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Neurons in the primate lateral prefrontal cortex (LPFC) encode
working memory (WM) representations via sustained firing, a
phenomenon hypothesized to arise from recurrent dynamics within
ensembles of interconnected neurons. Here, we tested this hypoth-
esis by using microelectrode arrays to examine spike count corre-
lations (rsc) in LPFC neuronal ensembles during a spatial WM task.
We found a pattern of pairwise rsc during WM maintenance indica-
tive of stronger coupling between similarly tuned neurons and in-
creased inhibition between dissimilarly tuned neurons. We then
used a linear decoder to quantify the effects of the high-dimen-
sional rsc structure on information coding in the neuronal ensem-
bles. We found that the rsc structure could facilitate or impair
coding, depending on the size of the ensemble and tuning proper-
ties of its constituent neurons. A simple optimization procedure
demonstrated that near-maximum decoding performance could be
achieved using a relatively small number of neurons. These WM-
optimized subensembles were more signal correlation (rsignal)-
diverse and anatomically dispersed than predicted by the statistics
of the full recorded population of neurons, and they often con-
tained neurons that were poorly WM-selective, yet enhanced cod-
ing fidelity by shaping the ensemble’s rsc structure. We observed a
pattern of rsc between LPFC neurons indicative of recurrent dynam-
ics as a mechanism for WM-related activity and that the rsc structure
can increase the fidelity ofWM representations. Thus, WM coding in
LPFC neuronal ensembles arises from a complex synergy between
single neuron coding properties and multidimensional, ensemble-
level phenomena.

working memory | prefrontal cortex | noise correlations | macaque |
decoding

To interact with a complex, dynamic environment, organisms
must be capable of maintaining and manipulating information

that is no longer available to their sensory systems. This capability,
when applied transiently (i.e., for milliseconds to seconds), is
referred to as working memory (WM) (1)—a hallmark of in-
telligence and a crucial component of goal-directed behavior (2).
In 1949, Hebb postulated that sustained neuronal activity in the
absence of stimulus input could serve as the neural substrate for
WM (3). Fuster and Alexander later discovered neurons in the
lateral prefrontal cortex (LPFC) of monkeys that exhibited sus-
tained firing during WM tasks (4). Subsequent neurophysiological
studies have corroborated that neuronal activity in the LPFC and
other regions can represent WM for visual–mnemonic space (5–
7), as well as nonspatial visual features (8–10).
Electrophysiological studies of spatial WM have traditionally

relied on recording from one neutron or a few neurons simulta-
neously (10). However, the neuronal computations that underlie
sophisticated behaviors such as WM require the coordinated ac-
tivity of many neurons within and across brain networks (11). We
currently lack a clear understanding of how single neuron coding
properties scale to neuronal ensembles. Can the properties of an
ensemble be predicted by aggregating the individually and in-

dependently measured properties of its constituent neurons?
The answers to this question and related questions hinge on
how ensembles are affected by phenomena that emerge from
interactions between neurons.
The sustained activity presumed to underlie WMmaintenance is

thought to be achieved by increasing the strength of recurrent ex-
citation and lateral inhibition between neurons within an ensemble
(12–18). These dynamics should modify patterns of correlated fir-
ing between neurons in a manner dependent on differences in their
tuning properties. Such a pattern can be quantitatively character-
ized by two measurements: The first is signal correlation (rsignal),
the similarity of two neurons’ responses to a set of different stimuli
or experimental conditions. The second is spike count (or noise)
correlations (rsc), the similarity in the variability of two neurons’
responses to the same stimulus or experimental condition (19).
Given a fixed ensemble of neurons (and thus a constant rsignal

structure), changes in rsc can have profound effects on information
coding (19–24). For example, spatial attention improves neural
coding in the visual cortex primarily by reducing rsc (25–27). An-
other study reported that increased rsc improved perceptual dis-
crimination in macaque area S2 (28). These results are difficult to
extend to WM coding in the LPFC. Furthermore, there are rel-
atively few studies investigating rsc in the LPFC (21, 27, 29–33);
and only one of these studies directly examined the effects of rsc on
information coding (27). Prior results examining pairwise corre-
lations are also difficult to extrapolate to larger neuronal ensem-
bles, which have a complex, multidimensional rsc structure that
cannot be characterized by pairwise measurements alone (20).
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Currently it remains unknown whether and how rsc structure mod-
ulates the fidelity of WM coding in LPFC neuronal ensembles.
We used microelectrode arrays (MEAs) to record from neuronal

ensembles in the LPFC of two monkeys while they performed an
oculomotor delayed-response task and assessed ensemble in-
formation content using a linear decoder. We found that rsc varied
as a function of rsignal during WM maintenance in a manner pre-
dicted by a recurrent excitation and lateral inhibition scheme. Using
all simultaneously recorded neurons, the decoder could reliably
predict which of 16 locations was being remembered. We also de-
vised procedures to systematically investigate how WM coding
varies across the “configuration space” of potential neuronal en-
sembles. Removing the rsc structure could increase or decrease the
information content of neuronal ensembles across the configuration
space. However, the intrinsic rsc structure improved WM coding in
smaller neuronal subensembles of neurons optimized for WM
representation. These optimized ensembles had a stereotyped rsignal
distribution, with peaks at zero and extreme negative values, and
spanned farther across the cortical surface than predicted by the
statistics of the full population of recorded LPFC units. Finally, we
observed individual units that did not encode WM in isolation
(“nonselective” neurons) but that still contributed to WM coding
when part of an ensemble by altering the rsc structure.

Results
Two adult male monkeys (Macaca fascicularis) (subjects “JL” and
“F”) performed an oculomotor delayed-response task (Fig. 1A)
while we recorded from neuronal ensembles in the left LPFC area
8A, anterior to the arcuate sulcus and posterior to the principal,
using chronically implanted 96-channel microelectrode arrays (Fig.
1B). The neural correlates of WM for spatial locations have been
extensively documented in this brain region (10). The target stimulus
could appear at any one of 16 possible locations, arranged in a
uniformly spaced 4 × 4 grid around a central fixation point. We
collected spike data from a total of 545 single units and multiunits
across 12 recording sessions, out of which 417 (76%) exhibited

sustained activity and selectivity during the delay epoch (P < 0.05,
Kruskal–Wallis; firing rate × location) (Materials and Methods). We
included both multiunits and single units in our analyses, as in similar
previous studies (21, 25, 27, 34). A unit’s preferred location during a
given epoch was defined as the location that elicited the largest re-
sponse averaged over that epoch (Fig. 1 C and D). Subjects made
incorrect choices about the stimulus location in <1% of completed
trials. Only correct, completed trials were included for analysis.

Task-Related Modulation of Spike Count Correlations.We computed
spike count correlations (rsc) between pairs of neurons (pairwise rsc)
(Materials and Methods) during the fixation, stimulus, and delay
epochs. rsc can covary with firing rate (21, 35) so, to ensure that
differences in rsc across epochs were not confounded by differences
in firing rates, we implemented a distribution-matching procedure
(Materials and Methods). We replicated two findings from previous
studies: Mean pairwise rsc was significantly above zero in each task
epoch (Fig. 2A) (P < 0.005 for all epochs, bootstrap test) (Materials
and Methods); and rsc varied as a function of tuning similarity,
which we quantified as signal correlation between pairs of neurons
during the delay epoch (rsignal) (Materials and Methods) (Fig. 2B)
(18, 29–33). Specifically, we found that the median pairwise rsc was
consistently larger for similarly tuned neuron pairs (defined as
rsignal > 0.25) compared with dissimilarly tuned pairs (defined as
rsignal < −0.25) (P < 0.001 for all epochs, bootstrap test) (Materials
and Methods). We also found that mean pairwise rsc was greater
during the fixation and delay epochs compared with the stimulus
epoch (Fig. 2A) (P < 0.001 for both fixation vs. stimulus and delay
vs. stimulus, bootstrap test). Most importantly, we found that the
relationship between rsc and rsignal changed across task epochs (Fig.
2B); specifically, median pairwise rsc for similarly tuned neurons
was larger during the delay epoch than during the fixation and
stimulus epochs (P < 0.001 for both comparisons, bootstrap test)
(Fig. 2C), and median pairwise rsc between dissimilarly tuned
neurons was lower during the stimulus and delay epochs than
during the fixation epoch (P < 0.001 for both comparisons,
bootstrap test) (Fig. 2C). These results indicate that WM main-
tenance modifies pairwise rsc in the LPFC in a manner consistent
with a recurrent excitation, lateral inhibition scheme (12–17, 36).

Quantifying Information Content in Neuronal Ensembles Using Linear
Decoders. Pairwise measurements of rsc are insufficient for pre-
dicting the effects of rsc structure on ensemble information in
large, multidimensional ensembles with heterogeneous tuning (20).
Furthermore, analytical methods for determining the effects of rsc
structure on information content can be complicated to calculate
for large stimulus sets and can also be inaccurate unless applied to
data consisting of hundreds of trials per stimulus (20, 37). Linear
decoders are demonstrably well-suited for extracting low-
dimensional representations from high-dimensional neuronal en-
semble data and for directly assessing the impact of rsc structure on
ensemble information content and thus offer a pragmatic solution
to the issues of dimensionality and correlated variability (20, 38).
Previous studies have decoded the identity of stimuli main-

tained in spatial (39, 40) and nonspatial WM (8, 39) in pseudo-
populations of LPFC neurons, typically using sets of 2 to 8 unique
stimuli. We were able to reliably decode which of 16 target loca-
tions was being held in WM during the delay epoch by applying a
linear support vector machine (SVM) (Materials and Methods) to
simultaneously recorded ensemble data (Fig. S1A) (max = 77%;
mean across sessions = 52%).
Examining ensembles consisting of every simultaneously

recorded neuron and/or only tuned neurons is a standard practice
in neurophysiology. However, this practice assumes that all of the
examined neurons contribute to coding, an assumption difficult to
verify. It is possible that a subset of the recorded neurons can
represent nearly as much information as the entire ensemble and
that such a subset could form a “unit” of information coding that is

Fig. 1. Task, method, and single-cell data. (A) Overview of oculomotor
delayed-response task. The arrow represents the correct saccade direction. The
dashed circles indicate potential cue locations and are shown for illustrative
purposes only and are not present in the task. (B) Array implantation sites and
anatomical landmarks in both subjects. (C) Example delay-selective neuron.
(D) Distribution of delay-selective units’ preferred locations. FIX, fixation; ROI,
region of interest; STIM, stimulus.
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read out by a downstream mechanism. Furthermore, the in-
formation-modifying effects of the rsc structure have been pro-
posed to increase with ensemble size, but most of our knowledge
about these scaling effects is drawn from extrapolations of pair-
wise recordings, which do not necessarily predict ensemble-level
effects (19–22, 41, 42). Thus, examining how information coding
varies across different subsets or subensembles of simultaneously
recorded neurons—what we refer to as the ensemble configura-
tion space—could reveal insights overlooked by the constraint of
analyzing only a single, fixed ensemble of all tuned neurons
recorded during an experiment.
To determine how WM coding scales across ensemble config-

urations, we devised “ensemble construction” procedures. The
procedures consisted of iteratively constructing neuronal ensem-
bles by drawing units from the pool of all simultaneously recorded
neurons and quantifying the WM information using the decoder
(Fig. 3). We implemented two procedure variants. We refer to the
first variant as the “best individual unit” method. This method
examines the assumption that a neuronal ensemble is simply a
collection of the best individually tuned neurons; accordingly, the
method is agnostic to between-neuron information, such as the
ensemble rsc and rsignal structures. It was implemented as follows
(Fig. 3A): We began by using the decoder to assess the WM in-
formation content of each individual unit in a single recording
session. We then rank-ordered the units based on their in-
formation content. An ensemble of two neurons was constructed
using the two most informative neurons, and the decoding analysis
was performed on the ensemble of two neurons. This process was
repeated iteratively, performing the decoding analysis using the n
most informative neurons in the session, until the ensemble con-
sisted of all of the neurons recorded in the session. The results
from applying the best individual unit method to an example
session are depicted in Fig. 3C (teal).
The second variant of our ensemble construction procedure,

which we refer to as the “optimized” method (Fig. 3B) (also re-
ferred to as “greedy forward selection” in the machine learning
literature) (43), was designed to optimize WM information for a
given ensemble size, accounting for the rsc and rsignal structures that

were ignored in the best individual unit method. The optimized
method also began by rank-ordering the information content of
individual neurons within a given recording session using the de-
coder. However, instead of starting with the two most informative
individual neurons, as in the best individual unit method, we in-
stead constructed all possible neuron pairs that contained the
most informative unit. We then identified the most informative of
these pairs, as assessed using the decoder. The most informative
pair was then combined with each remaining neuron to generate a
set of trios, from which the most informative trio was identified
and used as the basis for of the most informative quartet, and so
on, until the ensemble consisted of all of the neurons recorded in
the session. Fig. 3C shows the results of applying the optimized
method to an example session. Unlike the best individual unit
method, the optimized method does not consider the information
content of an individual unit in isolation but instead considers how
the neuron contributes to the information content of the ensemble
to which it belongs.
The results of the two ensemble-building methods are directly

compared in Fig. 3 C and D. Notice that the optimized method
yields more informative ensembles of a given size than the best
individual unit method. We refer to this property—differing WM
information content in ensembles of identical size—as “coding
efficiency”; the optimized ensembles are more efficient than the
best individual unit ensembles. Note that coding efficiency can
also refer to the converse idea—identical WM information in
ensembles of different size. We quantified coding efficiency as the
percent change in decoding accuracy of the optimized method
relative to the best individual unit method (similar to Δshuffle)
(Materials and Methods) (Fig. 3D). The optimized method
becomes significantly more efficient than the best individual unit
method starting at ensemble size n = 3 (P < 0.05, paired t test,
Hochberg-corrected). For certain sessions and ensemble sizes, the
relative efficiency can exceed 30%. Furthermore, the decoding
performance approaches saturation more quickly in the optimized
ensembles (Fig. S2). Achieving 95% of maximum decoding ac-
curacy using the optimized method requires only ∼25% of the
units recorded in a given session (∼11 units) whereas the best

Fig. 2. Measures of correlated variability and its effects onWM information in full ensembles. (A) Mean pairwise rsc (y axis) across task epochs (x axis), controlling for
firing rate (SI Materials and Methods). The mean is computed across all 2,000 subsampled distributions, and shaded regions are SEM calculated using the sample size
of a single subsampled distribution (n = 10,535 pairs). *P < 0.001, bootstrap test. (B) Mean rsc for each task epoch (y axis) as a function of delay epoch rsignal (x axis). The
same subsampling procedure as in A was applied, and then the rsc of each neuron pair was binned based on its corresponding rsignal, and the mean rsc computed in
each bin. rsignal bins are size = 0.2, stepped by increments of 0.05. The shaded regions are SEM, calculated using the sample size of the corresponding rsignal bin.
(C) Median rsc for similarly tuned neuron pairs (rsignal > 0.25) and dissimilarly tuned neuron pairs (rsignal < −0.25) in each task epoch. The colored region around each
point represents the bootstrapped 99.9% confidence interval of the median, derived from 2,000 bootstrap iterations. Nonoverlapping colored regions indicate P <
0.001, bootstrap test; however, pairwise comparisons that are visually ambiguous have explicitly marked (*) significant differences. FIX, fixation; STIM, stimulus.
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individual unit method requires ∼33% of the units (∼14 units). In
“random” ensembles—ensembles generated by randomly sub-
sampling n units from a given recording session—∼85% of the
units are necessary to reach 95% of maximum decoding accuracy.
These results demonstrate that neuronal ensembles in the LPFC
encode more information than single neurons, that the most in-
formative ensembles are not necessarily composed of the most
informative individual units, and that a relatively small subset of
neurons can represent nearly as much WM information as the full
recorded population.

Effects of rsc and rsignal Structures on WM Coding Efficiency. To dis-
sociate the effects of the rsc and rsignal structures on WM coding
efficiency in the optimized ensembles, we constructed new en-
sembles using the optimized procedure on firing rate data from
which the rsc structure had been removed via shuffling; the clas-
sifier was trained and tested on shuffled data for each ensemble
size. We then compared the information content of these “rsignal-
only” ensembles with the information content of ensembles gen-
erated using the original, rsc structure-intact data, which we now
refer to as the “rsignal + rsc” ensembles. The results for all three
methods (best individual unit, rsignal + rsc-optimized, and rsignal-
only–optimized) applied to an example session are compared in
Fig. 4A. The rsignal-only ensembles contain significantly more WM
information than the best individual unit ensembles across sizes
ranging from 2 to 47 neurons (P < 0.05, paired t test, Hochberg-
corrected) (Fig. 4B). However, the effect of the rsc structure is
variable: The rsignal + rsc ensembles are more efficient than the

rsignal-only ensembles at smaller ensemble sizes whereas this effect
inverts at larger ensemble sizes (P < 0.05 for ensemble sizes of 11
to 15 and 43 to 45 neurons, paired t test, Hochberg-corrected)
(Fig. 4 B and C). These changes in WM coding efficiency effected
by the rsc structure can reach ±15% across different recording
sessions and ensemble sizes (Fig. 4C), enough to double (or nul-
lify) efficiency increases afforded by the rsignal structure alone.
These results indicate that the rsc structure significantly impacts
WM coding and can do so in a manner that varies non-
monotonically with ensemble size. These results cannot be as-
cribed to idiosyncrasies of the SVM decoder because repeating the
same analyses using logistic regression yields similar results (Fig.
S3). We also found a similar—though less consistent—effect
during stimulus presentation, with considerably greater session-to-
session variability (Fig. S4).
It is possible that the observed effects of the rsc structure on

WM coding are simply a property of an ensemble’s size, regardless
of whether the ensemble is optimized for WM representation. To
resolve this ambiguity, we compared the decoding performance of
the random ensembles in which rsc structure was intact vs. shuffled
(Fig. 4D). We found that shuffling out the rsc structure significantly
improved decoding in most ensembles of six or more units (P <
0.05, paired t test, Hochberg-corrected) and that the magnitude of
the decoding improvement was robustly and significantly corre-
lated with the size of the ensemble in 8 out of 12 recording ses-
sions (Spearman’s ρ ≥ 0.53; P < 0.001) (Fig. S5A). Although the rsc
structure seems to consistently impair decoding at the largest
ensemble sizes (Fig. S5B), these results demonstrate that WM

Fig. 3. Accounting for between-neuron phenomena increases ensemble efficiency. Visualization of the (A) best individual unit ensemble construction
procedure and (B) optimized ensemble construction procedure. Each circle represents a unit, and the shading represents that unit’s information content, as
assessed using the decoder. (C) Decoding results for the best individual unit (teal) and optimized procedures (violet), applied to a single example session. The
continuous line plot with circular markers shows the ensemble decoding accuracy (y axis) as a function of size (x axis). The square markers at the bottom of the
plot denote the decoding accuracy (y axis) of the individual unit added to the ensemble at a given size (x axis). Both methods yield identical results for
ensembles of the maximum size because these ensembles are identical; they consist of every simultaneously recorded unit in the session (i.e., the full en-
semble). (D) Coding efficiency of the optimized method relative to the best individual unit method (y axis) as a function of ensemble size (x axis). Coding
efficiency is quantified as [(accuracyoptimized/accuracybest individual unit) − 1] × 100. Colored lines are values for individual sessions. The thick black line is the
across-session mean, and the gray shaded area is the SEM. The gray line running along the bottom indicates ensemble sizes for which the optimized method is
significantly more efficient than the best individual unit method (P < 0.05, paired t test, Hochberg-corrected).
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coding in a neuronal ensemble consisting of randomly selected
neurons will be impaired by the rsc structure in a manner pro-
portional to the size of the ensemble but that the rsc structure can
actually improve WM coding in rsc + rsignal-optimized ensembles.

Different Ensemble Configurations Optimize WM Coding When the rsc
Structure Is Intact vs. Removed. The previous results demonstrate
that accounting for an ensemble’s rsc structure can significantly
alter estimates of its WM information content. A complementary
question is whether accounting for the rsc structure also alters es-
timates of individual neurons’ contributions to an ensemble’s WM
coding. Are ensembles that maximize coding efficiency when the rsc
structure is intact composed of the same neurons that maximize
coding efficiency when the rsc structure is shuffled out? To answer
this question, we examined the proportion of units common to
both the rsignal + rsc and rsignal-only ensembles for each ensemble
size (Fig. 4E). The proportion is significantly less than 1 for en-

semble sizes of 2 to 50 neurons (P < 0.05, z-test of proportions,
Hochberg-corrected), indicating that the ensembles generated by
the two methods are not identical; the similarity within an indi-
vidual session can be as low as 33%. The rsignal + rsc and rsignal-only
procedures also recruited units into ensembles in different se-
quences (Spearman’s ρ < 1 in all sessions, mean ρ = 0.713; P <
0.05, Bonferroni-corrected) (Fig. S6). These results demonstrate
that different subpopulations of neurons optimize WM coding
when the intrinsic rsc structure is present vs. when it is absent al-
though some neurons strongly contribute to WM coding regardless
of an ensemble’s rsc structure.

Ensembles Optimized for WM Representation Are rsignal-Diverse and
Anatomically Dispersed. One of our earlier analyses demonstrated
that near-maximum decoding performance can be achieved with a
relatively small proportion of recorded units and that accounting
for an ensemble’s rsignal and/or rsc structure can further enhance

Fig. 4. Effects of rsc structure on ensemble coding efficiency and composition. (A) Decoding accuracy (y axis) as a function of ensemble size (x axis) for the
best individual unit (teal), rsignal + rsc (violet), and rsignal-only (blue) methods for the same example session as in Fig. 3C. Note that, for the rsignal-only en-
sembles, the classifier was trained and tested on rsc-shuffled data whereas, for the rsignal + rsc and best individual unit ensembles, the classifier was trained and
tested on rsc-intact data. (B) Coding efficiency of rsignal + rsc ensembles and rsignal-only ensembles, relative to the best individual unit ensembles (y axis), as a
function of ensemble size (x axis). The violet line running along the bottom indicates ensemble sizes for which the rsignal + rsc ensembles are significantly more
efficient than the best individual unit ensembles (P < 0.05, paired t test, Hochberg-corrected); the blue line is similar, but for rsignal-only ensembles vs. best
individual unit ensembles. Note that the coding efficiency of rsignal + rsc ensembles relative to best individual unit ensembles was previously shown in Fig. 3D.
(C) Coding efficiency of rsignal-only ensembles relative to rsignal + rsc ensembles; similar to Fig. 3D. A positive value indicates that shuffling out the rsc structure
improves decoding. The striped blue and violet lines running along the bottom indicate ensemble sizes for which the efficiency of rsignal + rsc ensembles and
rsignal-only ensembles are significantly different (P < 0.05, paired t test, Hochberg-corrected). (D) Decoding performance of rsc-shuffled vs. rsc-intact ensembles
(Δshuffle, y axis) as a function of ensembles size (x axis) for random ensembles. Ensembles were generated by randomly subsampling n units from the full
recorded population in a given session. The gray lines running along the bottom indicate ensemble sizes for which the rsc-shuffled vs. rsc-intact ensembles are
significantly different (P < 0.05, paired t test, Hochberg-corrected). (E) Similarity between rsignal + rsc ensembles and rsignal-only ensembles (y axis) as a function of
ensemble size (x axis). Ensemble similarity is quantified as the proportion of units common to the two ensembles for a given size. Note that ensemble similarity is 1
for ensembles of size n = 1, and for the largest ensemble size in a given session, because both ensemble-building procedures begin with the same unit, and the
largest ensemble in each session consists of every simultaneously recorded unit in that session. The gray line running along the bottom indicates ensemble sizes for
which the similarity of the rsignal + rsc ensembles and rsignal-only ensembles is significantly less than 1 (P < 0.05, z-test of proportion, Hochberg-corrected).
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WM coding. If the WM coding is optimized in these ensembles by
maximizing their representation of the stimulus space, their rsignal
distributions should be broader than those of the full recorded
ensembles. We tested this hypothesis by examining the rsignal + rsc
and rsignal-only ensembles that achieved ≥95% of maximum
decoding performance in each session (which we refer to as “near-
max” ensembles). Indeed, we found that the rsignal distributions of
the near-max rsignal + rsc ensembles, rsignal-only ensembles, and full
ensembles were all significantly different from each other (Fig. 5A)
(P << 0.001 for all comparisons, χ2 test, Bonferroni-corrected).
The width of the rsignal distribution, measured as the mean absolute
deviation (Materials and Methods), was larger for the near-max
rsignal + rsc and rsignal-only ensembles than for all units (Fig. 5B)
(P << 0.001 for both, F test, Bonferroni-corrected) and larger in
the rsignal-only than the rsignal + rsc ensembles (P = 0.01, F test).
Prior studies have reported weak topography for visual (44, 45)

and mnemonic (29) space in LPFC; units’ tuning similarity and the
anatomical distance between them—the “interunit distance”—are
negatively correlated. If the optimized ensembles reflect this to-
pography, their broader representation of the stimulus space
means that they should encompass larger regions of cortex relative
to the full recorded ensembles. Indeed, we found that the mean
distance between units—or interunit distance—was larger in the
near-max rsignal + rsc and rsignal-only ensembles than the full en-
sembles (Fig. 5C) (P < 0.005 for both, F test, Bonferroni-cor-
rected) (Materials and Methods). We also found that topography in
the optimized ensembles was enhanced compared with the full
ensembles (Fig. 5D); the correlation between interunit distance
and rsignal was significantly stronger in the near-max rsignal + rsc
ensembles (r = −0.33) and rsignal-only ensembles (r = −0.38)
compared with the full ensembles (r = −0.26; P < 0.005 for both,
bootstrap test). A potential explanation for this difference is that
the distance between units with negative rsignal is larger in the
optimized ensembles (Fig. 5E). Remarkably, the mean interunit
distance can reach 2.5 mm in the near-max ensembles. Consid-
ering that cortical columns in the LPFC could span ∼0.7 mm (46),

this result suggests that optimal ensembles extend across several
cortical columns. These results link the spatial mnemonic topog-
raphy of LPFC to principles of WM coding. They also demon-
strate the utility of accounting for neuronal information content
when examining cortical organization, compared with approaches
that focus on neuronal tuning characteristics while leaving their
effects on information implicit. These findings are also robust to
the choice of near-max value because repeating the analyses with
different thresholds yielded similar results (Fig. S7).

Nonselective Units Can Improve WM Coding by Modifying the rsc
Structure. Given our observation that the rsc structure can signifi-
cantly affect the information content of a neuronal ensemble
during WM, it is possible that neurons that do not contain task-
related information in isolation could still influence the in-
formation content of an ensemble by modifying the rsc structure
(Fig. 6A). The rsignal distribution of the rsignal + rsc ensembles in Fig.
6A contains a peak near rsignal = 0, unlike the rsignal-only ensembles,
suggesting that units with orthogonal and/or weak selectivity may
contribute more to WM coding when the rsc structure is intact.
Indeed, nonselective units were sometimes added to ensembles
before selective units, and before decoding performance saturated
(Fig. 6B). To test whether these units were increasing ensemble
WM information by modifying the rsc structure, we identified all of
the non delay-selective units (P ≥ 0.05, one-way Kruskal–Wallis
ANOVA with stimulus location as the factor) that were added
before decoding performance saturation in the rsignal + rsc en-
sembles (Fig. 6B) (16 units in total). We then compared the
amount of information these units contributed to an ensemble
before and after shuffling out the rsc structure (Fig. 6C) (Materials
and Methods). Removing the rsc structure significantly decreased
the amount of WM information contributed by these units (P <
0.01, signed rank test, paired), and the amount of WM in-
formation contributed after shuffling was not significantly differ-
ent from zero (P = 0.43, Wilcoxon signed rank test, unpaired;
additional descriptive statistics and control analyses for these units

Fig. 5. Ensembles optimized for WM representation are rsignal-diverse and anatomically dispersed. (A) rsignal distributions for the full ensembles (gray; n =
12,222 units), near-max rsignal + rsc ensembles (violet; n = 2,414), and near-max rsignal-only ensembles (blue; n = 2,724), pooled across all sessions. All three
distributions are significantly different from each other (P << 0.001, χ2 test, Bonferroni-corrected; computed using nonoverlapping bins of size = 0.1).
(B) Mean jrsignal deviationj in the full (gray), near-max rsignal + rsc (violet), and near-max rsignal-only ensembles (blue). rsignal deviation is defined as the difference
between a unit pair’s rsignal and the mean rsignal of the ensemble to which the unit pair belongs. **P << 0.001, Bonferroni-corrected, *P = 0.01, F test
(SI Materials and Methods). Shaded regions represent Bonferroni-corrected 95% comparison intervals between group means (SI Materials and Methods).
(C) Mean interunit distance in each of the three ensemble groups. *P < 0.005, F test, Bonferroni-corrected. Shaded regions represent Bonferroni-corrected
95% comparison intervals between group means. (D) Correlation between interunit distance and rsignal in the three ensemble groups. *P < 0.005, bootstrap
test. Shaded regions represent bootstrapped 95% confidence intervals. (E) Mean interunit distance (y axis) as a function of rsignal in each of the ensemble
groups, computed using nonoverlapping rsignal bins of size 0.1. Shaded region denotes SEM.
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are provided in Fig. S8). We also found 15 nonselective, noise-
shaping neurons during the stimulus epoch. Only one of the
nonselective, noise-shaping neurons was common to both epochs.
However, the decoding improvement contributed by these neu-
rons, both before and after removing the rsc structure, was more
consistent during the delay than the stimulus epoch (Fig. S9).
These results demonstrate the existence of nonselective noise-
shaping neurons: neurons that do not contain task-related in-
formation in isolation but increase the information content of an
ensemble entirely through modifying the rsc structure.

Discussion
By using microelectrode arrays to record from ensembles of
LPFC neurons, we were able to elucidate the effects of the rsc
structure on WM coding and, more generally, how WM is rep-
resented in neuronal ensembles. We found that the relationship
between rsc and rsignal during WMmaintenance was as predicted by
connection topography in which similarly tuned neurons are re-
currently excitatory and dissimilarly tuned neurons are mutually
inhibitory. Using a linear decoder, we found that removing the rsc
structure could increase or decrease the information content of
the neuronal ensemble, depending on the size and composition of
the ensemble. Consistent with previous findings, WM fidelity in
ensembles of randomly selected neurons was impaired by the rsc
structure, and the magnitude of the impairment was proportional
to the size of the ensemble. However, the intrinsic rsc structure
improved WM coding in smaller neuronal ensembles of neurons
optimized for WM representation (rsignal + rsc ensembles). The
rsignal + rsc ensembles consisted of different neurons than ensem-
bles optimized for WM representation in the absence of the rsc
structure (rsignal-only ensembles). The rsignal + rsc ensembles had a
broader rsignal distribution, were more anatomically dispersed, and
exhibited stronger topography than the full population of recorded
LPFC units. Finally, we found that individual units that did not
encode WM in isolation (nonselective neurons) could still con-
tribute to WM coding when part of an ensemble by altering the
ensemble’s rsc structure.

Recurrent Network Dynamics During WM Coding. WM representa-
tions in the LPFC are hypothesized to be maintained by a network
structure of recurrent excitation and lateral inhibition (12–18). The
resulting dynamics should manifest as changes in rsc during WM
maintenance (delay epoch) relative to other epochs. We observed
this phenomenon in our data—mean rsc is lower during the stim-
ulus epoch compared with the delay epoch. A previous experiment
(30) reported this trend but did not find a significant effect, per-
haps due to a smaller sample size (295 pairs, compared with our
10,535 pairs). A second prediction is that WMmaintenance should
modify rsc as a function of rsignal; rsc should be lower between
neurons with dissimilar tuning than neurons with similar tuning
(18, 29–33). Indeed, we found that the relationship between rsc and
rsignal changed as predicted during the delay, compared with the
fixation and stimulus epochs (Fig. 2B). Our findings indicate that
WM maintenance modulates the rsc structure of LPFC neuronal
ensembles in a manner consistent with recurrent excitation and
lateral inhibition.

Decoding WM Representations from LPFC Neuronal Ensembles. A
prior study showed that using a pseudopopulation (asynchro-
nously recorded neurons) of the eight most informative LPFC
neurons to decode spatial WM information during a match/
nonmatch WM task yielded nearly identical results as using the
entire 600-neuron pseudopopulation (39). We also showed that a
small subensemble of the most informative neurons contain
nearly as much WM information as the full recorded population.
Importantly, we demonstrated that accounting for the rsc struc-
ture increases ensemble efficiency; thus, pseudopopulation
analyses likely overestimate the number of neurons required to
achieve a given decoding accuracy.
A second study (40) using simultaneous recordings from 32

electrodes was also able to decode which of eight locations was
being remembered during a spatial WM task. However, their study
was primarily concerned with how cortical depth affected the
ability to decode a remembered location from local field potentials

Fig. 6. Nonselective neurons can increase ensemble information by modifying the rsc structure. (A) Two-neuron conceptual diagram of how a nonselective
neuron could increase ensemble information content. In the first scenario (Left), one neuron differentiates between two stimuli (i.e., is selective; stimuli are
denoted by blue and pink), and the other neuron does not (i.e., is not selective). The response variability of the two neurons is not correlated (i.e., rsc = 0). In
the second scenario (Right), the individual neurons’ properties are identical, yet correlated response variability (i.e., the rsc structure) improves discrimination
between the two stimuli relative to the uncorrelated scenario. (B) The continuous line plots with circular markers show the ensemble decoding accuracy
(y axis) as a function of size (x axis) for the rsc + rsignal-optimized method for a single example ensemble, before decoding saturation, for rsc-intact data
(magenta) and rsc-shuffled data (pale magenta). The square markers at the bottom of the plot denote the decoding accuracy (y axis) of the individual unit
added to the ensemble at a given size (x axis). Notice units that are added to the population that are not selective (gray). (C) Change in decoding accuracy
from adding nonselective units to presaturation ensembles (y axis) when the rsc structure is intact (left) and removed (right). Each line is the change for an
individual unit. The bolded line is the median. Removing the rsc structure eliminates the information gain contributed by these units. *P = 0.001, signed-rank
test; **P < 0.003, paired signed-rank test; ns (not significant), P = 0.43, signed-rank test; n = 16.
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(LFPs) and contained minimal analysis of spiking activity or the
impact of neuronal ensemble composition on WM coding.

Effects of rsc and rsignal Structures on WM Coding. The observed
patterns of rsc and rsignal are thought to be indicative of a network
structure that stabilizes WM representations over time (18, 36,
47). Our results demonstrate that these correlations can also affect
the readout of WM representations from neuronal ensembles: If
WM representations are read out from optimized ensembles, then
the network correlation structure will favor WM coding; however,
if WM representations are read out from ensembles that are
“suboptimal,” then the correlation structure could impair WM
coding. Our experiment shows that these changes in ensemble
information content can reach 20%. Thus, a mechanism that is
thought to temporally stabilize WM representations can also af-
fect the ability to read out these representations. Note that addi-
tional discussion on how our findings extend to larger neuronal
ensembles and on the effects of spike sorting in our analyses can
be found in SI Discussion.

Effects of the rsc Structure on Information in Non-WM Tasks. Reports
of the effects of ensemble rsc structure on information content vary
significantly in sign and magnitude (19, 22, 24, 27, 42, 48, 49); our
results can help reconcile these disparate accounts. For example,
previous studies that applied decoding techniques to simulta-
neously recorded ensembles found that removing the rsc structure
decreased decoding accuracy for grating orientation (48) and re-
membered location (49) whereas another study reported a positive
effect of pairwise rsc on information coding (32). Moreover, spatial
attention increases signal-to-noise primarily by reducing rsc (25–
27). We found that the effect of rsc structure on ensemble in-
formation varied dramatically depending on an ensemble’s size and
composition; removing the rsc structure from the full recorded
ensembles increased decoding accuracy, but removing the rsc
structure from the most informative subensembles decreased
decoding accuracy. The discrepancies across previous studies may
arise from the location in configuration space of the neuronal
ensembles under investigation (50). Importantly, they should cau-
tion us against making broad conclusions concerning how variables
such as rsc shape information transmission across brain areas. To
fully clarify this issue one must identify which neurons are con-
tributing to coding, which poses a significant technical challenge.
Our ensemble construction procedures were designed in part to

sidestep the challenge of identifying which neurons contribute to
coding and to allow us to characterize the system at specific states of
interest. One may argue that we did not examine the full ensemble
configuration space. Such an undertaking would be computationally
infeasible; there are ∼1015 unique ensembles that could be created
from 50 neurons. Thus, our results may actually underestimate the
true range of effect sizes. Nevertheless, even a limited search of the
full configuration space demonstrates the importance of the rsc
structure to WM coding in LPFC neuronal ensembles.

Noise-Shaping Units. Neurophysiological studies typically assume
that, if an ensemble codes for some behavior, the individual
neurons constituting that ensemble will also code for that behavior
when examined in isolation. This assumption is implicit in the
method that forms the bedrock of neurophysiological research:
serial recording of individual neurons. However, this approach
cannot account for simultaneity between neurons. The use of
large-scale simultaneous ensemble recordings allowed us to find
nonselective noise-shaping neurons: neurons that are not selective
for a remembered location but can improve the fidelity of WM
representation in an ensemble by modifying the ensemble’s rsc
structure (Fig. 6A). A similar phenomenon was shown in a prior
fMRI study; voxels that do not contain stimulus information in
isolation can improve decoding when part of an “ensemble” of
voxels (51). Their study and ours seem to report two different

instances of the same general property of information coding in
multidimensional systems: Features (e.g., voxels or neurons) that
do not contain information in isolation can still modify the amount
of information in a system to which they belong by changing the
structure of correlated variability. It remains to be observed
whether nonselective noise-shaping neurons contribute to in-
formation coding in other tasks and brain regions.

Conclusion
We leveraged the simultaneous multineuron recording capabil-
ities of microelectrode arrays to elucidate how WM is coded in
LPFC neuronal ensembles. We found that the structure of the
correlated variability (rsc) supports current computational mod-
els of how sustained activity emerges in WM networks. A great
deal of the power of modeling studies lies in their ability to explore
parameter spaces, and we devised our ensemble construction
procedures in an attempt to create an empirical analog of this
capability. Applying these procedures revealed that the size, rsignal
structure, and rsc structure of an ensemble can profoundly impact
WM coding. We also found that LPFC neuronal ensembles that
optimize the coding of remembered locations are heterogeneously
tuned and anatomically dispersed. Finally, we demonstrated that a
ubiquitous assumption in neurophysiological studies—that only
“selective” neurons contribute to information coding—is not jus-
tified in LPFC networks; nonselective neurons can contribute to
information coding by shaping the rsc structure. More generally,
our results emphasize the relevance of ensemble-level phenomena
in building a comprehensive understanding of brain networks.

Materials and Methods
Ethics Statement. The animal care and ethics are identical to those in ref. 45,
were in agreement with Canadian rules and regulations, and were pre-
approved by the McGill University Animal Care Committee. Full details can
be found in SI Materials and Methods.

Task. Trials were separated into four epochs: fixation, stimulus presentation
(stimulus), delay, and response (Fig. 1A). The animal initiated a trial by
maintaining gaze on a central fixation spot (0.08 degrees2) and pressing a
lever; the subject needed to maintain fixation within 1.4° of the spot until
cued to respond. The fixation period lasted either 483, 636, or 789 ms, de-
termined randomly at the beginning of each trial. After fixation, a sine-wave
grating (2.5 Hz/degree, 1° diameter, vertical orientation) appeared at one of
16 randomly selected locations for 505 ms. The potential stimulus locations
were arranged in a 4 × 4 grid, spaced 4.7° apart, centered around the fix-
ation point. The stimulus period was followed by a randomly variable delay
period of 496 to 1,500 ms. The delay period ended and the response period
commenced when the fixation point was extinguished, cuing the animal to
make a saccade to the location of the previously presented stimulus and
then to release the lever. The animal had 650 ms to respond. Successful
completion of the trial yielded a juice reward. The minimum duration be-
tween trials was 300 ms. Fixation breaks during the trial or failure to saccade
to the target in the allotted time resulted in immediate trial abortion
without reward and a delay of 3.5 s before the next trial could be initiated.

Experimental Setup. The experimental setup is identical to those in refs. 27
and 45. Full details can be found in SI Materials and Methods.

Microelectrode Array Implant. As in refs. 27 and 45, we chronically implanted
a 10 × 10, 1.5-mm microelectrode array (Blackrock Microsystems LLC) (52, 53)
in each monkey’s left LPFC—anterior to the knee of the arcuate sulcus and
caudal to the posterior end of the principal sulcus (area 8a) (Fig. 1B). De-
tailed surgical procedures can be found in ref. 45.

Recordings and Spike Detection. Data were recorded using a Cerebus Neu-
ronal Signal Processor (Blackrock Microsystems LLC) via a Cereport adapter.
Spike waveforms were detected online by thresholding. The extracted spikes
(48 samples at 30kHz)were resortedmanually inOfflineSorter (Plexon Inc.). The
electrodes on eachMEAwere separated by at least 0.4mmandwere organized
into three blocks of 32 electrodes. We collected data from one block during
each recording session. Detailed recording procedures can be found in ref. 45.
We collected spike data across 12 recording sessions (7 in JL, 5 in F), yielding a
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total of 545 units: 164 single neurons (99 in JL, 65 in F) and 381 multiunits (221
in JL, 160 in F). Multiunits were defined as threshold-crossing events, with
action potential-like morphology, that were not similar enough to be included
with any of the well-defined single units. Units with mean firing rates of less
than 0.5 Hz during the stimulus or delay epoch and units that fired in fewer
than 5% of trials were excluded from analysis.

Analysis Epochs.We analyzed the final 483ms of the fixation epoch, the initial
496 ms of the stimulus epoch, and the initial 496 ms of the delay epoch. These
durationswere selected tomake the analysis epochs as similar as possible, given
the constraints that the stimulus presentation software operatedat a resolution
of 85Hz, and to include asmany trials as possible.We analyzed only successfully
completed trials. Data analysis was performed using MATLAB.

Spatial Selectivity. To determine whether a unit was selective for the stimulus
location during a given epoch, we computed a one-way Kruskal–Wallis ANOVA
on epoch-averaged firing rates, with stimulus location as the independent
variable. A unit was defined as selective if the test resulted in P < 0.05. The
number of trials per location varied across recording sessions (mean = 21.5,
minimum = 8, maximum = 36). Thus, the total number of trials across all lo-
cations (n trials × 16 locations) ranged from 128 to 576; 417 (76%) of the 545
recorded units exhibited delay epoch selectivity.

Spike Count Correlation and Signal Correlation Analysis. To compute rsc, we
first z-scored each unit’s spike counts for each condition (i.e., stimulus lo-
cation) in each epoch. Z-scoring separately for each condition removes the
spike rate variability across conditions due simply to variability in firing rate
responses to different stimuli (i.e., stimulus selectivity); z-scoring also removes
differences in baseline firing rates for different neurons. We then grouped
units into simultaneously recorded pairs (n = 12,006) and computed Pearson’s
correlation coefficients (rsc,) between the z-scored spike counts (21, 45). We
minimized the risk of falsely inflating the correlation values by excluding
correlations between units on the same electrode from analysis.

rsc can covary with firing rate (21, 35) so, to ensure that differences in rsc
across epochs were not confounded by differences in firing rates, we
implemented a distribution-matching procedure as in refs. 34 and 54. To
create matched distributions, we first computed the distribution of geo-
metric mean firing rates for every pair of neurons included in the rsc analysis,
for each epoch. Next, we computed the greatest common distribution pre-
sent across all epochs. The distributions in each epoch were matched to the
common distribution by randomly discarding data points from each bin of
an epoch’s distribution, until each epoch’s bins contained the same number
of data points as those of the common distribution, which reduced the
number of correlation pairs from 12,006 to 10,535. This distribution-
matching procedure was repeated 2,000 times. The mean of these 2,000
distributions is plotted in Fig. 2A. We used a bootstrap test to determine
whether the mean pairwise rsc during a given epoch was different from zero
and/or different from other epochs. We first computed the mean within
each of the 2,000 firing rate-matched rsc distributions, yielding 2,000 esti-
mates of the mean. If the 0.1th percentile of this distribution of 2,000 mean
rsc values was greater than zero, we deemed it significantly greater than
zero. If the central 99.9% of the distributions of mean rsc values for two
epochs did not overlap, we deemed them significantly different.

Signal correlation (rsignal) was computed as the correlation of two neurons’
mean responses to each of the 16 stimuli. To determine whether tuning sim-
ilarity affects rsc, we performed a bootstrap test similar to the one described
above. For each of the 2,000 firing rate-matched rsc distributions, we sub-
divided the rsc values based on their corresponding rsignal value. Neuron pairs
with rsignal > 0.25 were categorized as “similarly tuned” and pairs with rsignal <
−0.25 as “dissimilarly tuned.”We then computed the median rscwithin each of
the 2,000 groups of similarly and dissimilarly tuned neuron pairs, yielding six
distributions of median rsc values (three epochs × two tuning similarity
groups). If the central 99.9% of two distributions of median rsc values did not
overlap, we deemed them significantly different.

Population Decoding. We used a support vector machine (SVM) (Libsvm 3.14),
a linear classifier, to extract task-related activity from the population-level
representations of simultaneously recorded neuronal ensembles (55, 56). The
SVM used epoch-averaged firing rate data from an ensemble to predict at
which of the 16 locations the stimulus appeared in a given trial during each
the stimulus and delay epochs. Each neuron constitutes a dimension in the
multidimensional population space, and the SVM seeks to find the bound-
aries that best distinguish between population responses to each stimulus
location. Units that fired in fewer than 5% of trials or fired at a mean rate of
less than 0.5 Hz were excluded from analysis. We scaled each unit’s firing

rates to [−1, 1] by subtracting the midrange rate value (max + min)/2 and
dividing by one-half the range (max − min)/2, to prevent units with larger
absolute changes in firing rate from dominating the classification bound-
aries. These two parameters were determined from the training set and
applied to both the training and testing sets. We assessed the classifier’s
performance using fivefold cross-validation, such that 80% of the trials were
used to train the decoder (the “training set”), and the decoder attempts to
classify the remaining 20% of the trials (the “testing set”).

To test whether the rsc structure affects the fidelity of ensemble representa-
tions during WM, we removed the rsc structure from the neural data using a
shuffling procedure identical to that described in ref. 27. The shuffling procedure
consisted of randomizing the trial order within each location condition for each
neuron, such that the condition (i.e., the remembered location) for a given trial
remained the same for all neurons, but the firing rates for each neuron were
drawn from different trials. This procedure destroys the simultaneity, and thus
the intrinsic rsc structure, in the recordings. The decoding analysis was then run
on the shuffled firing rates. The shuffled decoding procedure was repeated 200
times, and the mean of these 200 iterations was taken as the “rsc-shuffled”
decoding accuracy. We refer to the percent change in decoding accuracy due to
shuffling as Δshuffle, defined as [(accuracyrsc-shuffled/accuracyrsc-intact) − 1] × 100%.

We define coding efficiency as the amount of WM information in an
ensemble of a given size relative to another ensemble of the same size,
computed as [(accuracyensemble1/accuracyensemble2) − 1] × 100%.

To ensure that our results were robust to the choice of classifier, we re-
peated our decoding analyses using logistic regression instead of SVM. The
data analysis procedure for the logistic regression was identical to that of
SVM (i.e., excluding low firing rate units, scaling firing rates, and cross-val-
idation procedure), except we used the LIBLINEAR library (57) to perform
logistic regression instead of SVM. As in the SVM, each unit is a predictor,
there are no interaction terms, and the neuronal firing rates are used to
predict the remembered location. In the context of our analysis, the relevant
differences between SVM and logistic regression are that they have differ-
ent loss (sometimes called error) functions and that logistic regression is
probabilistic whereas SVM is deterministic (see ref. 57 for more detail).

Functional Anatomy. To compare the widths of the rsignal distributions of the
near-max rsc + rsignal ensembles, near-max rsignal-only ensembles, and full
recorded ensembles, we first computed the absolute value of the rsignal
deviation (jrsignal deviationj) of each unit pair in an ensemble. The rsignal
deviation is defined as the difference between a unit pair’s rsignal and the
mean rsignal of the ensemble to which the unit pair belongs. We then
assessed the difference between the jrsignal deviationsj in each type of en-
semble (rsc + rsignal, rsignal-only, and full recorded ensemble) by fitting a linear
mixed-effects model with ensemble type as a fixed effect and recording
session as a random effect to predict jrsignal deviationj. Pairwise significance
between ensemble types was determined by a Bonferroni-corrected F test
on the difference between the two groups’ coefficients, the degrees of
freedom approximated using the Satterthwaite equation. Distance between
units (interunit distance) in each ensemble type was compared using a
similar linear mixed-effects model, but to predict interunit distance. The
measures of variability displayed in Fig. 6 B and C are Bonferroni-corrected
simultaneous comparison intervals, generated using equation 3.32 in ref. 58.

The strength of topography was assessed by computing the Pearson corre-
lation between every simultaneously recorded unit pair’s rsignal and interunit
distance within each group of ensembles (rsc + rsignal, rsignal-only, and full
recorded ensemble). Significance was assessed using a bootstrap test: The dis-
tributions of rsignal and interunit distance were randomly sampled, with re-
placement, to generate new vectors of length equal to the original distributions,
and the Pearson correlation was computed between the new resampled vectors.
This procedure was repeated 10,000 times to generate a distribution of corre-
lation coefficients. The strength of topography for two ensemble groups was
significantly different at P < α if the central proportion of size 1 − α of the two
groups’ bootstrapped correlation coefficients did not overlap.

Nonselective Noise-Shaping Neuron Analysis. To find nonselective noise-
shaping neurons, we examined the results of the rsignal + rsc-optimized pro-
cedure and identified all instances in which adding a non–delay-selective
neuron (P ≥ 0.05, one-way Kruskal–Wallis ANOVA, firing rate × location) in-
creased the information content of the ensemble. We then used the near-max
rsignal + rsc ensembles to decode firing rate data from which the rsc structure
had been shuffled out and compared the amount of information these units
contributed to an ensemble before and after shuffling. Note that using the
near-max rsignal + rsc ensembles to decode firing data from which the rsc
structure has been shuffled out is not the same as the rsignal-only optimized
procedure. Although both involve decoding rsc-shuffled firing rates, in the
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former case, the ensembles are generated using rsc-intact data whereas, in the
latter case, the ensembles are generated using rsc-shuffled data.

We performed a control analysis to determinewhetherWM-selective units
that contribute similar amounts of information to an ensemble as non-
selective noise-shaping units also contribute information by modifying the rsc
structure (Fig. S8). We accomplished this analysis by using a distribution-
matching procedure similar to the one used to match distributions of firing
rates in the pairwise rsc analysis. First, we computed the distributions of
improvements in decoding accuracy from nonselective noise-shaping units
and selective units. Next, we randomly discarded data points from each bin
of the selective units’ distribution until it matched the nonselective noise-
shaping units’ distribution. The same data points were discarded from the
distribution of selective units’ decoding accuracy on the rsc-shuffled firing

rates. This procedure was repeated 2,000 times. We then computed the
median within each of these 2,000 matched distributions for rsc-intact data
and the rsc-shuffled data. If the central 95% of the two distributions of
median improvement in decoding accuracy did not overlap, we deemed
them significantly different. We also performed an additional control
analysis using a standard ANOVA to assess selectivity instead of a non-
parametric Kruskal–Wallis ANOVA.
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