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Plant organs are typically organized into three main tissue layers.
The middle ground tissue layer comprises the majority of the plant
body and serves awide range of functions, including photosynthesis,
selective nutrient uptake and storage, and gravity sensing. Ground
tissue patterning and maintenance in Arabidopsis are controlled by a
well-established gene network revolving around the key regulator
SHORT-ROOT (SHR). In contrast, it is completely unknown how
ground tissue identity is first specified from totipotent precursor cells
in the embryo. The plant signaling molecule auxin, acting through
AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for
embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts
both cell-autonomously and noncell-autonomously to control embry-
onic vascular tissue formation and root initiation, respectively. Here
we show that auxin response and ARF activity cell-autonomously
control the asymmetric division of the first ground tissue cells. By
identifying embryonic target genes, we show that MP transcription-
ally initiates the ground tissue lineage and acts upstream of the
regulatory network that controls ground tissue patterning and main-
tenance. Strikingly, whereas the SHR network depends on MP, this
MP function is, at least in part, SHR independent. Our study therefore
identifies auxin response as a regulator of ground tissue specification
in the embryonic root, and reveals that ground tissue initiation and
maintenance use different regulators and mechanisms. Moreover,
our data provide a framework for the simultaneous formation of
multiple cell types by the same transcriptional regulator.
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Higher plants are built from three major tissue types: epi-
dermis, ground tissue, and vascular tissue. The ground tissue

is the basis for all photosynthetic cells in flowering plants. In
addition, it provides a selective barrier for nutrients and acts as
a major storage tissue in many plants (1–3). In Arabidopsis, an
elaborate regulatory network has been established for the
asymmetric divisions within the ground tissue that give rise to the
two ground tissue cell types in the root: endodermis and cortex
(4–10). This network revolves around the central transcriptional
regulator SHORT-ROOT (SHR) that moves from the stele into
the ground tissue where it is required in the nucleus to maintain
endodermis identity and promote asymmetric division in the
daughter cells of the ground tissue stem cells to generate separate
endodermis and cortex layers (4–10). The nuclear retention of
SHR depends on the activity of SCARECROW (SCR) and the
BIRD family of transcription factors that are required to maintain
ground tissue identity postembryonically (4, 6, 8–10). In addition,
SCR and the heat shock transcription factor SCHIZORIZA
(SCZ) regulate asymmetric cell divisions within the ground tissue
(11, 12). Open questions, however, are what molecular mecha-
nisms drive establishment of the ground tissue and how this is
connected to the regulatory network that controls ground tissue
maintenance (13).
The establishment of the ground tissue and the initiation of

the root meristem occur at the globular stage of embryogenesis,
when the three main tissue identities, and the precursor cell of

the organizing center of the root, the hypophysis, are specified
from uncommitted precursor cells during a few cell division
rounds (13) (Fig. 1A). Our earlier work established a critical role
for auxin response, in particular the auxin-dependent and DNA-
binding transcription factor AUXIN RESPONSE FACTOR5
(ARF5)/MONOPTEROS (MP), in embryonic root initiation
(14). The MP gene is required for root formation at this stage, as
evidenced by defects in otherwise stereotypical cell divisions of
the first vascular cells and the hypophyseal cell at this stage, and
absence of a primary root in the mp mutant (15, 16).
So far, only a handful of MP target genes involved in embry-

onic root initiation have been identified, mostly by inference from
postembryonic gene regulation. Nonetheless, we have demon-
strated the role of several MP target genes in hypophysis speci-
fication (17) and vascular tissue establishment (18, 19) through
transcriptome profiling of mp seedlings, as well as seedlings in
which ARF activity was inhibited by an inducible version of the
dominant mutant ARF inhibitor BODENLOS/IAA12 (BDL)
(20, 21). The BDL transcriptional repressor is normally degraded
in response to auxin, resulting in ARF-dependent gene expres-
sion (22), but as the bdl mutation prevents degradation (21), this
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version acts as a dominant ARF inhibitor (21). MP function in
vascular tissue development is mediated by its target TARGET
OF MONOPTEROS 5 (TMO5) (17), whereas MP activity in root
initiation is mediated by its target gene TMO7 that encodes a
small protein that moves to the neighboring hypophyseal cell to
control its division (17).
However, as this previous transcriptome profiling was per-

formed postembryonically, many target genes regulated during
root initiation in the embryo may have been missed. In this study,
we identify a set of embryonic MP target genes and show that
auxin response—and MP—acts as a very first cell-autonomous
regulator of ground tissue initiation upstream of the known reg-
ulatory network controlling ground tissue maintenance. Strikingly,
whereas the SHR network depends on MP, this MP function is, at

least in part, SHR independent. Our study therefore reveals that
ground tissue initiation and maintenance use different regulators
and mechanisms. Moreover, our data provide a framework for
the simultaneous formation of multiple cell types by the same
transcriptional regulator.

Results
MP Controls Asymmetric Division in the First Embryonic Ground
Tissue Cells. We designed a strategy to identify embryonic MP
target genes through local inhibition of MP activity in the Ara-
bidopsis embryo. MP mRNA and protein are initially broadly
expressed in the embryo but are absent from the extraembryonic
hypophysis. Later, MP expression expands to the hypophysis
daughter cells and becomes more restricted to the vascular cells
at the heart stage (14, 17, 21). Despite its broad expression
pattern, local MP activity in the first vascular and ground tissue
cells of the globular-stage embryo (Fig. 1A) alone restores root
formation in the mp mutant (14). Furthermore, expression of bdl
from the GAL4 driver Q0990 (23) that was expressed specifically
in the first putative vascular and ground tissue cells at the
globular stage and its daughters (Fig. 1 B and C) (14, 24) induced
a perfect phenocopy of the mp mutant (14). The mutant bdl
protein cannot be degraded (21) and thus acts as a dominant
ARF inhibitor (21) that potentially represses all ARF activity.
However, so far, no other ARFs have been shown to be involved
in embryonic root meristem formation, suggesting that local bdl
misexpression will mainly affect genes normally regulated by MP.
We thus locally inhibited MP activity in the putative first vascular
and ground tissue cells via GAL4–UAS-based (23) expression of
a mutant bdl protein to identify embryonic MP target genes. MP
controls the stereotypic division of the first vascular cells and
hypophyseal cell in the globular-stage embryo (15, 18). We crossed
UAS::bdl plants with Q0990 plants (Q0990>>bdl) and observed
that globular-stage embryos showed vascular and hypophysis di-
vision defects after 3 d (Fig. 1 D and E). After 6 d, heart-stage
embryos showed a completely disorganized embryonic root mer-
istem (Fig. 1 F and G), identical to mp mutants (15, 16).
Surprisingly, in Q0990>>bdl globular-stage embryos, we also

observed division defects in the first ground tissue cells (Fig. 1E).
Therefore, we reexamined mp mutant embryos. During normal
embryo development, the first vascular and ground tissue cells
divide anticlinally to produce daughter cells for these tissues that
will be incorporated into the root (Fig. 1A). We examined early
mp mutant embryos that were recognizable through aberrant
hypophysis division and frequent aberrant division of the first
vascular cells (Fig. 1 H and I) (18). Remarkably, although this
aspect of the mp mutant phenotype has remained unnoticed
despite ongoing investigation of the mp mutant since its isolation
25 y ago, we observed abnormally oriented division planes in the
first ground tissue cells in ∼50% of mp mutant embryos, in two
independent mp alleles (46.9% division defects in at least one of
the two cells in median view, n = 49 embryos for mpB4149;
57.1% division defects, n = 49 formpS319; 0% division defects in
Col-0, n = 57; 1.9% defects in Utrecht ecotype, n = 53; mpB4149
is in Utrecht background). In most cases, the first ground tissue
cells divided periclinally instead of anticlinally (Fig. 1 H and I),
but oblique divisions were also observed. These data indicate
that MP controls the earliest asymmetric division in embryonic
ground tissue that generates the ground tissue daughter cells
(Fig. 1A). These daughter cells in turn will engage in another
asymmetric division that gives rise to the two ground tissue cell
types in the root: the endodermis and cortex (Fig. 1A). Thus,
auxin response and MP are involved in the earliest asymmetric
division of embryonic ground tissue cells.

Identification of Embryonic MP Targets.We next asked whether MP
might promote gene expression specifically in the first embryonic
ground tissue cells of the globular-stage embryo. The strong
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Fig. 1. MP controls asymmetric division of the first embryogenic ground
tissue cells. (A) Tissue initiation during early Arabidopsis embryogenesis. The
16-cell, globular, transition, and heart stages are shown from Top to Bottom.
Central basal cells (green) divide to generate the first vascular (yellow) and
ground tissue (blue) cells. These first ground tissue cells divide again to
generate endodermis (orange) and cortex (purple) cell types. The extraem-
bryonic suspensor cell adjacent to the embryo is specified as hypophysis (red)
and divides asymmetrically to generate root precursors. (B and C) Expression
of the Q0990 enhancer trap (in green) in the globular- (B) and heart-stage
(C) embryos. Membranes are counterstained by Renaissance RS2200 (red
signal). (D–G) Phenotypes of F1 embryos derived from crosses between
Q0990 and wild type (D and F) or Q0990 and UAS::bdl (E and G) at globular-
(E and F) and heart- (F and G) stages. (H and I) Phenotypes of globular-stage
wild-type (H) and mp mutant (I) embryos. Ground tissue divisions are in-
dicated by green arrowheads, vascular divisions by red arrowheads, and
hypophysis division by white arrowheads.
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pleiotropic effect of the mp mutation (15–18) creates a very brief
window during early embryogenesis after MP activation and
before visible phenotype occurrence, during which transcrip-
tional targets can be identified. However, given that the homo-
zygous mp mutant is sterile, and that mutant embryos are thus
surrounded by wild-type seed and fruit tissues, isolation of em-
bryos will be required to detect the effect of mp mutation on
gene expression. Furthermore, ubiquitous MP expression, con-
nected to multiple functions in the globular-stage embryo (14,
17, 21), pose challenges to finding gene expression changes that
are related to individual MP functions. We therefore adopted an
elaborate strategy to locally inhibit MP and identify only em-
bryonic MP target genes. We locally inhibited MP activity spe-
cifically in the first embryonic vascular and ground tissue cells via

expression of the mutant bdl protein from the GAL4 driver
Q0990 (Fig. 1 B–E). For transcriptome profiling, we manually
dissected globular-stage (3 d) and heart-stage (6 d) embryos
from ovules (25) from Q0990 × UAS::bdl crosses and included
Q0990 × wild type as a control. From four biological replicates
each, RNA was processed and hybridized to Arabidopsis 70-mer
oligo arrays as previously described (25). Initial analysis con-
firmed that BDL expression was ∼2.6-fold up-regulated in both
globular- and heart-stage embryos (Fig. 2A). Therefore, we
performed statistical analysis for differential expression and se-
lected genes based on an arbitrary threshold of a twofold change
in gene expression and significance at q ≤ 0.05 (Student’s t test;
false discovery rate corrected for multiple testing). This analysis
identified 145 down-regulated genes and 412 up-regulated genes
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at the globular stage, and 382 down-regulated genes and 147 up-
regulated genes at the heart stage (Dataset S1; available at NCBI
Gene Expression Omnibus; https://www.ncbi.nlm.nih.gov/geo/;
accession no. GSE78695). We aimed to identify novel MP target
genes involved in the earliest events of embryonic root meristem
initiation in the globular-stage embryo. As most MP target genes
are expected to be activated by MP (17, 26–29), we focused our
analysis on the 145 down-regulated genes in the globular-stage
embryo (SI Appendix, Table S1). Among these genes, ∼25% are
transcription factors (36 of 145 genes) and 27 were also down-
regulated in heart-stage embryos (Fig. 2B). This relatively low
overlap in gene expression between globular- and heart-stage
embryos reflects the strong pleiotropic effect of the mp mutation
on the heart-stage embryo phenotype and gene expression, and
hinders the identification of transcriptional MP targets at this
stage. As anticipated, we identified several genes previously shown
to be auxin dependent (Fig. 2A). Strikingly, the most down-regu-
lated gene was the previously identified MP target TMO7, and
TMO5-LIKE2 and TMO6-LIKE2 were also among the down-
regulated genes (Fig. 2A). In addition, we observed strong down-
regulation of the hypophysis-expressed WUSCHEL RELATED
HOMEOBOX 5 (WOX5) gene (30) (Fig. 2A), indicating that MP
inhibition in the inner basal embryo cells also results in noncell-
autonomous effects on gene expression in the hypophysis.

MP Transcriptionally Controls the Regulatory Network for Ground
Tissue Maintenance. Because our transcriptome dataset (Dataset
S1 and Fig. 2A) shows differential expression of the few known
embryonic MP target genes, we analyzed the expression of known
ground tissue regulators in our microarray data. We found that
SHR expression was significantly down-regulated (Fig. 2C).
Moreover, the direct SHR target SCARECROW (SCR) (5, 7, 31)

and the direct SHR target and BIRD family geneMAGPIE (MGP)
(31) were also down-regulated already in globular-stage embryos
(Fig. 2C). This finding suggests that MP is required to activate SHR
expression in the early embryo. Indeed, SHR is expressed in the
first vascular cells of globular-stage embryos (Fig. 2D), and SHR
protein moved into the first ground tissue cells and hypophyseal
cell of globular-stage embryos (Fig. 2E). We analyzed SHR and
SCR expression in mp mutant embryos and observed severely de-
creased expression of both genes in the basal embryo domain (Fig.
2 F–I) (n = 15 for SHR, n = 18 for SCR). In contrast, SHR ex-
pression was still detected in the apical embryo domain (Fig. 2G).
These results indicate that MP activity is locally required for SHR
and SCR expression in the embryonic root meristem and acts up-
stream of these well-known regulators of ground tissue patterning.

The SHR Network Is Dispensable for Ground Tissue Initiation. SHR is
required to pattern the ground tissue and maintain ground tissue
identity postembryonically (4, 5, 7, 31, 32). So far, a role for SHR in
ground tissue establishment has not been reported, but it is un-
known whether SHR is not involved in this process or whether the
globular-stage-embryo phenotype of the shr mutant has not been
investigated in sufficient detail to detect a specific defect in the first
division. Therefore, we analyzed whether the first ground tissue
division was affected in shr-2 mutant embryos. We found these cells
to divide normally in globular-stage shr-2 mutant embryos (2.4%
division defects, n = 41) (Fig. 2J). Previously, a double mutant be-
tween scr and a mutation in the SCHIZORIZA gene, also involved
in SHR-dependent asymmetric divisions in the root meristem and
embryonic ground tissue (11, 12), was shown to not form ground
tissue stem cells (11). We therefore also included the scr scz double
mutant in our analysis and found the first ground tissue divisions to
be normal (Fig. 2K). Both shr (as shown previously in ref. 33) and
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scr scz mutants displayed a defect in the later, periclinal division of
the daughter cells of the first ground tissue cells, which gives rise to
endodermis and cortex in wild type (Fig. 2 L–O). These results
suggest that either SHR acts at a later step in ground tissue de-
velopment, or alternatively, SHR action in ground tissue establish-
ment might be masked due to functional redundancy with other
GRAS family transcription factors (34–37). We investigated the
expression pattern of other SHR/SCR-related GRAS family genes
that were down-regulated at the globular stage in our microarray
(SI Appendix, Fig. S1). The much broader expression domains of
these genes (SI Appendix, Fig. S1) suggest that they may not have a
function specific to ground tissue formation. In addition, higher
order mutant combinations within the BIRD family were recently
shown to develop embryonic ground tissue, although the activity of
the BIRDs is crucial to maintain ground tissue identity post-
embryonically (10). Therefore, ground tissue network genes ap-
pear not to be involved in the establishment of the ground tissue.

MP Transcriptionally Initiates the Embryonic Ground Tissue. Our re-
sults suggest that in contrast to SHR network mutants, MP is
involved in the establishment of the ground tissue. To determine
whether such a role is reflected by the MP-dependent embryonic
transcriptome, we investigated the expression pattern of 37
down-regulated genes that were not previously reported to have
a role in embryo development (SI Appendix, Table S2 and
Dataset S1). We generated transcriptional reporters, consisting
of a 2-kb fragment upstream of the ATG start codon, and a

sensitive nuclear triple GFP reporter (38), and performed ex-
pression analysis in the embryo and postembryonic root. Our
data reveal gene expression patterns reflecting the known roles
of auxin response in vascular tissue establishment (two genes),
root initiation (three genes), and hypophysis formation (four
genes) (Fig. 3 A–F, SI Appendix, Fig. S2 and Table S2, and
Dataset S1). The expression of many of these genes was strongly
decreased in mp mutant embryos (SI Appendix, Fig. S3 and
Dataset S1). Therefore, our approach identified several known
and many previously unidentified ARF-regulated genes in the
early embryo, many of which likely are output of MP activity.
In addition, we observed three genes that were expressed in

the ground tissue of the embryonic root. A thaumatin-like Re-
ceptor-Like Kinase (RLK; At1g70250) was expressed specifically
in the first ground tissue cells of the globular-stage embryo and
retained expression in all ground tissue cells of the root throughout
embryo (Fig. 3 G and H) and postembryonic development (Fig.
3P). A MYB domain-like gene of the SHAQKYF class (here
referred to as MYB; At2g42660) showed a similar embryo ex-
pression pattern, but was additionally expressed in both hy-
pophysis daughter cells (Fig. 3 J and K). In the postembryonic
root, MYB was expressed in the QC and cortex layer (Fig. 3R).
Finally, OVATE FAMILY PROTEIN 8 (OFP8; At5g19650) ex-
pression was initially observed in the hypophysis, whereas the
earliest ground tissue expression was detected in the daughter
cells of the first ground tissue cells in the globular-stage embryo
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Fig. 4. Auxin response cell-autonomously controls ground and vascular tissue initiation. (A) Ratio of DII-3xYFP and mDII-tdTomato proteins in globular-stage R2D2
embryo in longitudinal (A) or transverse (Inset in A) cross-section. Ratio (tdTomato/YFP) is shown on a false color scale with red indicating high and blue, low ratio.
(B) Quantification of the mDII/DII fluorescence intensity ratio in nuclei of protoderm (P), ground tissue (G), and vascular tissue (V) cells in globular-stage embryos (n =
14 embryos; error bars are SEM). (C and D) Expression of DR5v2-ntdTomato in globular-stage embryo in longitudinal (C) and transverse (D) cross-sections. False color
scale is red for high fluorescence signal and blue for low signal. White counterstain is Renaissance RS2200 signal. (E) Expression of GFP in a globular-stage embryo of
the pMGP>>GFP driver line. (F) Divisions in a globular-stage pMGP>>bdl F1 embryo. (G) Expression of GFP in a globular-stage embryo of the pTMO5>>GFP driver
line. (H) Divisions in a globular-stage pTMO5>>bdl F1 embryo. Red counterstaining in E and G is Renaissance RS2200 signal. Ground tissue divisions are indicated
by green arrowheads, vascular divisions by red arrowheads, and hypophysis division by white arrowheads in F and H. (I and J) Radial and (K and L) longitudinal
cross-sections of basic fuchsin-stained pTMO5>>GFP (I and K ) and pTMO5>>bdl (J and L) roots. Intense central signal in I and J represents protoxylem, and
patches surrounding the vasculature represent Casparian strips. Lignified Casparian strips are indicated by asterisks in K and L.
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(Fig. 3M). In the postembryonic root, OFP8 was expressed in the
QC and both ground tissue layers (Fig. 3T).
We next tested whether these genes are regulated by MP. The

bdl inhibitor can inhibit ARFs other than MP (39), and it is
therefore possible that differential gene expression upon local
bdl expression is caused by inhibition of other ARFs, coex-
pressed with MP (40). To test whether these genes represent MP
output, we analyzed the expression of these genes in mp mutant
embryos. MP was required for normal expression of both RLK
(Fig. 3 H and I and SI Appendix, Fig. S4; n = 12) andMYB (Fig. 3
K and L and SI Appendix, Fig. S4; n = 16). In contrast, the OFP8
gene that in wild type is expressed in a broader domain, was not
down-regulated in mp mutant embryos (Fig. 3 N and O and SI
Appendix, Fig. S4; n = 14). These results demonstrate that the
first dedicated ground tissue cells have a distinct transcriptional
program, and reveal auxin response, in particular MP, as a
critical regulator of this program.

MP Controls Ground Tissue Initiation in a SHR-Independent Manner.
The MP-dependent gene expression in the first ground tissue cells
and the division defects in the first ground tissue cells in the mp
mutant strongly suggest that MP activity is required to specify the
first embryonic ground tissue cells. The loss of SHR and SCR gene
expression in the basal embryo domain of the mp mutant suggests
that MP acts before and upstream of SHR in this process, and the
shr mutant suggests that MP acts independently of SHR to specify
the first ground tissue cells. To further test whether the specifi-
cation of the first ground tissue cells requires SHR activity, we
introduced the MP-dependent ground tissue reporters into the shr
mutant background. We observed strong RLK expression in the
root meristem of the shr mutant (Fig. 3 P and Q; n = 24). In
contrast, expression of the MYB and OFP8 reporters was lost in
shr roots (Fig. 3 R–U; n = 24 for both reporters). We conclude
that, whereas some of its activity is mediated by downstream SHR
action, MP activates ground tissue-specific gene expression and
ground tissue initiation, at least in part independently of SHR.

ARF Activity Acts Cell-Autonomously to Specify the First Ground
Tissue Cells. Whereas ground tissue patterning and maintenance
require intercellular transport of SHR (4, 8, 32), MP acts both
cell-autonomously and noncell-autonomously in the early em-
bryo to specify distinct cell types (17, 18). A critical question is
whether the role for MP in ground tissue initiation is a cell-au-
tonomous output, or rather follows from its activity in vascular
cells, such as is the case for hypophysis specification (14, 17). To
first determine whether ground tissue cells accumulate auxin and
feature a transcriptional response, we made use of two reporters
with improved sensitivity to measure auxin response and auxin
accumulation (41). The R2D2 reporter consists of auxin-degrad-
able (DII) and auxin nondegradable (mDII) fluorescent proteins,
whose ratio is a proxy for the level of auxin. Using the R2D2 re-
porter, we observed auxin accumulation in the first vascular cells
as well as in the first ground tissue cells and the protoderm, hy-
pophysis, and suspensor (Fig. 4A). Quantification of the mDII/DII
ratio (n = 14 embryos) showed that auxin activity is lowest in
protoderm cells, increased in ground tissue, and highest in vas-
cular cells (Fig. 4B). The auxin accumulation detected in ground
tissue cells also induces gene expression, as the generic ARF-de-
pendent DR5v2 reporter (41) not only detected an auxin response
in the first vascular cells, hypophysis, and suspensor, but also in the
first ground tissue cells (42) (Fig. 4 C and D).
We next locally inhibited ARF activity specifically in the

globular-stage embryo using the GAL4–UAS-based transactivation
system driven by early tissue-specific promoters. To drive bdl
expression in the early ground tissue, we generated a GAL4
driver line with the MGP promoter that is expressed specifically
in the first ground tissue cells (Fig. 4E and SI Appendix, Fig. S5)
(8). Consistent with a cell-autonomous role of ARFs in the first

ground tissue cells, pMGP>>bdl showed striking oblique division
defects (85% of embryos showing defective division in at least
one of the two cells in median view; n = 68 embryos; Fig. 4F
and SI Appendix, Fig. S5), very similar to those observed in
Q0990>>bdl embryos (Fig. 1E) and in the mp mutant (Fig. 1I).
Importantly, neither vascular nor hypophysis cell divisions were
affected in pMGP>>bdl embryos (vascular cells: 0%, n = 68;
hypophysis: 1.5%; n = 68; Fig. 4F). Later during embryogenesis,
the MGP promoter was expressed more broadly (8) (SI Appen-
dix, Fig. S5), and pMGP>>bdl seedlings did not develop an or-
ganized primary root (SI Appendix, Fig. S5). To exclude that the
ground tissue defect is induced irrespectively of where ARF activity
is inhibited, and depends both on cell-autonomous and noncell-
autonomous ARF function, we next expressed bdl using a driver
based on the TMO5 promoter. This driver reproduced reported
(17) TMO5 expression in the first vascular cells of the globular-stage
embryo (Fig. 4G) and postembryonic root (SI Appendix, Fig. S5),
and induced abnormal divisions in the first vascular cells (Fig. 4H).
However, ground tissue divisions in TMO5>>bdl embryos were
normal (Fig. 4H), and postembryonic roots showed well-organized
ground tissue with endodermis marked by Casparian strips and a
separate cortex layer (Fig. 4 I–L). Activity of the bdl inhibitor was
evident from the reduced vascular bundle with monarch symmetry
having a single xylem pole (Fig. 4 I–L). Identical vascular patterning
defects correspond to the previously described tmo5 t5l1 double
mutants that have been shown to act downstream of MP (17, 18). In
summary, both auxin response reporters and local inhibition of
auxin response demonstrate that ARFs control ground tissue initi-
ation cell-autonomously.

Discussion
The three main tissue identities: epidermis, ground tissue, and
vascular tissue, are specified early during Arabidopsis embryo de-
velopment, and auxin is a prominent regulator of this stage of de-
velopment (13, 43). Auxin mainly acts through the activity of the key
auxin effector ARF5/MP at the globular stage of embryo develop-
ment, and the mp mutant is impaired in multiple cell specification
events at this stage. The pleiotropic nature and phenotypic severity
of the mp mutant so far obscured the identification of MP-
controlled tissue specification beyond vascular tissue initiation.
Here, we have taken a local inhibition strategy coupled to genome-
wide transcript profiling on isolated embryos. This strategy allowed
the identification of a relatively small set of genes controlled by
auxin in a small subset of cells giving rise to the vascular and ground
tissue. Validation experiments showed that most of these genes are
indeed expressed in the embryonic root domain and depend on the
key auxin effector ARF5/MP. In addition to identifying MP-de-
pendent genes that are activated in vascular tissue, the embryonic
root meristem or the root cap precursors, this analysis surprisingly
also led to the identification of a set of auxin-dependent genes that
mark the first ground tissue cells. Despite many efforts in dissecting
the gene regulatory network that controls ground tissue develop-
ment (5–8, 35–42), so far no factors have been identified that reg-
ulate ground tissue establishment. We now identify auxin response,
and its effector MP, as regulators of this critical first step. Genetic
and expression analysis shows that MP acts before and upstream of
the well-known SHR network. Importantly, our work suggests that
embryonic tissue specification on one hand, and the subsequent
tissue patterning into endodermis and cortex cell layers and post-
embryonic tissue maintenance on the other hand, use different
regulators and different mechanisms. This observation is apparent
at several levels. First, MP transcriptionally initiates the first
ground tissue cells in a SHR-independent manner (this study).
Second, mutant analysis suggests that SHR network genes are
not required for tissue initiation (this study) (10, 44), and vice
versa, expression of the MP inhibitor bdl from the SCR promoter
that is expressed in the ground tissue from late globular stage of
embryogenesis onward did not induce developmental defects in
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embryonic and postembryonic root patterning (14). Third,
whereas ground tissue patterning and maintenance require in-
tercellular transport of SHR from the vascular tissue to the
ground tissue, the initiation step is cell-autonomously controlled
by MP in the first ground tissue cells. Therefore, this study
provides an entry point to study tissue initiation. We expect that
further functional analysis of the newly identified MP-dependent
ground tissue-specific genes in the embryo will help to further
define the mechanism driving ground tissue initiation.
Our work also demonstrated that, at the scale of a few cell

layers, auxin promotes the initiation of multiple cell types. In-
terestingly, whereas root initiation involves noncell-autonomous
MP action (14, 17), both vascular and ground tissue initiation are
cell-autonomously controlled by ARF activity. In the mp mutant,
cells in the position of ground tissue or vascular tissue precursors
fail to properly express markers for either of these identities. We
have only seen loss of marker expression in inner cells in mp
mutant embryos, and it is therefore unclear what the identity of
these cells is. It was previously shown that a protoderm-specific
marker is restricted to the L1 layer in mp mutant embryos (38),
which suggests that there is no ectopic protoderm identity.
Our work offers the opportunity to investigate dosage-dependent

auxin responses. An important future question is whether vascular
and ground tissue represent two quantitatively different outputs of

auxin and MP activity. Analysis of R2D2 and DR5v2 reporters (Fig.
4 A–D) suggests that the first vascular cells accumulate more auxin
and respond more avidly to auxin than ground tissue initials. It is
however questionable whether this quantitative difference translates
to differential expression of endogenousMP target genes or whether
this difference can by itself be sufficient to activate distinct sets of
genes. Alternatively, cells in these two positions differ in more than
only the intensity of auxin response, and these differences direct
different auxin responses. Manipulation of auxin response in these
cells should help to resolve this question.
This study therefore provides a framework for the simulta-

neous formation of tissue types by the same transcriptional reg-
ulator, and further research might reveal important insights in the
mechanisms of tissue specification. Furthermore, this study re-
veals a previously unidentified regulator of the embryonic ground
tissue and reveals that ground tissue initiation and maintenance
use different regulators and mechanisms.
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