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Current therapies for autoimmune diseases rely on traditional immu-
nosuppressive medications that expose patients to an increased risk
of opportunistic infections and other complications. Immunoregula-
tory interventions that act prophylactically or therapeutically to
induce antigen-specific tolerance might overcome these obstacles.
Here we use the transpeptidase sortase to covalently attach disease-
associated autoantigens to genetically engineered and to unmodified
red blood cells as a means of inducing antigen-specific tolerance. This
approach blunts the contribution to immunity of major subsets of
immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-
specific manner. Transfusion of red blood cells expressing self-anti-
gen epitopes can alleviate and even prevent signs of disease in
experimental autoimmune encephalomyelitis, as well as maintain
normoglycemia in a mouse model of type 1 diabetes.
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The incidence of diseases with an immune component continues
to increase. Examples include not only ∼80 autoimmune dis-

eases, but also life-threatening conditions caused by immune re-
sponses to protein replacement therapies, or by attack of the host’s
immune system on transplanted tissues or transferred cells.
Treatment of these conditions often depends on prolonged use of
immunosuppressants, which lack antigen specificity. Because sus-
tained immunosuppression increases the risk of infection, an im-
portant goal remains the development of antigen-specific immune
intervention to achieve tolerance, while sparing desirable effector
immune responses, such as those directed against pathogens (1).
Administration of soluble, disaggregated proteins or peptides,
apoptotic cells, or micro/nanoparticles chemically conjugated with
antigenic peptide, as well as antibody fusion constructs, have been
used with varying degrees of success (2–8). A challenge in the
development of antigen-specific immune intervention is the de-
livery of the antigenic payload to the correct destination for pro-
cessing, to establish long-lasting peripheral tolerance. Adding to
this challenge, the tolerogenic doses of different antigens vary
greatly, when tolerance can be achieved at all. Furthermore, the
introduction of nonnative materials, such as micro/nanoparticles,
might lead to unpredictable adverse effects.
Apoptotic cells are tolerogenic, presumably by displaying self-

antigens in a noninflammatory context to antigen-presenting cells,
leading to anergy or deletion of immune effector cells (9). Expan-
sion of the regulatory T-cell compartment may also contribute to
curtailing autoimmunity (10). Each second, millions of red blood
cells (RBCs) are cleared from the circulation by phagocytic cells in
the spleen and by the reticuloendothelial system, without obvious
signs of inducing an immune response. We exploit this natural route
of RBC removal for induction of tolerance. We have found that
transfusion of RBCs, covalently modified with an antigenic payload,
can induce antigen-specific tolerance in naïve recipients. We use
genetically engineered RBCs—as well as their unmodified coun-
terparts—as substrates for sortase, a transpeptidase, to covalently

attach peptides from disease-relevant autoantigens. This approach
has prophylactic and therapeutic efficacy in experimental au-
toimmune encephalomyelitis (EAE), a mouse model of multi-
ple sclerosis. Similarly, transfusion of RBCs modified with an
insulin-derived peptide in the nonobese diabetic (NOD) mouse
model of type 1 diabetes (T1D) allows a majority of animals to
remain normoglycemic. These results suggest application of this
strategy to other autoimmune diseases.

Results
Sortagging Is a Robust, Efficient, and Simple Method to Covalently
Modify RBCs Without Compromising Their Biological Properties. An
important aspect of our strategy is to preserve the biological
properties of labeled RBCs, so that they remain as close to their
native state as possible. We used a sortase A-mediated reaction
(“sortagging”) to minimize damage to the RBC membrane (11,
12). Sortase A recognizes an LPXTG motif and cleaves the pep-
tide bond between the threonine and glycine residues in this motif
to yield a thioester acyl-enzyme intermediate. A nucleophile that
contains a suitably exposed N-terminal glycine, (G)n, can resolve
this intermediate, covalently linking the two motifs via a peptide
bond (Fig. 1A). We have used retroviral and lentiviral vectors that
encode membrane proteins appended with sortase motifs to
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generate red cells that have variable numbers of sortaggable
proteins on their surface (12, 13). Because tolerogenic doses vary
among different antigens, it is important to have a source of RBCs
that can be modified consistently and reproducibly with a known
quantity of antigen. To this end we used CRISPR/Cas9 to gen-
erate mice whose RBCs carry the Kell protein extended at its C
terminus to include an LPETGG motif, referred to here as Kell-
LPETGGmice. Kell-LPETGGmice bred to homozygosity for this
modification served as blood donors for the transfusion experi-
ments described below (Fig. S1A). Insertion of the sortase motif
does not cause hematological abnormalities, as inferred from
complete blood count data (Fig. S1B). Kell-LPETGG is expressed
under the control of its endogenous promoter, restricting its ex-
pression to the RBC compartment. Neither WT RBCs, nor white
blood cells isolated from Kell-LPETGG mice could be labeled
with (G)3-K(biotin) in a sortagging reaction, as distinct from Kell-
LPETGGRBCs, which were modified with an efficiency of ∼80%,
likely an underestimate (Fig. 1B and Fig. S1C). The conditions for
the sortagging reaction are mild and no major damage to RBCs
was apparent, as assessed by the absence of PtdSer externaliza-
tion (Annexin V staining) (Fig. S1D). The morphology of
sortagged RBCs, regardless of attached payload, was normal
(Fig. S1E).
Using three biotinylated peptides of different sequence, we

enumerated the number of sortase-modifiable Kell molecules per

cell. We performed sortagging reactions on 25 μL of fresh Kell-
LPETGG RBCs with GGGK(biotin)KK–OT-I, GGGK(biotin)KK–
OT-II, and GGGK(biotin)KK-OB1 peptides as nucleophiles. These
peptides represent three different immunodominant peptides of
ovalbumin (OVA). They are diverse in length and biophysical
properties (see Table S1 for the list of antigenic adducts synthe-
sized and attached to Kell-LPETG RBCs). Sortagging yields a
consistent number of the various biotinylated payloads attached
(Fig. 1C). Using monobiotinylated GFP as a reference, we
quantified the number of peptides covalently attached to the
surface of Kell-LPETGG RBCs; there were ∼9,000 Kell proteins
consistently modified per RBC (Fig. 1C).
We next characterized the in vivo persistence of sortagged RBCs

by assessing their circulatory half-life. We stained the modified
RBCs (i.e., RBC–OT-I, RBC–OT-II, and RBC-OB1) with car-
boxyfluorescein succinimidyl ester (CFSE) before transfusion.
Their survival was equal to that of unmodified RBCs, regardless of
the identity of the payload attached (Fig. 1D). Because the OB1
peptide linked to Kell is biotinylated, we were able to track its
disappearance. Indeed, the loss of the Kell-LPETGGG-K(biotin)KK-
OB1 signal obtained by immunoblotting corresponded with the dis-
appearance of CFSE signal (Fig. S2A). Modification by sortase
therefore does not accelerate removal of engineered RBCs, which
retain the attached peptide while in circulation. We hypothesized
that the circulatory persistence (>28 d) of antigen-decorated RBCs
creates a window of opportunity for the induction of more complete
peripheral tolerance by editing out antigen-specific effector cells.

Engineered RBCs Blunt Specific B, CD4, and CD8 T-Cell Responses.
Autoimmunity can result from abnormal behavior of three major
immune effectors: B cells, CD4 T cells, CD8 T cells, or a combi-
nation thereof. To eliminate potential variables related to diverse
T-cell receptor (TCR) or B-cell receptor repertoires, and the po-
tential for self-reactivity, we used the model protein antigen OVA.
There are three clonal derivatives of OVA-specific immune effector
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Fig. 1. Designs and characterization of engineered RBCs. (A) Schematic
for Kell C-terminal sortase labeling with GGG-carrying antigens peptides.
(B) Evaluation and quantification of mature Kell-LPETGG RBCs for sortase
labeling by incubation of RBCs with biotin-containing probes in the presence
or absence Sortase A. Cytofluorimetry was performed with anti-TER119, a
RBC surface marker, and antibiotin antibodies. (n = 3; **P < 0.01, unpaired
t test with Holm–Sidak adjustment). (C) Quantification of sortase labeling of
Kell-LPETGG RBCs with different biotin-containing peptides by immuno-
blotting (IB) using streptavidin-HRP. GFP-biotin carrying a single biotin/mole
of GFP was used a reference. (D) CFSE-labeled RBCs from C57BL/6J and Kell-
LPETGG mice were transfused into recipient mice. Kell-LPETGG blood sam-
ples were also subjected to sortagging with the three different OVA-derived
peptides before transfusion. RBC survival in the circulation was tracked via
CFSE fluorescence by flow cytometry.
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Fig. 2. OB1 peptide-decorated RBCs blunt responses of OB1-specific B cells.
(A) CFSE-labeled RBCs from C57BL/6J and Kell-LPETGG mice were transfused
into recipient mice. One set of Kell-LPETGG blood samples were also sub-
jected to sortagging with OB1 peptides before transfusion. Following the
first transfusion (as in Fig. 1D), the same cohort is subjected to two more
transfusions with a 1-wk gap between each transfusion. RBC survival in the
circulation was tracked via CFSE fluorescence by flow cytometry. Repeated
transfusions of sortagged RBCs into C57BL/6J mice do not induce faster
clearance. (B) A cohort of BALB/c mice was transfused with either C57BL/6J or
RBC-OB1. OVA-specific IgG titers at the end of each transfusion were mea-
sured by ELISA. (C) Flow cytometry of the total number of adoptively
transferred OB1 B cells in spleen, harvested 3, 7, and 28 d after RBC, RBC-
OB1, or OVA transfusion. *P < 0.05; ns, not significant.
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cells: the CD8 TCR transgenic mouse (OT-I) recognizes the
H-2Kb-SIINFEKL complex; the CD4 TCR transgenic mouse
(OT-II) recognizes the I-Ab-ISQAVHAAHAEINEAGR com-
plex; and the OVA-specific B-cell transnuclear mouse (OB1)
recognizes the FGD-centered epitope contained in the 17-mer
FDKLPGFGDSIEAQGGK (14–16).
To determine whether a B-cell–specific OVA-derived epitope

can be viewed as self when attached to the surface of a RBC, we
attached it to Kell-LPETG RBCs using sortase. Repeated trans-
fusions of CFSE-stained RBC-OB1 into a cohort of C57BL/6J
recipients did not accelerate the rate of clearance of OB1-modified
RBCs (Figs. 1D and 2A). The multiple transfusions did not elicit an
antibody response against intact OVA protein (Fig. S2B). To fur-
ther test the immunogenicity of RBC-OB1, we carried out re-
peated transfusions of sortagged RBCs into BALB/c mice, which
show a Th2-skewed response, favoring IgG1 peoduction in the
presence of the adjuvants polyI:C and anti-CD40, administered
intraperitoneally (Fig. S2C). Once again, these multiple transfu-
sions of RBC-OB1 did not elicit an antibody response against in-
tact OVA protein (Fig. 2B and Fig. S2C). Finally, we transferred
OB1-specific B cells that recognize and respond to the 17-amino
acid OB1 peptide. Transferred OB1 B cells disappeared at a faster
rate in mice treated with RBC-OB1 than in animals exposed to
OVA or to unmodified RBCs, indicating induction of B-cell tol-
erance (Fig. 2C).
Next, to determine whether a CD8 T-cell–specific epitope can

also be viewed as self when attached to the surface of a RBC, we
adoptively transferred CFSE-labeled OT-I T cells, followed by
transfusion of RBC–OT-I, RBC or free OT-I peptide 1 d later (Fig.
S3A). In mice that received RBC–OT-I, transferred OT-I CD8+

T cells showed only modest expansion at first, compared with mice
receiving an equivalent number of unmodified RBCs or an equi-
molar amount of OT-I peptide, as judged from the absolute
number of cells recovered from spleen and by CFSE dilution (Fig.
S3 B and C). OT-I T cells disappeared after several divisions in
both RBC–OT-I and OT-I peptide-treated mice, but at day 3
posttransfer, surviving T cells in RBC–OT-I recipients displayed
characteristics of nonresponsive (tolerant) cells: they failed to
down-regulate CD62L while remaining CD44+ (Fig. S3D). Upon
in vitro restimulation with OT-I peptide, the surviving OT-I T cells
produced fewer proinflammatory cytokines, TNF-α, and IFN-γ,
than OT-I T cells from mice that received OT-I peptide alone (Fig.
S3E). Surviving OT-I T cells showed higher levels of apoptotic and
exhaustion markers, such as Fas, PD-1, and LAG-3 (Fig. S3F).
Transfusion of RBC–OT-I thus imposes peripheral tolerance in a
manner that resembles T-cell exhaustion (17), but may include
physical removal as well. By days 6 and 9, far fewer OT-I T cells

were detected in RBC–OT-I–transfused mice than in animals that
received control RBCs (Fig. S3B). After a subsequent challenge of
mice with OT-I peptide in complete Freund’s adjuvant (CFA), a
strong adjuvant, the OT-I T cells in mice transfused with RBC–OT-I
failed to respond, whereas OT-I T cells in mice injected with an
equimolar amount of OT-1 peptide, OVA, or an equal number of
control RBCs proliferated as expected (Fig. 3A). In the RBC–OT-
I–transfused mice we saw no prominent change in the regulatory
T-cell compartment (Fig. S3G).
We next assessed whether a similar tolerogenic effect applied to

the CD4 T-cell compartment. We adoptively transferred CFSE-
labeled OT-II CD4+ T cells, followed the next day by transfusion of
RBC, RBC–OT-II, or administration of OT-II peptide. Only
transfusion of RBC–OT-II led to rapid division of the transferred
OT-II T cells, followed by disappearance of the transferred OT-II
T cells by day 6 (Fig. S4 A–C). The surviving OT-II T cells did not
respond to a challenge with OVA in CFA (Fig. 3B). There was little
change in the regulatory T-cell compartment for mice transfused
RBC–OT-I (Fig. S4G). OT-II T cells in mice that received RBC–
OT-II also expressed apoptotic markers and resembled anergic
T cells (Fig. S4 D–F). Abortive activation or deletion of T and
B cells can therefore occur as early as day 3, at a time when >90%
of transfused RBCs remain. These results are reminiscent of those
obtained through systemic administration of an antigenic payload
attached to a peptide adduct designed to bind glycophorin A
noncovalently (7, 18). Based on these three OVA models, we
conclude that induction of antigen-specific tolerance by modified
RBCs can apply to B, CD4 T cells, and CD8 T cells.

RBCs Carrying MOG35–55 Not Only Confer Protection Against EAE but
Can Even Reverse Early Clinical Signs of EAE. We next tested the
ability of RBCs modified with the immunodominant peptide of
myelin oligodendrocyte glycoprotein (MOG; residues 35–55), a
major central nervous system protein, to affect the course of EAE.
Immunization of C57BL/6 mice with MOG35–55 in the presence of
CFA and pertussis toxin elicits clinical signs of this multiple scle-
rosis-like condition within 10–14 d (19). Administration of modi-
fied Kell-LPETGG RBCs sortagged with MOG35–55 peptide
(RBC-MOG35–55) 7 d before induction of disease delayed onset, if
not completely suppressed EAE (Fig. 4A). In contrast, all mice that
received Kell-LPETGG RBCs sortagged with an irrelevant peptide
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(RBC-OVA323–339), unconjugated MOG35–55 peptide, or saline
progressed to severe disease (Fig. 4A). Histology of spinal cord
sections confirmed the presence of inflammatory nodules and de-
myelination in mice treated with RBC-OVA323–339 (Fig. S5 A and
B). Cells that infiltrate the spinal cord of mice transfused with
RBC-OVA323–339 comprise inflammatory Th1 and Th17 CD4
T cells. Although we noted the presence of Foxp3+ regulatory
T cells, these failed to suppress disease progression. Spinal cords
from RBC-MOG35–55-treated mice lacked both infiltrating in-
flammatory and regulatory T cells (Fig. S5 C and D).
We examined whether RBC-MOG35–55 could interfere in the

course of EAE by transfusing mice with RBC-MOG35–55 during the
induction period (i.e., at day 5 after disease induction) (Fig. 4B).
Although transfusion of RBC-MOG35–55 prevented EAE, its RBC-
OVA323–339 counterpart did not (Fig. 4B). To determine whether
RBC-MOG35–55 could reverse incipient EAE, we transfused RBC-
MOG35–55 into mice that had already developed a limp tail (EAE
clinical score of 1). Transfusion of RBC-MOG35–55 into these mice
halted progression and alleviated clinical symptoms of EAE (Fig.
4C). This effect—that is, amelioration of EAE symptoms—was
rapid. We saw no changes in cellular composition of the inguinal
lymph nodes and spleen, but noted a decrease in Th17 cells in
spinal cord infiltrates (Fig. S6).

RBCs Carrying Ins9–23 Confer Protection Against T1D. We investigated
whether this strategy could also be applied to T1D in the NOD/
ShiltJ mouse model. These mice develop T1D as early as 12 wk of
age, as manifested by insulitis and low pancreatic insulin content
(20). Mice are considered diabetic when their plasma glucose levels
rise to >250 mg/dL. Insulin B-chain peptide 9–23 (Ins9–23) is an
immunodominant self-antigen, the recognition of which can me-
diate autoimmune destruction of pancreatic β-cells and impair
insulin production and release (21). A single prophylactic trans-
fusion of Kell-LPETGG RBCs sortagged with the Ins9–23 at 10 wk
of age protected NOD/ShiltJ from T1D in 80% of animals until
week 30, whereas injection of unmodified RBCs did not (Fig. 5).
Incomplete protection may be because of epitope spreading (22).
The pancreas of mice treated with RBC-InsB9–23, retained insulin-
expressing pancreatic islets at 30 wk of age, even with evident in-
filtration of CD4 and CD8 T cells, whereas in RBC-treated
(control) mice, there were no or only very few pancreatic islets that
remained (Fig. S7). We attribute this protection to insulin-specific
tolerance. The CD8 and CD4 T cells observed in the pancreas
most likely are of other specificities. Identification of an expanded
set of autoantigens would thus be required to further improve
disease outcome.

Application of the Sortase Modification Strategy to Human RBCs.
Translation of this approach to human RBCs could rely on the
production of RBCs genetically modified to enable a site-specific
sortase-catalyzed modification, as we have done for mouse Kell.

Unfortunately, production of human RBCs from hematopoietic
precursors in vitro, genetically modified to display an LPXTG
motif at their surface, remains expensive and time-consuming (12,
23, 24). Because completion of the sortase reaction involves a
GGG-containing nucleophile, endogenous proteins on the RBC
surface that bear an exposed glycine at their N terminus could
serve as a nucleophile, and be used in conjunction with a peptide
modified with a C-terminal LPETGG sequence (Fig. 6A) (25).
To test this theory, we sortagged mouse C57BL/6 RBCs with
various LPETGG-containing biotinylated peptides. Using mono-
biotinylated GFP as reference, we found that ∼4,500 LPET-con-
taining peptides can be attached to normal C57BL/6J mouse RBCs
(Fig. 6B). BALB/c RBCs behave similarly in this reaction (Fig.
S8A). Moreover, transfusion with RBC-MOG35–55, C57BL/6 RBCs
sortagged with MOG35–55-LPETGG reversed clinical signs of EAE
to levels commensurate with RBCs genetically engineered to
contain a sortase motif (Fig. 6C).
Human RBCs likewise possess endogenous proteins that can

serve as nucleophiles and resolve the LPET-sortase covalent in-
termediate. RBCs from unrelated donors sortagged with LPETGG-
biotin yielded very similar labeling profiles; ∼3,000 peptides were
attached to each human RBC (Fig. 6D and Fig. S8B). As assessed in
an immunoblot, sortagging of endogenous RBC proteins yields a
similar banding profile for two unrelated donors. In principle, this
strategy allows the transfusion of enzymatically modified autologous
RBCs within 1 h of obtaining the RBC population.

Discussion
We use sortase to modify the surface of human and mouse RBCs
by covalently attaching peptides and other payloads. In one line of
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experiment, we used CRISPR/Cas9 to introduce into the murine
germ line the LPETGG sortase motif at the C terminus of the Kell
protein. Fresh red cells from these mice can be incubated with
sortase and any payload bearing an N-terminal (G)n sequence,
allowing attachment of ∼9,000 payloads per cell. The entire pro-
cess from bleeding to transfusion takes no more than 60 min.
Our second application uses unmodified mouse or human red

cells, and presents a more viable option for a clinical setting. In-
stead of relying on an added nucleophile equipped with N-terminal
glycines, we performed the sortagging reaction by relying on en-
dogenous RBC surface proteins with one or more exposed
N-terminal glycines. We provided the antigenic payload as a peptide
equipped with an LPXTG extension at its C terminus. Both Kell-
LPETGG and unmodified RBCs yield RBCs decorated with several
thousand copies of the desired antigen per cell. These red cells
confer tolerance not only against OVA, but also against MOG and
the immunodominant peptide of insulin. For both EAE and T1D,
we achieved prophylaxis, as well as amelioration of clinical signs of
disease. Both can confer protection with a single administration.
Several alternative approaches have been used to achieve anti-

gen-specific tolerance in an autoimmune disease setting, with
varying degrees of success. DNA vaccination usually requires
multiple dosing, at times requiring coadministration of immuno-
suppressants (26–29). Although efficacious prophylactically, ther-
apeutic efforts present more of a challenge (30). Inadvertent
activation of innate immunity caused by the delivery vector, as well
as antivector immunity, are additional confounding factors (31).
To achieve tolerance, intravenous peptide delivery necessitates

the administration of multiple doses, depending on the disease
model examined (32–34). Peptides, proteins, or conjugated pep-
tides (e.g., peptides conjugated to anti-DEC205) delivered sys-
temically do not benefit from specific targeting, as in the case of
our sortase-modified RBCs. Oral tolerance likewise requires ad-
ministration of large amounts of antigen and multiple doses (35–
38), but orally administered peptide treatments have so far failed in
human clinical trials (39).
Dying cells—including aged RBCs—are phagocytosed by mac-

rophages or dendritic cells, often at specific anatomical locations.
The identity and context of phagocytes that ingest the antigen-
loaded RBCs could lead to different outcomes, in terms of both
antigen presentation and stimulation of an immune response (40–
42). Phagocytosis triggers elaborate signals that might either induce
tolerance or an immune response (9, 10). Splenocytes or peripheral
blood mononuclear cells chemically modified with peptides have
been explored as tolerogens, but these require the use of isogeneic
cells (6, 43, 44). Chemical modification using carbodiimide- or
maleimide-based coupling strategies shows considerable variation

in conjugation efficiency, and modify surface proteins without
necessarily leading to the formation of the desired adducts (43, 44).
Using modifiers that target RBCs noncovalently, such as a module
that recognizes glycophorin A, can lead to uneven distribution of
the payload by dissociation (7). Cell types other than the intended
phagocytes may acquire the antigen, leading to uncertain outcomes
(9, 45, 46). When using nanoparticles/microparticles as a vehicle
for the delivery of autoantigens (46–49), one must consider delivery
to many different sites depending on size and other biophysical
properties of these preparations.
In comparing our method to other means of tolerance induction,

ours specifically addresses the issue of autoimmunity in a poly-
clonal setting using enzymatically modified RBCs. An advantage of
using Kell-LPETGG RBCs lies in the amount of antigen that can
be attached covalently to a well-defined target on the RBC surface,
and in a reproducible and controlled manner. Rh-negative, blood
group O RBCs could be stockpiled as a source of universal donor
RBCs. Given the broad acceptance and safety profile of RBC
transfusions, this antigen-specific tolerance strategy promises a lack
of adverse effects. Furthermore, our approach offers the use of a
wide breadth of antigens, because both natural and synthetic
payloads can be attached simply by attaching the necessary sortase
motifs. Antigen-decorated RBCs may thus provide a simple means
to treat autoimmune disorders without compromising systemic
immunity, and we suggest that such modified RBCs deserve further
study as possible therapeutic agents. Nonetheless, the very exis-
tence of blood-group antigens, such as Kell, underscores the fact
that RBCs are not always immunologically inert and that attempts
at tolerance induction must be approached on a case-by-case basis.

Materials and Methods
Details of themouse strains, RBC sortagging protocols, in vivo experimental set-
up, and other methods (flow cytometry, ELISA, and Western blotting) are
provided in the SI Materials and Methods. All mice were maintained according
to protocols approved by the Massachusetts Institute of Technology Commit-
tee on Animal Care.
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