded
saccadic responses to the most likely target locations in dynamic
environments, but also more generally how decision processes, typ-
ically studied in isolation, interact to produce complex, adaptive
behaviors.

Materials and Methods

Behavioral task

Human subject protocols were approved by the University of Pennsylva-
nia Internal Review Board. Forty-one subjects (15 female and 26 male;
age range = 18—42 years) participated in the study after providing in-
formed consent. Data from one subject were excluded from the analyses
because of the very high prevalence of short-latency saccades (64.25% of
measured RTs were <100 ms). Data from two other subjects were ex-
cluded from the analyses because both chose one option almost exclu-
sively (first: 916 leftward choices out of 996 trials; second: 1201 rightward
choices out of 1205 trials). Each subject underwent one session of train-
ing before participating in one to three experimental sessions.

The task required subjects to indicate whether the virtual source of a
sound presented through headphones (Senheiser HD 598 over-ear head-
phones) was from the left or right side by making a saccadic eye move-
ment to a visual target located on the appropriate side. Subjects were
seated and placed their chin in a chin-rest that was ~60 cm from a Tobii
T60XL eye tracker and display that sampled the position of both eyes at
60 Hz (see Fig. 1A).

The sounds were obtained from the Listen HRTF database (Institute
for Music/Acoustic Research and Coordination). The sound presented
on each trial was a set of band-pass-filtered pulses of white noise with a 10
ms gap between the pulses. The duration of each pulse was 50 ms, with
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5 ms cosine ramps at the beginning and the end of the pulse. The sounds
were played via headphones. The sounds varied in terms of their simu-
lated azimuthal (horizontal) source location, picked randomly on a trial-
by-trial basis from 50 different versions of that location chosen from the
HRTF database.

For each trial, a fixation dot appeared on the screen, which the subject
had to look at for 600 ms without blinking before the sound stimulus was
presented. The fixation dot then disappeared and the sound stimulus was
played through the headphones. Simultaneous to sound onset, two tar-
gets appeared, one ~14° directly to the left of fixation and the other ~14°
directly to the right of fixation. The subject was instructed to then make
a saccadic eye movement to the target in the perceived direction of the
virtual sound source. RT was defined as the time from sound onset
(which had a reliable, ~3 ms latency from the time of the software trigger
to the time the sound was discernible from the headphones) to the time
when the first sampled eye position was >9.3° horizontally from the
fixation dot (velocity- and acceleration-based measures yielded nearly
identical results). A counter indicating how many trials subjects had
done so far was always shown at the bottom of the screen between trials.
Each correct choice was worth one point. Subjects were paid based on
how many points they earned during the given session. Each session
lasted ~40—60 min.

We tested how saccadic RTs and choice behavior on this task were
affected by certain combinations of the following four factors: (1) left—
right transition probability, (2) stimulus strength, (3) trial-by-trial feed-
back, and (4) speed—accuracy instructions. The particular combinations
that we tested are described below.

Left—right transition probability governed the probability that the sim-
ulated sound source was on the left or right side on a given trial given its
location on the previous trial. Specifically, sound source location was
generated using a Markov chain with two states, C; (left side) and Cy
(right side), and four transition probabilities, H;; (computed as the
expected number of transitions per trial, or “generative hazard rate,”
corresponding to a sound presented from the left side followed by a
sound from the right side), H;; =1 — H, , Hg, and Hyy = 1 — Hy,;. To
assess sensitivity to different transition probabilities, we used a range of
values (0.15, 0.2, 0.25, 0.35, 0.65, and 0.85) in different combinations.
Within a given session, H;  and Hy; each took on one such value for the
entire session, with H; , # Hy; in some sessions and H; , = Hy,; in others
(see below). Each trial consisted of the presentation of a single sound, the
location of which depended on the current state. State transitions oc-
curred between trials.

Stimulus strength was held constant within a given session at a level
defined as either “strong” (S) or “weak” (W). These two levels differed in
terms of their left—right discriminability based on their simulated loca-
tions determined by the HRTF database. The strong stimuli were always
defined as simulated sound sources located directly to the left or right
(i.e., £90°) from center. The weak stimuli were determined separately for
each subject, before performing the main task, using a modified version
of the adaptive QUEST procedure (Watson and Pelli, 1983; King-Smith
etal., 1994). Using this procedure, the simulated azimuth, in degrees, of
the weak stimuli was set to the mean of the threshold probability distri-
bution yielding 70% correct responses in an unbiased environment (i.e.,
each sound presentation was equally likely to come from the left or right
side). Typically, this procedure yielded simulated azimuthal locations of
~3—4° from center.

Trial-by-trial feedback was either given (F) or not (NF) for each full
session. When feedback was given, after a correct choice, the correct
target turned green and a circle appeared around the target. After an
error, the incorrectly chosen target turned red and a circle appeared
around the correct target. For these sessions, a second counter at the
bottom of the screen showed the running tally of correct trials.

In regard to speed—accuracy instructions, for most sessions, the sub-
jects were instructed to choose as accurately and quickly as possible. For
these sessions, the subjects had to earn as many points as possible for a set
number of trials. There was no time limit for these sessions. We typically
gave 1200 trials for each subject. However, five subjects indicated during
the training session that they felt fatigued before finishing, so they were
given either 600 trials (a single session with weak stimuli and no feed-
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back) or 1000 trials (one session with weak stimuli and no feedback and
four sessions with weak stimuli and feedback). Subjects were paid based
on how many points they earned during the given session. For the re-
maining sessions, the subjects were instructed to emphasize speed (“re-
spond as quickly as possible”). We used this manipulation to test whether
such an instruction, which is known to reduce the total amount of evi-
dence accumulated to trigger the saccade (equivalent to lowering the
decision threshold in Fig. 1B) (Reddi and Carpenter, 2000), also affects
the evidence accumulated across trials to establish appropriate priors (see
Fig. 1C). In these sessions, subjects had to earn as many points as possible
in 40 min. There was no limit on how many trials the subject could
complete during that time (minimum = 1092, median = 1452, maxi-
mum = 1738 total trials completed per session).

We use the following labels in the text to refer to the particular task
conditions that we tested, corresponding to combinations of the four
factors described above.

Strong stimuli (S) included sessions with: (1) equal, low generative
transition probabilities (H;, = Hyg,; = 0.2 for 5 sessions, = 0.25 for 3
sessions); (2) unequal, low generative transition probabilities (H;p =
0.35, Hy; = 0.15 for 6 sessions); or (3) unequal, high generative transi-
tion probabilities (H; z = 0.65, Hy; = 0.85 for 7 sessions). Feedback was
provided in all of these sessions except two (H; = Hy; = 0.2). Those two
sessions were included in this group because performance was high
(96.9% and 99.0% correct responses) and comparable to when feedback
was provided. The subjects were instructed to choose as accurately and
quickly as possible. These 21 sessions were conducted using 21 different
subjects.

Weak stimuli with feedback (WF) included instructions to choose as
accurately and quickly as possible; 10 sessions with H, ; = Hy; = 0.2 and
2 sessions with H; ; = Hp; = 0.25. These 12 sessions were conducted
using 12 different subjects. Of these, three also participated in the S
condition, and all 12 also participated in the weak, no feedback (WNF)
condition.

WNEF stimuli included instructions to choose as accurately and quickly
as possible; 10 sessions with H; , = Hy; = 0.2 and 3 sessions with H; , =
Hy, = 0.25. These 13 sessions were conducted using 13 different subjects.
Of these, six also participated in the S condition, and 12 also participated
in the WF condition.

WNF stimuli with instructions to emphasize speed (WNF,,) included
10 sessions with H;; = Hy; = 0.2. These 10 sessions were conducted
using 10 different subjects, none of whom participated in any of the other
conditions.

LATER analyses

All model-fitting procedures described below were implemented by find-
ing the minimum of the appropriate objective function using the Opti-
mization Toolbox from MATLAB (RRID:SCR_001622).

Basic LATER model
The LATER model describes saccadic RT as the time it takes a linear
variable () to progress from a starting value (S,) to a threshold value (Sy)
(Carpenter and Williams, 1995; Reddi et al., 2003; Noorani and Carpen-
ter, 2016). Assuming that the rate-of-rise r varies from trial-to-trial with
a Gaussian distribution, r ~ N(p,, 0,), RT is distributed as a reciprocal of
Gaussian with a heavy tail toward longer values: (S — S;)/r = AS/r. We
used a basic model that treats o, as a scale factor set to one and had two
independent parameters: (1) the mean rate of rise (w,) and (2) the dif-
ference between the starting point and the threshold level (AS).
Consistent with previous applications, we always fit the basic LATER
model only to RT data from correct choices because the simple version of
the model that we used does not account for errors (Carpenter and
Williams, 1995; Reddi et al., 2003). For conditions with strong stimuli,
this approach was justified because errors were rare. For conditions with
weak stimuli, errors were more common, so we also fit the data to a
modified model that accounted for errors using two competing processes
(see “LATER model with dual accumulators” section below).
Best-fitting parameters of the LATER model were first found by min-
imizing an objective (likelihood) function M that computed the negative
mean of the logarithm of the conditional probabilities of obtaining the
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RT data given the LATER model, using three free parameters (u,, AS,
and 6) as follows:

1 AS
M= N Zilog [Cb(m—ﬂr)] (1)

for all RT', ;ec; > 0
where ¢ is the standard normal probability density function, u, and AS
are parameters of the LATER model as described above, N is the number
of trials used in the fit, and RT", ... ; is the measured RT on trial i of Nin
the given session that was from a correct trial and had a value >6. The
parameter 6 was used as a criterion for deciding whether a given RT was
generated by a separate, fast (e.g., express) process (Fischer and Ram-
sperger, 1984; Carpenter and Williams, 1995; Reddi et al., 2003). The
value of 0 was constrained to be between 0 and 200 ms. However, if the
best-fitting value under these constraints was >190 ms, then the model
was refit with the upper bound of 0 set to the fifth percentile of the RT
data used for the given fit, which improved the estimates near 200 ms.
The best-fitting value of 6 from these fits of the basic LATER model were
used to define the set of RTs from the given session that were used for all
subsequent fits. Note that for Equation 1, we used the mean instead of the
sum of the log-likelihood because the free parameter 6 can affect the
number of data points (N in Eq. 1) used in each iteration of the fitting
procedure (for model comparisons, we multiplied this value by N to
obtain the total log-likelihood).

We determined within-subject dependencies of the two basic LATER
parameters (AS or wu,) on two sets of task conditions, as follows. In each
case, we fit nested models to the set of all RT/ .., data from the given
session (corresponding to a single subject), as defined by the fits to Equa-
tion 1 (i.e., with all the fast saccades removed).

The first set of conditions tested whether or not best-fitting values of
AS or p, depended linearly on the logarithm of the state-dependent,
generative transition probability (He_, o = Hyg, Hyy, Hyy, and Hyy).
We used the following two nested models: (1) a four-parameter model in
which both AS and ., were expressed as linear functions of log(Hc_; ¢):
AS = Baso + Bas, #log(He 1 co) and pr, = B o + By *log(He 1 co)s
where Bag > Bas, 1> Bur,oo and B,,,,, were free parameters; and (2) a three-
parameter model in which the parameter of interest (AS or u,) was a
single free parameter across conditions and the other parameter was
expressed as a linear function of log(H_; ), as above.

The second set of conditions tested whether best-fitting values of AS or
W, depended on the number of trials after a change point. We used the
following two nested models, separately for 0, 1, 2, and 3 trials after a
change point (denoted #; in addition, , , denotes 4 or more trials after a
change point, corresponding to the steady-state value of the parameter):
(1) a four-parameter model, with AS;, w, i ASy,4, M, 4+ and (2) a
three-parameter model in which the parameter of interest (AS or w,) was
a single, free parameter for both t;and ¢, .

For both sets of within-subject comparisons, significance was assessed
via a likelihood-ratio test (D = twice the difference in the log-likelihoods
of the two fits, with a difference in the degrees of freedom equal to one,
and compared with a x? distribution). A significant effect implies that the
data were better fit by the first model, in which the given parameter
varied as a function of task condition. We also assessed across-subject
effects using a Kruskal-Wallis test, with transition probability or trials
after a change point as the grouping variable.

LATER model with dual accumulators

Because the basic LATER model does not account for errors, we also used
amodified LATER model based on two competing accumulators, one for
correct responses and the other for error responses (Reddi et al., 2003).
This model assumes that the correct and error processes race toward their
respective boundaries on each trial, with the winner determining the
choice and RT on that trial. We used this model to fit data from the S, WF,
and WNF conditions (see Fig. 3B-E).

This model had five parameters to replace i, and AS from the basic
LATER model: (1) mean rate of rise for correct choices, i, .orrect (cOD-
strained to be >0), (2) mean rate of rise for the incorrect choices,
(constrained to be <0), 3) starting point S, (4) threshold mag-

- I'Lr,error
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nitude S (+ S for correct choices, — S for incorrect choices), and (5) a
parameter ¢ that can add a delay to correct or error RTs relative to the
time of boundary crossings in the model. Specifically, we computed the
probability of a correct response as follows:

1 1
p(correct) = p(RT’ TRT = 8)
correct error

& - (Mr,correct X As;nlfrect — M error X AS;—rlor
=1-® 2
V/AS;)irecl + AS?Z ( )

error

Where ¢ is the cumulative distribution function of the standard normal
distribution, AS_,rect = St — Sp» ASerror = St + Sp» and RT' represents
data from non-short-latency saccades, as described above. The parame-
ter € is equivalent to a criterion bias in signal detection theory in evalu-
ating the difference distribution, 1/RT. ... — 1/RT,.., (Green and
Swets, 1966). The value of e was >0 in all of our fits, which implies that an
accumulator with mean w, i and an accumulator with mean
— [y error T 8AS 1ror] Tace independently toward bounds Sy and =S,
respectively. If S is reached first, then a correct choice is made with the
RT determined by the time of bound crossing. However, if —S; is

reached first, then an error choice is made and the RT is delayed by the
ASCTI’OI’ ASC\’TOY

amount D = -
rerror rermr + SASCIFOF

the particular instantiation of the rate of rise on that trial. Therefore, the
delay increases as the rate of rise decreases. We also tested a four-
parameter model in which the bias parameter & was set to zero. The
four-parameter model captures the RT behavior well, but tended not to
capture the choice behavior as well as the five-parameter model
(likelihood-ratio test, p < 0.01 for all subjects who underwent weak-
stimuli conditions).

We fit this model by minimizing the following objective (likelihood)
function M that computed the negative sum of the logarithm of the
conditional probabilities of obtaining the RT data given the model, using
the five parameters describing the dual accumulators:

, where Teor ~ Ny exrors 07) is

ASCOr[eCI
M= 727' lOg p(correct) X d) RT' — M correct +
correct,i

E l % Aserror
j 0g P(error) (b RTe’n—or,j M error | |>
for all RTc/orrect > Ocorred and RTe/rmr > Gerror’ (3)

where p(correct) is from Equation 2; p(error) = 1 — p(correct); and
RT(,, ec,; and RT,, . ; are RT data obtained from the i correct trial and
j™ error trial, respectively, from the given session and had values > 6. The
values of 6_,.... and 6,,,,, were obtained for each session by fits of the
same RT data from correct and error trials, respectively, to Equation 1 to
remove short-latency values. We assessed within- and across-subject ef-

fects as described above for the basic LATER model.

Adaptive LATER model

To better understand the principles that guided the accumulation pro-
cess reflected in the saccadic priors across trials, we fit the data to a
modified, adaptive LATER model. In this model, the starting value S,
represents the prior that evolves over time according to normative prin-
ciples (Glaze et al.,, 2015). Specifically, the log-prior-odds of the sound
being on the right versus left side on trial 1 (s,,) are a function of both the
log-posterior probabilities from the previous trial (g ,,—, and q; ,,_, =
1—(gg,,, for right and left, respectively) and the transition probabilities
Hy, and H, i (Bishop, 2006; Glaze et al., 2015) as follows:

1—H, .1 T H, e
( ROGRA—1 LRYL, 1] (4)

.= lo
v & |:HRLqR,n—1 +(1- HLR)qL,n—l

The log-posterior-odds, L, = log(q /41 ) = log[qg /(1—qg ,—1)]; are
updated on each trial as the sum of the log-prior-odds and the log-
likelihood ratio provided by the sensory evidence on that trial (LLR,,
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which is governed by «, a free parameter associated with the given stim-
ulus strength) as follows:

LVI = lpﬂ + LLRVI (5)

where LLR, = —logit(c) for left sources, +logit(«a) for right sources.

We used this process to govern trial-by-trial dynamics of the saccadic
prior in the LATER model and then fit this adaptive model to the RT data
as described for Equation 1, above. This adaptive model had either six or
eight total free parameters, depending on the number of unique, state-
dependent, generative transition probabilities (H; by contrast, the basic
LATER model fit to the same data had three free parameters per value of
H): either two or four parameters (i, ;) representing the mean rate of
rise per value of H; three parameters governing the starting value of the
LATER process, S, = B, = f(Hgy, Hyx, ) from Eqs. 4 and 5, where
Hy, and H,  are the subjective estimates of the respective objective values
for that session; and one parameter representing the ending value of the
LATER process, Sy, such that AS from Equation 1 = S — S,,. Note that
both w, and « reflect stimulus strength, but of the two, only « is used to
inform the prior on the subsequent trial and thus is also potentially
sensitive to post-saccade feedback. Moreover, by leaving Hp; and H as
free parameters, this model tests the extent to which subjects can learn
and use subjective estimates of the objective, latent values to govern their
saccadic behavior, as has been shown for certain choice tasks (Glaze et al.,
2015). Finally, we emphasize that this parameterization assumes that the
across-trial decision affects the starting point of the LATER process (S,,),
but ultimately its effect on saccade generation is via AS and, therefore, it
could in principle be equivalently applied to the ending value of the
LATER process (St).

We fit the adaptive LATER model by minimizing the objective (likeli-
hood) function M that computed the negative sum of the logarithm of
the conditional probabilities of obtaining the RT data given the model
while respecting the sequence of N trials, defined as follows:

1
M= En h(F) forn =1: N,

correct,n
Where h(xfl) = - log[(b(ASVl >< xn - "LY,U)] if RTC’O[’I’&CT,” > 0
h(x,) = 0 otherwise (i.e., an error or short-latency saccade trial).

(6)

Here, we used 6 obtained per session by fits of the same RT data from
correct trials to Equation 1 to remove short-latency values, as described
above.

We fit both the basic and the adaptive LATER model to data from each
individual session, including all tested conditions (S, WF, WNF, and
WNF,). As noted above, some subjects participated in more than one
session and were tested using different combinations of factors in each
session. However, participation across sessions by individual subjects
was not uniform across conditions (e.g., there was strong overlap in the
subjects who participated in the WF and WNF conditions, but not oth-
erwise). We therefore analyzed differences in model fits and parameter
estimates across conditions on the group level, which included both
within- and across-subject effects.

Integration time index

To quantify the gradual, across-trial updates of saccadic prior probabil-
ities described by the adaptive model fits, we computed an integration
time index. We computed the integration time index from each session as
the normalized area under the curve of AS from the adaptive model fits as
a function of trials 1-3 after a change point (see Fig. 3 B, C). Specifically,
we computed E[AS_ — E[AS_, 1], where E[ | indicates the expected
(mean) value across all values of ¢ and #, ¢ indicates a left or right choice,
nis 1-3 trials after a change point, and 1 is 4 or more trials after a change
point. The value of this index is zero if AS changes abruptly, larger if AS
changes gradually after a change point.

Results

We measured saccadic RTs of human subjects performing a dy-
namic auditory discrimination task. Subjects were required to
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Figure 1. Task and models. A, Task schematic and the timing of task events on a single trial. The task required the subject to make a saccadic eye movement to a visual choice target
in the direction of the perceived sound (left or right). We used fixed generative hazard rates (H) to control transition probabilities between the two generative states (C, or C;, indicating
that the sound is generated from the left or right, respectively), as shown on the left. B, Basic LATER model, in which saccadic RT distributions are determined by a linear accumulating
process with trial-to-trial variability in its rate of rise and predetermined starting (S,) and ending (S;) points. Changes in the difference between these points (AS) are sensitive to prior
expectations, whereas changes in the average rate of rise (w,) are sensitive to stimulus difficulty. These effects show up as a “swivel” or “shift” of RT distributions plotted on a reciprobit
scale, respectively (Carpenter and Williams, 1995; Reddi et al., 2003). €, Predictions of the adaptive LATER model for adaptive changes in priors (specifically, the log-prior-odds of the
sound being on the right vs left side, as defined in Eq. 4) as a function of trials relative to a change point from (; to (; (the additional, numerical subscripts indicate the trial number
relative to the change point at trial 0). According to normative theory, prior expectations should be sensitive to expected transition probabilities (compare values before and after the
change point, indicated by the vertical dashed line) and the weight of evidence for the current state (compare the rate of change of values as a function of trials after the change point
for the different values of « from Eq. 5) (Glaze et al., 2015). Our findings indicate bidirectional coupling between these within-saccade (B) and across-saccade (€) processes, such that
the total amount of evidence accumulated within a trial to trigger a saccade (the saccade-generation threshold, $;) determines the weight of evidence for the current state («) that is
accumulated across trials to govern changes in priors that affect S,,.
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Figure 2.  Saccadic priors reflect state-dependent transition probabilities. A, Example saccadic RT distributions from a single
subject (points) plotted on a reciprobit scale: the abscissa shows reciprocal RT and the ordinate shows cumulative probability on a
probitscale (Nooraniand Carpenter, 2016). Data are separated by color, as indicated, according to the current state, conditionalized
on the previous state: (, o/(; , is a correct left/right choice on a change point (switch) trial, and C, , , /G ;. is a correct left/right
choice one or more trials after a change point (stay). These conditionalized states are associated with different transition proba-
bilities from the generative process, as indicated. Lines are fits of the basic LATER model, computed separately for each condition,
to regular saccades (circles) but not short-latency saccades (crosses). B—G, Best-fitting values from the basic LATER model of AS
(B-D) and ., (E-G) per condition (abscissa) for different generative transition probabilities, as indicated at the top of each
column. Colors are associated with the four conditionalized states, as in A. Points are filled if, for the given subject, the given
parameter depended on the appropriate transition probability [likelihood-ratio test indicating that a model in which the given
parameter was a linear function of log(transition probability) outperformed a model in which the given parameter was a constant
across transition probabilities, p << 0.01]. The thin lines connect data from a single session. The thick lines connect the median
values across subjects and are shown in black if the medians differed as a function of generative transition probability (Kruskal—
Wallis test, p << 0.01) and in gray otherwise. The insets show predictions of a LATER model in which prior probability (AS) but not
rate-of-rise (11,) depends on the appropriate transition probability. All fit RT data were obtained from correct trials only in the
strong-stimulus (S) condition.

make a saccadic eye movement to look at a visual target in the
right or left visual field in response to a brief noise burst played
through headphones from a virtual sound source located to the
right or left of central gaze, respectively (Fig. 1A). Sound source
location was generated using a Markov chain with two states, C;,
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(left) and Cy (right), and four generative
transition probabilities, H,; (the proba-
bility of a sound presented from the left
side followed by a sound from the right
side), H;; =1 — Hyx, Hy,and Hpg = 1—
Hy, . Each trial consisted of the presenta-
tion of a single sound, the location of
which depended on the current state.
State transitions occurred between trials.

Saccadic priors reflected state-
dependent transition probabilities
Previous studies that analyzed saccadic
RT data using the LATER model used a
state- (history-) independent process that
is equivalent to H; , + Hy, = 1; that s, the
probability that the location of the sound
is to the left is H;, = Hy, = Hy; and to the
right is Hy = H, = Hyg regardless of the
outcome of the previous trial (Carpenter
and Williams, 1995; Reddi et al., 2003). To
study how expectations affect saccadic
processing in more structured environ-
ments, we used state-dependent transi-
tion processes in which the probability
that the sound is to the left or right de-
pends on its prior location; i.e., Hz +
Hy,, # 1. For the first set of tests, we also
used strong, easily discriminable stimuli
[the median (interquartile, or IQR) error
rate per session was 2.56% (range = 2.11—
3.91%)] and feedback on each trial to
minimize uncertainty about the previous
state.

Under these conditions, we found that
saccadic priors were updated dynamically
according to the appropriate, state-depen-
dent transition probabilities (H; Fig. 2). Spe-
cifically, we tested three sets of conditions:
(1) relatively low, equal values of H;  and
Hp, (0.2 0or 0.25), implying a stable environ-
ment in which target locations tended to re-
peat (Fig. 2 B, E); (2) relatively low, unequal
values of Hyy (0.35) and Hy; (0.15), im-
plying a more stable environment follow-
ing right versus left locations (Fig. 2C,F);
and (3) relatively high, unequal values of
H; (0.65) and Hy, (0.85), implying an
unstable environment in which target lo-
cations tended to switch slightly more af-
ter right versus left locations (Fig.
2A,D,G). Figure 2A shows example RT
distributions for trials associated with the
high, unequal values of H;y (0.65) and
Hy, (0.85) on reciprobit axes, with recip-
rocal RT on the x-axis and percentage cu-
mulative frequency on a probit scale on
the y-axis. Consistent with the assump-

tions of the LATER model (Fig. 1B), each distribution plotted in
this way followed an approximately straight line except for the
small percentage of very short-latency saccades that likely re-
flect an express saccade or other fast process (Fischer and
Ramsperger, 1984; Carpenter, 2012; Noorani and Carpenter,
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2016). Critically, the reciprobit lines tended to show a quali-
tative “swivel” as a function of the different transition proba-
bilities, consistent with changes in priors (Fig. 1B) (Carpenter
and Williams, 1995).

To quantify these effects, we fit the basic LATER model to the
interleaved conditions associated with each state transition.
These fits yielded changes in the height of the rise-to-threshold
process (AS in Fig. 1B and Eq. 1) that depended appropriately on
the state-dependent transition probability when measured both
for individual subjects (filled circles in Fig. 2B-D; likelihood-
ratio test, p < 0.01 in all cases except one subject in Fig. 2B) and
median values across subjects (Kruskal-Wallis test, p < 0.01 in all
three cases). In contrast, best-fitting values of the mean rate of
rise of the rise-to-threshold process (u, in Fig. 1B and Eq. 1),
which is typically interpreted in terms of the strength of the stim-
ulus instructing the saccadic eye movement, were not affected as
consistently by these manipulations: data from individual sub-
jects showed some dependencies on the generative transition
probability (possibly reflecting a priming effect thought to mod-
ulate w, under some conditions; Cho et al., 2002; Goldfarb et al.,
2012), but median values across subjects did not (Figs. 2E-G; p >
0.01 in all three cases). Therefore, saccadic RTs reflected learned
expectations about state-dependent transition probabilities via
changes in the height of a rise-to-threshold saccade generation
process, representing a form of prior probability of making a
particular saccade.

Saccadic priors reflected the accumulation of uncertain
evidence over trials

The data shown in Figure 2 correspond to conditions in which the
auditory stimuli were easily identifiable as coming from the left or
right side and were followed by explicit visual feedback about the
correct location. Under those conditions, the expected probabilities
of aleft or right choice on the current trial depended on the previous
state (i.e., whether the sound on the previous trial came from the left
or the right), but not the states before that. Here, we used less-
discriminable stimuli and no feedback (WNF; see Fig. 5A). Under
these conditions, there was uncertainty about the previous state.
According to normative theory, this uncertainty should lead to more
gradual updating across trials, representing a form of evidence accu-
mulation (Fig. 1C and Eq. 4 and 5) (Glaze et al., 2015).

We found that, consistent with normative theory, saccadic
priors changed gradually over multiple trials in the presence of
state uncertainty (Fig. 3). Specifically, when weak stimuli were
used and no feedback was given, the best-fitting value of AS from
the LATER model was largest just after a change point, then
decreased gradually over several trials (Fig. 3C, cf. dark gray
curves in Fig. 1C). These effects were not evident when using
strong stimuli, which reliably indicated the current state and
therefore corresponded to abrupt and complete adjustments to
AS after a change point (Fig. 3B). The gradual updates of AS in
the presence of state uncertainty were not evident for u,, which,
on average, stayed relatively constant across trials for the three
task conditions (Fig. 3D, E).

One potential concern about these fits is that the basic LATER
model does not account for the errors that occurred in the weak
stimulus condition, which were therefore not included in the fits
(Carpenter and Williams, 1995; Reddi et al., 2003). To address this
concern, we fit the full datasets from the WNF condition to an ex-
tended model that used competing accumulators to account for
both correct and error choices (Reddi et al., 2003). This model cap-
tured empirical error rates (Pearson’s r comparing empirical and
simulated error rates per session was 0.99, p < 0.0001) via a compet-
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ing process that tended to have equal or smaller best-fitting values of
AS and p, than those obtained from correct trials for both repeated
(AS: median value = 0.97 for error trials vs 0.88 for correct trials,
Wilcoxon signed-rank test, p = 0.48; w,: 2.47 vs 2.85, respectively,
p < 0.001) and switched choices (AS: 0.77 vs 1.35, respectively, p <
0.00001; w,: 2.54 vs 3.01, respectively, p = 0.0034). These fits imply
that the subjects were using consistent strategies throughout these
conditions, and errors tended to occur when the noisy, trial-by-trial
evidence was particularly weak. Critically, the best-fitting values of
AS and p, for correct trials from this model were nearly identical to
those obtained from the basic LATER fits to correct trials only (Pear-
son’s r comparing best-fitting values of both w1, and AS from the two
models per session was 0.99, p < 0.0001). Accordingly, the effects of
trial history using these fits were also nearly identical to those re-
ported above: AS, but not u,, for correct choices was adjusted grad-
ually after a change point on trials with weak stimuli and no feedback
(Fig. 3B—E, magenta symbols; note that there were too few error trials
to conduct a similar analysis to identify their dependence on trial
history).

Saccadic priors were updated according to predictions of a
normative model

The preceding analyses demonstrated that changes in saccadic
prior probabilities affected the total amount of evidence accumu-
lated per saccade (AS in the basic LATER model) and not the rate
of rise of the decision variable (w, in the basic LATER model),
which is consistent with previous findings (Carpenter and Wil-
liams, 1995). To better understand the principles that guided how
the saccadic priors were updated across trials, we fit the data to a
modified, adaptive LATER model that describes such updates
according to normative principles (Glaze et al., 2015). According
to this model, the starting point S, represents the prior that is
updated on each trial based on three parameters: the subject’s
estimates of H;; and Hy; and a parameter « that represents the
weight of evidence provided by the stimulus about the current
state and thus strongly governs the time course of prior updates,
particularly after change points (Fig. 1C and Egs. 4-5). The
model included several other parameters as in the basic LATER
model: one decision threshold, Sy, plus separate values of w, for
each generative transition probability (models using a single
value of w, across conditions yielded similar results). Unlike the
basic model, which accounted for differences in AS as a function
of generative transition probability (Fig. 2) or trials after change
point for weak stimuli (Fig. 3) only by explicitly using separate
parameters for each such condition, a single version of the adap-
tive model was sufficiently flexible to account for all of these
effects (Fig. 4).

We compared fits to the adaptive and basic models for data
collected under several different conditions that were likely to
affect how priors were updated across trials. These conditions,
which led to different patterns of accuracy (Fig. 5A) and RTs (Fig.
5B) for each saccadic decision, were as follows: (1) S stimuli,
corresponding to the data presented in Fig. 2, which tended to
have the highest accuracy and short RTs; (2) WEF stimuli, which
tended to have slightly lower accuracy and longer RTs; (3) WNF
stimuli, corresponding to the data presented in Fig. 3C,E, which
tended to have slightly lower accuracy and shorter RTs than in the
WF condition; and (4) WNF,,, stimuli, which tended to have the
lowest accuracy and short RTs.

The adaptive model tended to provide better fits to the data
than the basic models, particularly when weak stimuli were used
and the subjects were not emphasizing speed (the model compar-
isons were quantified using the Bayesian information criterion,
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Figure 3.  Saccadic priors reflect the accumulation of weak evidence over trials for individual subjects. A, Example

saccadic RT distributions from a single subject (points) plotted on a reciprobit scale for weak stimuli with feedback. Data are
separated by color, as indicated, based on the trial number after a change point: (, is a choice on a change point (switch)
trial and (;is a choice on the i™ trial after a change point (stay). Lines are fits of the LATER model, computed separately for
each condition, to regular saccades (circles) but not short-latency saccades (crosses). B—E, Best-fitting values of AS (B, ()
or w, (D, E) from the basic LATER model, fit to correct trials only, standardized to their steady-state values (computed from
4+ trials after a change point). These values are plotted as a function of trials 0 -3 after a change point (indicated on the
abscissa) computed per subject (connected points). B, D, Strong stimuli (n = 8 subjects). C, E, Weak stimuli with no
feedback (n = 13 subjects). Filled points indicate that the given value is significantly nonzero (likelihood-ratio test, p <
0.01). Black lines indicate across-subject medians per task condition; asterisks indicate whether the median deviates
significantly from zero (i.e., with respect to their steady-state, prechange point values; two-sided Wilcoxon rank-sum test,
*p < 0.05; **p < 0.01; ***p < 0.001). Magenta lines (and asterisks) indicate medians of best-fitting values from the
corresponding parameters (corresponding to correct choices) of the model with dual accumulators, which was fit to both

correct and error choices. In all cases, H g = Hg = 0.2 0r 0.25.
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which accounted for differences in the
numbers of parameters between the two
sets of non-nested models; Fig. 5C). Un-
der these conditions, priors tended to
change gradually after change points (e.g.,
Fig. 3C), as predicted by the adaptive
model (Fig. 1C) but not the basic model.
In contrast, the two sets of models tended
to provide similar fits for conditions in
which priors were predicted by the adap-
tive model to either change abruptly (S) or
not change (WNF,,,) after change points
(Fig. 1C), both of which could be ac-
counted for using the basic model applied
separately to conditions with different
generative transition probabilities. How-
ever, there was also considerable individ-
ual variability across conditions in the
relative quality of the fits of the two mod-
els. This variability was strongly depen-
dent on variability in the time course of
prior updates. In particular, subjects bet-
ter fit by the adaptive model tended to up-
date their priors more gradually across
trials (Fig. 5D). This result emphasizes the
flexibility of the adaptive model and its
general applicability to all of the condi-
tions we tested.

This flexibility reflected task-depen-
dent differences in best-fitting parameter
values from the adaptive model (Fig. 6).
The parameter w,, representing the mean
slope of the rising process that is sensitive
to the strength of the instructive sensory
signal (Reddi et al., 2003), was stronger in
the strong versus the weak stimulus con-
ditions (Fig. 6A; Wilcoxon rank-sum tests
comparing S separately with WF, WNF,
and WNF,,, p < 0.001 in each case, and
comparing WF separately with WNF and
WNE,, and WNF with WNF,,, p > 0.24 in
each case) and in all cases nearly identical
to best-fitting values from the basic mod-
els (Pearson’s r comparing best-fitting w,
values from the two models, across all
conditions, was 0.96, p < 0.00001), as ex-
pected. The parameter «, which governs
the weight of evidence used across trials to
infer the current state, was generally larger
for strong versus weak stimuli unless feed-
back about the current state was given
after each saccade (Wilcoxon rank-sum
tests comparing S and WF, p = 0.38; Sand
WNF, p < 0.01; S and WNE,,, p < 0.001).
The parameter S, representing the
threshold of the LATER process, was low-
estin the speeded condition (Fig. 6C; Wil-
coxon rank-sum tests comparing WNF,
separately with S, WF, and WNF, p < 0.01
in each case). This result is consistent with
the idea that this parameter governs the
speed—accuracy trade-off (Gold and
Shadlen, 2007; Bogacz et al., 2010), which
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Adaptive LATER model that accounts for trial-by-trial, normative evidence accumulation matches data better than the basic LATER model. Example saccadic RT distributions (points for

saccades fit to the model, crosses for short-latency saccades not fit to the model) for a single subject performing the task using WF stimuli. The same data are shown in each panel, separated by either
change point (blue) versus nonchange point (red) trials (4, B) or by trials after change point (C, D). G; refers to the state on the /" trial after a change point. 4, C, Lines are fits of the basic LATER model
to all correct, non-short-latency saccades grouped by the generative transition probability. Because there were only two unique, generative transition probabilities in these sessions (one for all C;,
or switch, trials and one for all C,_,, or stay, trials; see inset in A), there are only two fit lines in each panel. B, D, Lines are fits of the adaptive LATER model to the full sequence of correct,
non-short-latency saccades. Because the adaptive model is sensitive to both the generative transition probability and the number of trials after a change point, there are different numbers of lines

in each panel.

for our subjects tended to emphasize accuracy (particularly in the
WF condition) unless otherwise instructed (i.e., WNFSP).

The final two parameters governed subjective estimates of the
two generative transition probabilities, H; , and Hy, . Best-fitting
values of these parameters were correlated with their correspond-
ing objective values across the relatively broad range that we
tested in the strong stimulus condition (Fig. 6D). This result
indicates that the subjects learned and maintained approximately
appropriate estimates of the generative transition probabilities
based on experience. However, subjective estimates of either pa-
rameter alone tended to be biased toward values of 0.5 and, ac-
cordingly, their sum tended to be biased toward values of 1.0 (Fig.
6E). These biases were in the direction of history-independent
values, as has been reported previously (Glaze et al., 2015). This
bias was not simply driven by uncertainty about change points,
because it was most reliably present when strong stimuli or weak
stimuli with feedback were used (Fig. 6D). Therefore, in general,
subjects tended to implicitly assume that the probability of the

sound coming from a particular direction was more independent
of the previous trials than it actually was.

Saccadic priors reflected interactions between within- and
across-saccade processes

These model fits also yielded insights into further interactions
between the within-trial rise-to-threshold process that leads to a
saccade and the across-trial inference process that establishes
appropriate expectations about the state-dependent transition
probabilities. When feedback was given (including all subjects in
the WF condition and all but two subjects in the S condition), it
provided unambiguous evidence for the current state. Accord-
ingly, under these conditions, the within- and across-saccade de-
cision processes were not strongly coupled. Specifically, the
best-fitting values of « from the adaptive model, representing the
weight of evidence used across trials to infer the current state, and
St representing the total prior and sensory evidence in the
LATER process used to infer the current state before feedback,
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the ordinate indicate median values per condition.

were unrelated to each other across subjects (Pearson’s r
—0.21, p = 0.40; Fig. 7A). In contrast, when feedback was not
given (the WNF and WNF, conditions), the total accumulated
evidence for the within-saccade decision appeared to drive the
across-saccade process. Specifically, there was an approximately
linear relationship between best-fitting values of logit o and S+
across subjects (r = 0.76, p < 0.0001; Fig. 7B). This relationship
reflected effects that occurred both across task conditions that
explicitly manipulated S; (median values of both « and S were
smaller in the WNF, versus WNF conditions; Wilcoxon rank-
sum tests, p < 0.01 in both cases) and within task conditions
(WNF: r = 0.78, p = 0.0019, WNF_,: r = 0.80, p = 0.0063;
although only the former, which included strong integration
across trials, held for a rank-order test, WNF: Spearman’s p =
0.65,p = 0.0196, WNF: p = 0.40, p = 0.26). We did not find any
relationship between a and w,, which governed the within-trial
evidence, for any task condition (p > 0.05 for p in each case). This
result implies that, in the absence of other feedback, the total,
predefined level of evidence accumulated in each trial can be used
by the across-trial inference process to update expectations about
state-dependent transition probabilities.

Discussion
We used an auditory discrimination task to determine how
sequential, saccadic RTs reflect learned expectations in dy-

namic environments. We presented three main, novel find-
ings. First, learned state-dependent transition probabilities
affect the prior probability of making a particular saccade. In
the context of saccadic RTs, these effects can be modeled ef-
fectively as changes in the starting point of a rise-to-threshold
saccade-generation process. This finding is consistent with
both experimental and theoretical work implicating a similar
computational basis for certain effects of expectations on RT
and choice behavior using other tasks (Carpenter and Wil-
liams, 1995; Bogacz et al., 2006; Gold and Shadlen, 2007; Mul-
der et al., 2012; Glaze et al., 2015). Second, these adaptive
adjustments follow principles of normative evidence accumu-
lation, including gradual updates across trials (saccades) when
there is uncertainty about the current state (Wilson et al.,
2010; Glaze et al., 2015). Third, this across-saccade evidence-
accumulation process depends on a confidence-like signal
(Kiani and Shadlen, 2009; Purcell and Kiani, 2016), which in
our task was linked to the within-saccade decision threshold
that was also sensitive to feedback. Together, these results
imply that saccade generation is governed by sophisticated
and interacting forms of inference that operate on multiple
timescales. Below we discuss in more detail how these findings
relate to previous studies and how they can help guide our
understanding of the underlying neural mechanisms.
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Summary of adaptive LATER model parameters, for four task conditions: (1) S stimuli (diamonds); (2) WF stimuli (triangles); (3) WNF stimuli (circles); and (4) WNF stimuli (stars). A-C,

Best-fitting values of w, (4), o (B), and S; (€) from the adaptive model computed per subject (points) and grouped by condition on the abscissa. D, Best-fitting values of subjective transition
probabilities from the adaptive model plotted against the corresponding objective (generative) transition probabilities for the strong stimuli condition. The solid black line is the least-square linear
regression (slope = 0.40; p = 0.80, p << 0.001). E, Best-fitting sum of subjective H,z + H,y against the sum of the corresponding objective values. Solid black line is the least-square linear
regression (slope = 0.54; p = 0.78, p < 0.001). F, Difference between subjective and objective H per subject for each task condition. Only objective values of 0.2 or 0.25 are included for consistency
across conditions. Conventions are as in A—C. Asterisks indicate two-sided Wilcoxon rank-sum test for nonzero median. **p < 0.01, ***p < 0.001.

Relationship to other work A Feedback B No Feedback
Our findings provide new insights into ® o
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studied extensively using versions of the
serial RT task (Nissen and Bullemer,
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and Schumacher, 2012). In particular, g D 1
we showed that this sequential structure O 24
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threshold decision processes. These [ & M A
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findings put RT measurements, long rec- 0
ognized as window into higher brain func- 1 2 1 2

tion (Luce, 1986; Noorani and Carpenter,
2016), on more even footing with other sac-
cade metrics that have been linked to prin-
ciples of normative decision making in
uncertain environments. For example, in vi-
sual search tasks, visual saccadic inhibition
of return reflects trial-by-trial updating of
subjective prior beliefs based on recent experience and contextual
cues in the environment (Ludwig et al., 2012). Similar to our find-
ings, these effects can be accounted for via changes in the baseline
value of a LATER-like model of saccadic decision making (Farrell et
al., 2010). Saccadic accuracy in visual search, along with saccadic
choices on a cued discrimination task, are similarly modulated by
expectations in a manner that is consistent with optimal, probabilis-
tic inference (Shimozaki et al., 2003; Eckstein et al., 2006). Together,
these results imply that the timing, selection, and accuracy of sacca-

Figure 7.

LATER threshold (S7)

Relationship between $; and «. A, Conditions with feedback: S stimuli (diamonds) and WF stimuli (triangles).
B, Conditions with no feedback: WNF stimuli (circles) and WNF , stimuli (stars). Points are best-fitting values of the adaptive model
to data from individual subjects. Line in Bis a linear fit (p << 0.001).

dic eye movements can yield important insights into the complex
computations that the brain employs to use expectations to optimize
behavior.

These RT-sensitive computations include certain principles of
optimal inference that are needed to make effective predictions in
environments that are both uncertain and can undergo fundamen-
tal, unexpected changes (Behrens et al., 2007; Nassar et al., 2010;
Payzan-LeNestour et al., 2013; Gallistel et al., 2014; Glaze et al.,
2015). Somewhat similar principles appear to govern sequential RT
effects measured in key-press tasks, although previous studies using
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those tasks focused only on conditions with little or no state uncer-
tainty. Specifically, under those conditions, sequential key-press RTs
appear to involve trial-by-trial updates of the starting or ending
point of a rise-to-threshold decision process, following both norma-
tive and non-normative principles (Goldfarb et al., 2012; Zhang et
al,, 2014). We showed that similar updates to a normative de-
cision process that governs saccadic RTs are sensitive to state-
dependent transition probabilities, albeit with an apparent
predisposition to assume history-independent values of ~0.5
that may minimize computational costs (Drugowitsch et al.,
2012; Shenhav et al., 2013). Moreover, in the presence of un-
certainty, these processes can flexibly accumulate evidence to
identify the current state of the environment. Both of these
features of saccadic processing are hallmarks of high-level in-
ference processes and thus support the notion that the sacca-
dic system is a useful substrate for understanding, not just
decisions that lead to immediate actions, but also how those
decisions depend on learned behavioral contexts or models of
the world (Gold and Shadlen, 2007; Otto et al., 2015; Purcell
and Kiani, 2016).

Possible neural mechanisms
A primary advantage of studying the saccadic system is our ex-
tensive knowledge of the underlying neural mechanisms. Our
findings suggest several novel extensions to existing ideas about
these mechanisms that can be used to guide future experiments.
For example, the within-saccade decisions that in our task drive
the selection and timing of the impending saccade relate directly
to numerous lines of research involving measurements of neural
activity in nonhuman primates performing relatively simple
sensory-driven saccade tasks. These studies have identified cor-
relates of the kind of rise-to-threshold processes described by the
LATER model in a network of interconnected brain regions in-
cluding the lateral intraparietal area (LIP), frontal eye field (FEF),
superior colliculus (SC), and basal ganglia (Hanes and Schall,
1996; Horwitz and Newsome, 1999; Kim and Shadlen, 1999;
Roitman and Shadlen, 2002; Ding and Gold, 2010; Ding and
Gold, 2012). Consistent with the prior-driven changes in starting
value of the LATER process that we found, baseline activity in
each of these areas that occurs before the onset of visual cues
instructing particular saccades can under certain conditions re-
flect the probabilities of making those saccades (Basso and
Waurtz, 1997; Dorris and Munoz, 1998; Coe et al., 2002; Lauw-
ereyns et al., 2002; Ding and Hikosaka, 2006; Rao et al., 2012).
Our results suggest that these baseline modulations may be
driven by across-saccade decision processes that are sensitive to
stimulus discriminability, feedback, and change point dynamics.
There is less known about how and where in the brain these
kinds of across-saccade processes are implemented. Nevertheless,
neural correlates of some of the key computational components
have been identified. In the context of saccadic eye movements,
signals related to feedback monitoring have been identified in
several brain regions, including parts of the medial frontal and
lateral prefrontal cortex (Stuphorn et al., 2000; Scangos et al.,
2013; Teichert et al., 2014). Signals related to the detection and
use of environmental change point dynamics for inference prob-
lems have been found in the cingulate cortex and may also in-
volve more general arousal-related modulations that include a
primary recipient of cingulate output, the locus ceruleus—norepi-
nephrine system (Behrens et al., 2007; Nassar et al., 2012; Tervo et
al., 2014; Joshi et al., 2016). Integration of these signals across
saccades may involve brain regions that encode history-
dependent information related to saccade choices, which in-
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cludes parts of parietal, cingulate, and prefrontal cortex (Sugrue
etal., 2004; Bernacchia et al., 2011). This integration process also
likely depends on working memory signals that involve interac-
tions between the hippocampus and cortex (Shadlen and Sho-
hamy, 2016), which would be intriguing targets of future studies
using this kind of task.

We further propose that the interactions that we found be-
tween these within- and across-saccade decision processes may
also have a compelling mapping onto a known neural circuit: the
information-processing loops involving the cortex and basal gan-
glia. In the oculomotor version of this loop, cortical areas FEF and
LIP both project to the caudate in the basal ganglia. Caudate
output is divided between direct and indirect pathways through
the basal ganglia that ultimately converge in the substantia nigra,
pars reticulata (SNr). SNr output, in turn, goes both to the SCand
subsequently to brainstem circuits that control movement and,
via the thalamus, back up to cortex (Hikosaka et al., 2000). Recent
work has emphasized this circuit’s role in integrating sensory and
other information to form decisions that guide saccadic behavior
(Bogacz and Gurney, 2007; Ding and Gold, 2013; Wiecki and
Frank, 2013). In part, these functions may involve adjusting the
decision threshold, which is equivalent to S; in our LATER
model, but in the brain, may involve multiple changes in the
dynamics of the within-saccade rise-to-threshold process (Lo
and Wang, 2006; Forstmann et al., 2008; Heitz and Schall, 2012).

Together, these findings suggest that our task may provide a use-
ful model system for studying functional information-processing
loops in this cortical-basal ganglia system. In principle, these loops
may involve the following flow of information. First, biases deter-
mined across trials are fed from cortex into the basal ganglia. Second,
these biases are then integrated there with incoming sensory infor-
mation to form a saccadic decision variable. Third, this decision
variable terminates when reaching a predetermined bound that me-
diates the speed-accuracy trade-off. Fourth, this termination causes
a release of inhibition that both facilitates the saccade plan encoded
in the superior colliculus and causes information related to the de-
cision bound to be sent back up to cortex, via the thalamus, to be
used to determine subsequent biases. Among the novel hypotheses
suggested by this scheme is that disruption of the basal ganglia—
thalamus—cortex feedback pathway may hinder the ability of the
brain to make decisions across saccades that depend on the amount
of sensory evidence accumulated for each saccade. Our findings may
provide a strong behavioral and theoretical basis for pursuing this
kind of study in the future.
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