

REPLY TO FILADI ET AL.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria?

Deborah Naon^{a,b}, Marta Zaninello^{a,c,d}, Marta Giacomello^{a,c}, Tatiana Varanita^{a,c}, Francesca Grespi^{a,c}, Sowmya Lakshminaranayan^{a,d}, Annalisa Serafini^{a,c}, Martina Semenzato^{a,c}, Stephanie Herkenne^{a,c}, Maria Isabel Hernández-Alvarez^e, Antonio Zorzano^e, Diego De Stefani^b, Gerald W. Dorn II^f, and Luca Scorrano^{a,c,1}

We thank Filadi et al. for their comments (1) on our paper (2), where we address whether the discrepancies between their paper (3) and our original discovery of Mitofusin (Mfn) 2 as an endoplasmic reticulum (ER)-mitochondria tether (4) resulted from: (*i*) clonal effects of chronic *Mfn2* ablation, (*ii*) proximity measurement inappropriateness, or (*iii*) changes in mitochondrial Ca²⁺ uniporter (MCU) levels in WT and *Mfn2^{-/-}*cells. Filadi et al. (1) conclude that we fell short in solving the issue and that our data reinforce Mfn2 function as an ER-mitochondria spacer (3).

First, Filadi et al. (1) reason that we did not measure contacts number upon *Mfn2* ablation. However, contact surface (which depends on contact number and extent) can be extracted from the ER-mitochondria contact coefficient and data in our paper (2). The average mitochondrial surface contacting ER is: WT cells, 7.9%; *Mfn1^{-/-}*, 8.4%; *Mfn2^{-/-}*, 5.9%; *Mfn1,2^{-/-}*, 5.0% (data from table S1 in ref. 2). Also using data from tables S2 and S3 in our paper (2), we conclude that *Mfn2* ablation decreases the ER-contacting mitochondrial surface by ~20–35%, potentially explaining the confocal microscopy juxtaposition reduction.

Second, Filadi et al. (1) question conclusions based on fluorescent organelle proximity probes. ddGFP and FRET-based indicator of ER-mitochondria proximity (FEMP) do not artificially juxtapose organelles: ddGFP K_{OFF} is >> K_{ON} , implying that dimerization depends on proximity and not vice versa (5); FEMP does not spontaneously and stably dimerize, as confirmed by its response to rapamycin (see ref. 6 and figure S2 in ref. 2). Mathematically, the lower FRET ratio upon *Mfn2* ablation (figures 1 and 2 in ref. 2) results from lower FRET_{basal} and FRET_{maximal} values (Tables 1 and 2), not from increased FRET_{maximal}. Thus, ddGFP and FEMP are reliable organelle proximity sensors.

Finally, Filadi et al. (1) raise technical concerns on presented data. First, in the same experimental conditions, mitochondrial Ca²⁺ peak does not span two orders-of-magnitude as stated in their letter (1): it is 160 nM in figure 3B of ref. 2 and 390 \pm 150 nM in figure 3C of ref. 2 (average of five independent experiments \pm SEM). Panel F of figure 3 in ref. 2 cannot be compared with panels A and B because conditions were different (as described in the legend to the figure): Cre-infected $Mfn2^{flx/flx}$ cells were preincubated in Ca²⁺-free media to equalize cytosolic Ca²⁺ peaks (figure 3 D and E of ref. 2). Second, we excluded respiration defects in purified Mfn2 liver knockout mitochondria (Mfn2^{LKO}; figure S4 of ref. 2) that, as suggested by Filadi et al. (1), could limit mitochondrial Ca²⁺ uptake in Mg²⁺-free media. Third, mitochondrial Ca²⁺ uptake rates are not "clearly slower" in *Mfn2*^{LKO} mitochondria (1), but superimposable to the WT ones (figure 3 I–K in ref. 2; WT: 11.3 \pm 0.6, $Mfn2^{LKO}$: 11.3 ± 0.9 s⁻¹). Fourth, in WT cells, MCU levels are indeed affected by density (1), but at confluency are lower than in $Mfn2^{-/-}$ cells (figure S5 of ref. 2) and not vice versa (3). Mitochondrial Ca²⁺ transients are lesser in $Mfn2^{-/-}$ cells even upon MCU overexpression (figure 5 D and E of ref. 2): reduced MCU levels cannot therefore explain the decreased mitochondrial Ca²⁺ uptake in $Mfn2^{-/-}$ cells.

The careful Filadi et al. analysis (1, 3) highlights the ER-mitochondria interface complexity. We maintain that our acute *Mfn2* genetic deletion experiments, reliable organelle proximity probes, and Ca²⁺ measurements (2) address the raised issues in their letter (3) and add to multiple independent papers reporting ER-mitochondria tethering by Mfn2 (4, 5, 7–10). A deeper knowledge of the ER-mitochondria interface architecture could help resolve this controversy.

^aDepartment of Biology, University of Padua, 35121 Padua, Italy; ^bDepartment of Biomedical Sciences, University of Padua, 35121 Padua, Italy; ^cDulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padua, Italy; ^dFondazione S. Lucia Istituto di Recovero e Cura a Carattere Scientifico, 00161 Rome, Italy; ^eInstitute for Research in Biomedicine, 08028 Barcelona, Spain; and ^fDepartment of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO 63110

Author contributions: D.N., M.Z., M.G., T.V., F.G., S.L., A.S., M.S., S.H., M.I.H.-A., A.Z., D.D.S., G.W.D., and L.S. wrote the paper. The authors declare no conflict of interest.

¹To whom correspondence should be addressed. Email: luca.scorrano@unipd.it.

Table 1. Basal and maximal FEMP FRET values upon Mfn2 ablation: Figure 1H in ref. 2

	WT	Mfr	n2 ^{-/-}
FRET _{basal}	FRET _{maximal}		$FRET_{maximal}$
1.1 ± 0.05	1.7 ± 0.01	0.76 ± 0.01*	1.03 ± 0.02*

*P < 0.005 in a two-tailed *Student's* t test vs. WT FRET_{basal} or FRET_{maximal}.

Table 2. Basal and maximal FEMP FRET values upon Mfn2 ablation: Figure 2A in ref. 2

Scr		Mfn2shRNA1		Mfn2shRNA2	
FRET _{basal}	FRET _{maximal}		FRET _{maximal}	FRET _{basal}	$FRET_{maximal}$
0.78 ± 0.05	1.43 ± 0.04	0.66 ± 0.02*	0.83 ± 0.01*	0.67 ± 0.01	0.85 ± 0.01*

*P < 0.005 in a two-tailed Student's T test vs. Scr FRET_{basal} or FRET_{maximal}.

1 Filadi R, et al. (2017) On the role of Mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci USA 114:E2266–E2267.

2 Naon D, et al. (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113(40):11249-11254.

3 Filadi R, et al. (2015) Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA 112(17):E2174–E2181.

4 de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605-610.

5 Alford SC, Ding Y, Simmen T, Campbell RE (2012) Dimerization-dependent green and yellow fluorescent proteins. ACS Synth Biol 1(12):569–575.

6 Csordás G, et al. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915-921.

7 Chen Y, et al. (2012) Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca⁽²⁺⁾ crosstalk. *Circ Res* 111(7):863–875.

8 Schneeberger M, et al. (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155(1):172–187.

9 Sugiura A, et al. (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51(1):20–34.

10 Li D, Li X, Guan Y, Guo X (2015) Mitofusin-2-mediated tethering of mitochondria and endoplasmic reticulum promotes cell cycle arrest of vascular smooth muscle cells in G0/G1 phase. Acta Biochim Biophys Sin (Shanghai) 47(6):441–450.

PNAS PNAS