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SUMMARY

The circadian clock controls metabolic and physiological processes through finely tuned
molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zestgebers, such
as light and nutrition. How a pathological condition in a given tissue influences systemic circadian
homeostasis in other tissues remains an unanswered question of conceptual and biomedical
importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of
circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique
signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice.
Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic
metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results
in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid
metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer
(ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver.
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INTRODUCTION

Metabolic, endocrine and behavioral functions are largely circadian and their disruption is
associated with a number of disorders and pathologies, including cancer (Asher and
Sassone-Corsi, 2015; Bass, 2012; Fu and Lee, 2003; Gamble et al., 2014; Masri et al., 2015;
Partch et al., 2014). Circadian rhythms are governed by molecular machinery whose
function is to maintain rhythmic precision within cells and synchrony between central and
peripheral clocks. Importantly, circadian transcriptional circuits function in a defined tissue-
specific manner by interplaying with specialized nuclear factors through poorly understood
mechanisms (Masri and Sassone-Corsi, 2010; Panda et al., 2002). Under standard
physiological states, the core clock machinery is coupled to the metabolic cycles with which
it operates in a coherent, concerted manner. However, the clock is also able to adapt to
changing metabolic fluctuations as a compensatory mechanism and it does so by utilizing
alternative transcriptional strategies. For instance, restricted feeding temporally phase shifts
circadian gene expression in the liver (Damiola et al., 2000; Stokkan et al., 2001; Vollmers et
al., 2009) and nutritional challenge is able to reprogram circadian transcription and
subsequently alter cyclic metabolism (Eckel-Mahan et al., 2013; Hatori et al., 2012;
Kohsaka et al., 2007). Therefore, timing of food intake and nutritional challenge are able to
uncouple the timekeeping of hepatic metabolic oscillations from the core clock machinery.
Yet, aside from the consequences of nutritional challenge, the effects of other non-dietary
factors that could uncouple and disrupt the hepatic clock remain largely unexplored.

Cancer cells thrive based on a heightened metabolic rate that circumvents typical
physiological means for energy production through the so-called Warburg effect (Hsu and
Sabatini, 2008; Vander Heiden et al., 2009). In addition, cancer cells excrete a number of
factors systemically, including metabolic ‘waste’ by-products and/or inflammatory signals
(Hanahan and Weinberg, 2011; Lin and Karin, 2007). For example, tumor-secreted lactate, a
product of increased aerobic glycolysis of cancer cells, is associated with heightened
metastatic incidence, increased angiogenesis, is responsible for metabolic reprogramming in
adjacent tissues and can induce a pro-inflammatory state (Colegio et al., 2014; Doherty and
Cleveland, 2013). Similarly, the cooperative effects of the inflammatory response during
tumorigenesis are well documented (Gao et al., 2007; Sansone et al., 2007). Tumor-secreted
cytokines, such as Interleukin-6 (IL-6), can regulate metabolism in multiple tissues (Mauer
et al., 2015), suggesting a possible role in mediating tumor-induced metabolic changes
systemically. Collectively, these tumor-derived metabolites and cytokines constitute the so-
called tumor “macroenvironment’ (Al-Zoughbi et al., 2014), the systemic metabolic
consequences of which remain elusive.

Importantly, the effects of a tumor on organismal homeostasis are poorly understood, and,
given the unique ability of the clock in sensing metabolic discrepancies, a potential role of
cancer in rewiring clock-controlled metabolism is intriguing (Sahar and Sassone-Corsi,
2009). Indeed, our results demonstrate that lung adenocarcinoma rewires the circadian
hepatic transcriptome and corresponding metabolome, yet the core clock machinery remains
virtually unperturbed. The tumor imposes a profound metabolic reprogramming that
implicates a number of signaling pathways, which operate within the framework of the
tumor macroenvironment. As a paradigm, we reveal that the inflammatory STAT3-Socs3
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signaling axis is induced in the liver of lung tumor-bearing mice, resulting in inhibition of
hepatic insulin signaling, glucose intolerance, and deregulated lipid metabolism. In
conclusion, we illustrate a previously unappreciated role played by a distally located lung
adenocarcinoma as an endogenous circadian organizer (ECO) in the rewiring of circadian
homeostasis of the liver.

Lung cancer as an endogenous reorganizer of circadian rhythms

The KrastSL-G12D p53M/f mice are a genetic model of lung adenocarcinoma that mimics
human non-small cell lung cancer (NSCLC) (Jackson et al., 2005; Jackson et al., 2001).
Upon intra-tracheal delivery of equivalent adenoviral titer of Cre recombinase, which
induces the genetic rearrangement of the Lox-stop-L ox cassette to activate oncogenic
Kirsten rat sarcoma viral oncogene homolog (Kras) and knockout the tumor suppressor p53,
mice developed defined lung adenocarcinoma (Schematic in Figure S1). This mouse model
generates lung adenocarcinoma with 100% penetrance and uniform tumor burden among all
mice (Jackson et al., 2001). Equivalent adenoviral titer of FIpO recombinase was
administered to p53™"1 littermates of the same pure C57BL/6J background as a control that
does not induce recombination. Upon sacrifice, lung tumor-bearing (TB) mice exhibited WT
expression of Krasin the liver, white adipose tissue (WAT) and muscle and no metastatic
lesions were observed in the liver (Figure S2).

To investigate the distal effects of lung adenocarcinoma on circadian hepatic function, WT
and TB mice were sacrificed every four hours over the circadian cycle (ZT 0, 4, 8, 12, 16
and 20) and livers were subjected to transcriptomics and metabolomics analyses. Heat maps
for oscillating genes based on transcriptomics, as determined by JTK_cycle, display striking
differences in unique sets of oscillating genes from WT (left panel) and TB (right panel)
mice (Figure 1A, 1B). Gene ontology (GO) biological function was determined using
DAVID pathway analysis for WT or TB oscillating genes. Pathway analysis revealed that
WT-specific genes were enriched for a number of metabolic processes, including insulin
response, and regulation of cell cycle and proliferation while TB-only oscillating genes were
selectively enriched for endoplasmic reticulum (ER) signaling, unfolded protein response,
cholesterol biosynthesis and redox state (Figure 1C and Figure S3). Phase analysis was
performed for uniquely oscillating WT and TB-specific genes to determine the relative
phase of circadian gene expression. The peak in phase of expression was around ZT 8 in the
WT category, whereas TB oscillating genes exhibited a bi-phasic profile that peaked around
ZT 0 and again at ZT 12 (Figure 1D). Using the set of 505 genes that retain oscillation in
both WT and TB mice, phase analysis was performed to determine if rhythmic genes
retained their peak in expression. Strikingly, 46% of circadian genes exhibited a phase
change, with 68% of these genes being phase advanced and 32% were phase delayed by at
least 1 hour (Figure 1E). These results demonstrate that lung adenocarcinoma significantly
reprograms the circadian hepatic transcriptome.

Similar to the circadian transcriptome, metabolomics analysis revealed unique sets of
oscillating metabolites in the livers of WT (left panel heat maps) or TB (right panel heat
maps) mice (Figure 2A). Of ~600 identified metabolites, two-way ANOVA analysis
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identified that 235 metabolites were differentially altered by the lung tumor and 328
metabolites were differentially expressed by time point (Figure 2B). Oscillating metabolites
were further determined using JTK_cycle, and though the oscillation of 159 metabolites
persisted, 90 were rhythmic exclusively in WT and 84 exclusively in TB mice (Figure 2B).
Of these 159 metabolites that oscillate in WT and TB mice, 53% exhibited a change in
phase, with 62% and 38% being phase advanced and delayed, respectively (Figure 2C).
Classification of these metabolites into pathways demonstrated a clear reduction in
oscillating lipids in TB versus WT mice (Figure 2D). In addition, a reduction in the levels of
energetic metabolites, NAD*, ATP and acetyl-CoA was seen (Figure 2E). This indicates
altered usage or production of these molecules resulting in disruption of liver homeostasis in
TB animals. Thus, the presence of lung tumors acts to distally rewire both transcriptional
and metabolic programs in the liver. As further depicted below, this circadian reorganization
appears to coordinately contribute to a TB-specific hepatic metabolic profile.

Lung adenocarcinoma does not affect hepatic core clock components

A detailed analysis of the genes that were not altered between WT and TB mice was carried
out, as shown in the heat map in Figure 3A. GO pathway analysis revealed this category is
enriched in select metabolic genes but also rhythmic genes pertaining to the circadian clock
(Figure 3B). The phosphorylation of the aryl hydrocarbon receptor nuclear translocator-like
(ARNTL or BMALY1) protein and expression of all core clock genes, including circadian
locomotor output cycles kaput (Clock), Bmall, Period (Per1-3), Cryptochrome (Cry1/2)and
nuclear receptor subfamily 1, group D (Nrid1 or Rev-Erba), as well as the clock-controlled
D site of albumin promoter binding protein (Dbp) gene, were unchanged in the livers of TB
animals (Figure 3C and Figure S4). In order to better characterize the effects of lung
adenocarcinoma on the clock, locomotor behavior was analyzed and no change in the free-
running period was observed between WT and TB mice (Figure 3D). Similarly, behavioral
actograms show that the circadian activity profile was equal during the light/dark cycles in
WT and TB mice (Figure S4). Also, the feeding behavior remained rhythmic in TB mice
while a non-significant decrease in food intake was observed (Figure 3E). The respiratory
exchange ratio (RER) remained rhythmic but TB mice displayed an elevated RER during the
light phase and a dampened RER during the dark phase (Figure 3F), in keeping with a
reduction in VO2, VCO2 and heat production (Figure S5). The altered circadian metabolites
(Figure 2D, 2E) in conjunction with dampened RER levels (Figure 3F and Figure S5)
revealed a significant shift in the metabolic state of TB mice. Indeed, repressed energy
expenditure might be a contributing factor to the uncoupling of the core clock and metabolic
rhythms. Timing of food intake, which functions as a powerful zeitgeber (Damiola et al.,
2000; Eckel-Mahan et al., 2013; Vollmers et al., 2009), also remains virtually unaltered in
TB mice (Figure 3E).

Lung adenocarcinoma rewires hepatic metabolism but not the core clock

Given the changes in energy expenditure as measured by RER (Figure 3F) and the
dampened lipid profiles identified by metabolomics in TB mice (Figure 2D), the effect of
lung adenocarcinoma on fatty acid synthesis, breakdown by beta-oxidation and utilization
for cholesterol production were further investigated. The sterol regulatory element binding
protein (SREBP) pathway is known to control lipid metabolism in the liver in a circadian
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manner (Gilardi et al., 2014; Le Martelot et al., 2009) and its deregulation is in accordance
with the observed alteration of lipid levels (Figure 2D). The SREBP pathway is known to be
inhibited by the energy sensor AMP-activated protein kinase (AMPK) (Li et al., 2011;
Vawvas et al., 1997). Indeed, activation of AMPKa by phosphorylation of threonine (Thr)
172 was markedly elevated in TB mice and peaked at ZT 16 (Figure 4A). Given the
dampened ATP levels in TB mice (Figure 2E), these effects are aligned with the increased
intracellular AMP/ATP ratios over the circadian cycle (Figure 4A). Accordingly, the
SREBP1 pathway was suppressed, as both gene expression profiles and the levels of the
mature form of nuclear SREBP1c protein were repressed at ZT 16 in TB mice (Figure 4B).
Similarly, significant inhibition of SREBP1 target genes was observed, as seen with Fasn,
Acacaand Elovl6 expression (Figure 4C). The repression of SREBP1-dependent signaling
in the livers of TB mice was further substantiated by the decreased levels of long-chain fatty
acids and esterified fatty acids (Figure 4D), including myristate, linolenate, palmitoleate and
eicosapentaenoate (EPA). This suggests either a decrease in fatty acid biosynthesis or an
increase in breakdown by beta-oxidation, the former case being most likely given the
suppression of SREBP1 signaling and the unaltered peroxisome proliferator-activated
receptor alpha (PPARa) and beta-oxidation gene expression profiles in livers of TB mice
(Figure S6).

In contrast to the suppression in the SREBP1 pathway, SREBP2 gene expression is not
repressed in TB mice and its target genes lanosterol synthase (Lss), 3-hydroxy-3-
methylglutaryl-CoA synthase (HmgcsI) and phosphomevalonate kinase (Pmvk) showed a
significant and coordinated increased peak in expression at ZT 16 (Figure 4E). As SREBP1
is primarily involved in fatty acid biosynthesis and SREBP2 is critical for cholesterol
production (Brown and Goldstein, 1997; Horton et al., 2003), an increase in total cholesterol
levels was observed in TB mice (Figure 4F), which paralleled SREBP2-dependent gene
expression profiles (Figure 4E). Overall, TB mice displayed a deregulation of SREBP
signaling, with a suppression of fatty acid synthesis and an induction of cholesterol
biosynthesis. Repressed fatty acid levels and elevated cholesterol biosynthesis suggests a
preferential shunting of lipids to produce cholesterol. Importantly, increased cholesterol
levels are associated with a heightened inflammatory response (Ma et al., 2008; Zhao et al.,
2011). These findings reveal a coordinated disruption in metabolic homeostasis in TB mice,
which converge to activate AMPK in the liver and thereby differentially modulate SREBP-
dependent lipid signaling. Thus, these results demonstrate that while the hepatic core clock
is resilient to the distal effects of lung adenocarcinoma (Figure 3), the liver metabolic clock
is altered in response to tumors.

Tumor-driven targeting of circadian inflammatory response

Pro-inflammatory responses mediated by tumor-secreted cytokines and chemokines are
critical in cancer initiation and progression (Grivennikov et al., 2010). Specifically, the janus
kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been
demonstrated to play a role in multiple types of cancer (Lesina et al., 2011; Michalaki et al.,
2004; Yu et al., 2014), and is known to be activated by IL-6, tumor necrosis factor alpha
(TNFa), interferon gamma (IFN-y) and leukemia inhibitory factor (LIF) (Darnell et al.,
1994; Fitzgerald et al., 2005; Grivennikov et al., 2009; Guo et al., 1998). Also, inflammation
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plays an important role in progression of lung adenocarcinoma (Gao et al., 2007; Yeh et al.,
2006). Therefore, to validate the inflammatory response in TB mice, serum cytokine levels
were assessed in an unbiased, multiplexed platform at ZT 12, which is the reported peak of
circadian inflammatory response (Gibbs et al., 2012). Of the 31 cytokines assayed, a number
were increased/decreased or unchanged in TB mouse serum versus WT and shown in a heat
map (Figure 5A). Specifically, significant elevation of IL-6 was observed in TB mouse
serum, along with a clear, though statistically non-significant, increase in IL-1a, TNFa, LIF
and IFN-y (Figure 5A and Figure S7). In contrast, serum levels of the anti-inflammatory
cytokine IL-10 and its receptor expression in the liver did not change between WT and TB
mice (Figure 5A and Figure S7). Importantly, concomitant gene expression profiles of the
cytokine receptors, interleukin 6 receptor (//6ra), interleukin 1 receptor (//Zr1), tumor
necrosis factor receptor subfamily ( 7nfrsfib) and interleukin 17 receptor (//17ra) were
significantly elevated in the liver and displayed circadian profiles that peaked at ZT12 in TB
mice (Figure 5B and Figure S7). We focused on the effects of IL6-dependent signaling as a
paradigm of how signals in TB mice lead to the expression and phosphorylation of STAT3.
Gene expression of Stat3was significantly elevated at ZT 8, ZT 12 and ZT 16, along with a
corresponding increase in total protein levels in TB mice (Figure 5C), in keeping with
reported IL-6-dependent STAT3 auto-regulation (Narimatsu et al., 2001). JAK-dependent
phosphorylation of STAT3 at tyrosine (Tyr) 705 is known to activate STAT3 and induce its
transcriptional activity by nuclear translocation (Darnell, 1997). We observed marked
elevation of p-STAT3 Tyr705 in the livers of TB mice that peaked at ZT8 and ZT12 (Figure
5C). The transcriptional activation of STAT3 resulted in a significant increase in the
expression of its downstream targets. Specifically, gene expression of suppressor of cytokine
signaling 3 (Socs3) was drastically elevated and peaked at ZT 8 in TB mice, while the
expression of Socs and Socs7was unchanged (Figure 5D). Our transcriptomics data was
compared to known STAT3 target genes (Bonetto et al., 2011), to determine the extent of
STAT transcriptional activation in the liver. Heat maps display genes that were differentially
regulated in TB normalized to WT, and of these genes, an enrichment was observed in the
TB-specific gene set versus WT (Figure 5E; Supp. Table 1). Finally, there is a time-specific,
significant increase of transcriptionally active p-STAT3 in TB mice at the STAT binding
element (SBE), as demonstrated by chromatin immunoprecipitation (ChlP), on the Socs3
promoter (Figure 5F).

These results demonstrate that the pro-inflammatory response can induce transcriptional
activation of STAT3 signaling in the liver, which may play a role in the hepatic metabolic
rewiring observed in TB mice. Yet, this transcriptional rewiring observed in the liver is
representative of a localized response, as the WAT and muscle gene expression profiles
differ (Figure S6), in keeping with a tissue-specific inflammatory response. Moreover, the
pro-inflammatory response is most likely not the only cause of metabolic rewiring: our
preliminary results of the circadian serum metabolome from WT and TB mice show that a
number of factors could be involved in tumor-dependent crosstalk with peripheral tissues
(Figure S7). This data suggests that the extent of the tumor macroenvironment remains
inadequately defined and that complex tissue-specific responses to these tumor-derived
signaling molecules exist.
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Lung cancer alters hepatic insulin signaling and glucose production

SOCS3 has been shown to play a role in modulating insulin sensitivity in adipose tissue and
liver and these effects have been linked with IL-6 or TNFa-mediated inflammation
(Emanuelli et al., 2001; Sachithanandan et al., 2010; Senn et al., 2003; Torisu et al., 2007).
Given the induction of the STAT3 inflammatory axis and the increase in Socs3 gene
expression in TB mice, hepatic insulin signaling was further investigated. Insulin-dependent
phosphorylation of V-Akt murine thymoma viral oncogene homolog (AKT) at serine (Ser)
473 was dramatically inhibited in TB mice versus WT, while total levels of AKT remained
unchanged (Figure 6A). Strikingly, the total levels of insulin receptor substrate 1 (IRS-1)
protein were noticeably decreased in TB mice versus WT, especially from ZT8 to ZT20
(Figure 6A). Notably, these changes in IRS-1 protein levels coincided with the peak in
STAT3 activation and Socs3 expression (Figure 5C, 5D), as SOCS3 is reported to target and
degrade IRS-1 protein and thereby further repress hepatic insulin signaling (Rui et al.,
2002). Serum insulin levels were investigated, and in line with decreased insulin signaling in
the liver, systemic insulin levels were significantly low and lose their circadian oscillation in
TB mice (Figure 6B). Yet, TB animals retained insulin sensitivity, as determined by insulin
tolerance tests (ITT) (Figure 6C). Given these changes in insulin signaling, it would be
expected that TB mice exhibit elevated levels of serum glucose. Indeed, TB mice displayed
elevated fasting serum glucose levels (Figure 6D), and these mice were significantly less
sensitive to exogenous glucose challenge using a glucose tolerance test (GTT) (Figure 6E).
In order to elucidate the mechanism by which glucose levels were increased in TB mice,
hepatic glucose production through gluconeogenesis was investigated, as this pathway is
known to be clock-controlled (Zhang et al., 2010). Gene expression of phosphoenolpyruvate
carboxykinase 1 (PckI or Pepck) remained circadian but was significantly induced at ZT 8,
ZT12 and ZT16 in TB mice (Figure 6F). The level of phosphoenolpyruvate (PEP), the
product of PEPCK, was elevated at ZT 8 and ZT 12 (Figure 6G). In contrast, expression of
key glycolytic enzymes, such as rate-limiting glucokinase (Gck) and liver pyruvate kinase
(Pkir) was significantly inhibited (Figure 6H). Though their expression was not circadian,
lactate dehydrogenases (Ldhaand Ldhc) that interconvert lactate and pyruvate were elevated
in TB mice (Figure 61), in keeping with the increased pyruvate levels that could be shunted
into gluconeogenesis (Figure 6J). These results demonstrate that a lung tumor is responsible
for the drastic change in insulin-dependent AKT signaling in the liver, leading to significant
alterations in clock-controlled hepatic glucose production.

DISCUSSION

Lung Tumor as an Endogenous Zeitgeber?

Circadian homeostasis is essential for organismal physiology and its intrinsic plasticity
constitutes a highly efficient adaptation system to the changing environment. Specifically,
zeitgebers such as light and nutrition are referred to as external stimuli that operate to entrain
central and peripheral clocks, respectively. Here we have reported on findings that identify
an endogenous circadian reorganizer that has the unique feature of rewiring circadian
metabolism under unaltered light and feeding conditions. Indeed, lung adenocarcinoma
contributes to the distal reprogramming of circadian hepatic gene expression and metabolic
function (Figure 7). These results collectively demonstrate that lung tumors, independently
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of any nutritional challenge paradigm, alter circadian physiology leading to changes in
cyclic energy expenditure, lipid metabolism, and hepatic insulin and glucose signaling.
Importantly, since the core components of the liver molecular clock do not seem to be
influenced in TB mice (Figure 3), the tumor does not appear to function as a classical
zeitgeber. Yet, lung tumors act prominently on the liver by profoundly rewiring circadian
metabolic control. Thus, these findings illustrate that circadian metabolism can be
reprogrammed independently of exogenous inputs, such as the classical zeitgebers, light and
nutrition. Indeed, lung adenocarcinoma operates as a distinctive endogenous circadian
organizer (ECO) that dictates the changing pathophysiological dimension of a distal tissue
such as the liver. We speculate that an ECO may function in differential manners depending
on the tissue type, range of action and metabolic state.

Endogenous Circadian Organizer (ECO)

Given that these metabolic effects are systemic, tumor-dependent rewiring is most likely
taking place in multiple organs to disrupt homeostasis. In this context it is notable that the
effects of IL-6 are pleiotropic and function in a context- and tissue-specific manner to alter
multiple signaling pathways (Mauer et al., 2015), and that the inflammatory response is the
likely mediator of a complex web of physiological adjustments. Indeed, it does not escape
our attention that the effect of a lung tumor will not be restricted to the liver alone (Figure
S6), although this tissue is critical to decipher the effects of lung cancer on organismal
metabolism. In further support of our results, a number of intriguing links can be made to
connect tumor-derived inflammation with deregulated metabolism. Our extensive analysis
demonstrates that a number of cytokines could be implicated in the rewiring observed in TB
mice (Figure 5A and Figure S7). Also, our preliminary analysis of the serum metabolome
indicates that the cyclic profiles of a variety of potentially critical metabolites change
significantly in the TB mice (Figure S7). We have focused on IL-6 as a paradigm since the
IL-6 inflammatory response has been investigated in fatty liver disease, and these effects link
inflammation to altered lipid accumulation through SREBP signaling (Miller et al., 2011;
Yamaguchi et al., 2010). Also, another layer of complexity exists in that IL-6 is known to
activate AMPK especially in the context of exercise (Carey et al., 2006; Ruderman et al.,
2006), and systemic IL-6 knockout mice are unable to stimulate AMPK signaling (Adser et
al., 2011; Kelly et al., 2004). Moreover, AMPK suppresses SREBP target gene expression
and attenuates hepatic steatosis (Li et al., 2011). Collectively, these notions suggest an
interconnected network between inflammatory cytokines, AMPK and SREBP that could
contribute to the tumor-induced liver reprogramming we observe. Moreover, the influence of
cachexia on muscle and WAT is another factor that can feedback and alter liver homeostasis
(Bonetto et al., 2011; Narsale et al., 2015; Tsoli et al., 2014). Our findings identify two
converging pathways that might work in a coordinated manner to modulate circadian hepatic
homeostasis. Altered energy expenditure can mediate a circadian metabolic rewiring that is
likely compounded by the pro-inflammatory effects on the liver.

The Tumor Macroenvironment Reorganizes Homeostasis

Our results illustrate that lung adenocarcinoma has a profound effect on a variety of
metabolic and signaling pathways in the liver. This tumor-derived macroenvironment is
constituted by glycolytic metabolic byproducts, inflammatory cytokines, and other poorly
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defined circulating components (Al-Zoughbi et al., 2014). In this context, we have explored
the liver pro-inflammatory response, a paradigm of the metabolic rewiring induced by the
lung tumor. An additional twist to this scenario is the likely contribution of other metabolic
tissues that respond to the tumor-derived macroenvironment. In turn, these tissues could
provide an additional layer of signaling that would further adjust circadian homeostasis.

The pro-inflammatory response alters hepatic insulin signaling and subsequent glucose
production through the STAT3-dependent activation of Socs3 (Figure 5). These findings
bring to light another critical pathway that is deregulated by the distant actions of the lung
tumor. The suppression of serum insulin levels suggests an important role of inflammation in
the pancreas. Yet, these effects on hepatic insulin sensitivity are most likely regulated
coordinately with the inflammatory response. For instance, the expression of the insulin-
responsive /nsig2 gene, which is known to be involved in clock-controlled SREBP function
(Le Martelot et al., 2009), is unaltered in TB mice and suggests a complex signaling
mechanism beyond a simple model of hypoinsulinemia. Moreover, the circadian clock
controls hepatic glucose production through gluconeogenesis (Zhang et al., 2010) and our
results suggest a potential crosstalk between the tumor and the liver clock. We speculate that
tumor-secreted ‘waste’ such as lactate is converted to pyruvate and shunted through
gluconeogenesis to produce glucose, which can further satisfy the heightened energetic
demand of cancer cells. Interestingly, TB mice exhibit increased expression of lactate
dehydrogenases (Ldha, Ldhc), Pepck (Pck) and phosphoenolpyruvate (PEP), which could
result in enhanced glucose intolerance (Figure 6). In conclusion, the circadian clock is
highly responsive to its environment and is able to adapt to changes in energetic demand. In
this context, the lung tumor macroenvironment operates as an ECO on hepatic circadian
metabolism — a process that could potentially further drive tumorigenesis.

EXPERIMENTAL PROCEDURES

Animal housing and experimental procedures

Krast-SL-G12D 531/ mice have been previously described (Johnson et al., 2001). Detailed
housing and infection procedures are provided as Supplementary Experimental Procedures.

DNA microarray analysis

Microarray analysis was performed as previously described (Masri et al., 2014) and further
information is provided as Supplementary Experimental Procedures.

Metabolomics analysis

Metabolomics analysis was carried out by Metabolon, Inc. (Durham, NC) as previously
described (Evans et al., 2009) (Masri et al., 2014). See Supplementary Experimental
Procedures for further details.

Bioinformatics and pathway analysis

Bioinformatics analysis was performed using JTK cycle and metabolomics and
transcriptomics data is accessible at circadiomics.ics.uci.edu. Detailed methodology is
available as Supplementary.
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Metabolic Cage Analysis

Indirect calorimetry was performed using negative-flow CLAMS hardware system cages
(Columbus Instruments). VO,, VCO», RER, and food intake were measured and calculated
with Oxymax software (Columbus Instruments).

Locomotor activity analysis

Animals were individually housed, using an n=12 mice/genotype for behavioral analysis.
Mice were housed for 2 weeks in 12-hour standard L/D conditions and subsequently
released into D/D conditions for 2 weeks. Activity was measured using optical beam motion
detection (Philips Respironics) and data analyzed using Minimitter VitalView data
acquisition software.

Gene expression analysis

Detailed methodology and primer sequences can be found in the Supplementary
Experimental Procedures section.

Western blot analysis
Livers were homogenized in RIPA lysis buffer containing protease inhibitor cocktail, NaF
and PMSF, sonicated briefly and rocked to lyse cells at 4°C. 10-30ug of protein lysate was
resolved on SDS-PAGE gels. Antibodies used for western blots include: TBP, BMAL1,
SREBP1 (Abcam), pAMPK, total AMPK, pSTAT3, total STAT3, pAKT, total AKT, IRS1
(Cell Signaling Technology).

Cytokine Profiling

A total of 31 mouse cytokines were profiled using a multiplex platform and data was
extracted based on cytokine-specific standards by Eve Technologies (Calgary, Canada). Five
independent serum samples were used from WT and TB mice. Relative change in cytokine
expression between TB and WT was determined using absolute deviation values from the
median and used for heat map generation.

Chromatin Immunoprecipitation (ChIP)

ChIP methodology was previously described (Masri et al., 2014). pSTAT3 antibody used for
ChIP was obtained from Cell Signaling technology.

Tolerance Tests (GTT and ITT)

8 WT and 8 TB mice were fasted overnight and fasting glucose levels were measured using
an ACCU-CHEK Aviva Plus glucometer (Roche). Body weight measurements were taken
and insulin (0.75U/kg) or glucose (2g/kg) were IP injected and blood glucose measurements
were taken 15, 30, 60, 90 and 120 minutes post injection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lung adenocarcinoma rewires the circadian hepatic transcriptome
A) DNA microarray analysis was performed using mouse liver total RNA from ZT 0, 4, 8,

12, 16 and 20. Using JTK_cycle, genes selected to be circadian at a p-value <0.01 are
displayed as heat maps for WT and lung tumor-bearing (TB) livers. Left panels display
circadian genes exclusively in WT mice and right panels show genes with more robust
oscillation in TB mice. B) Pie charts indicate actual numbers of circadian genes that oscillate
exclusively in WT, TB or BOTH conditions. C) Top 10 gene ontology (GO) terms for
biological process were identified by DAVID pathway analysis tool, based on a 0.01 p-value
cutoff. D) Phase analysis of WT and TB-specific oscillating gene expression profiles. E)
Phase analysis of ‘BOTH’ genes that remain circadian in WT and TB mice.
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Figure 2. The circadian metabolome is reorganized by lung cancer
A) Heat maps displaying oscillating metabolites as determined by JTK_cycle (p-value

<0.05) in WT and TB mice. Left panels display circadian metabolites exclusively in WT
liver and right panels show metabolites with more robust oscillation in TB mice. B) Two-
way ANOVA analysis using a p-value cutoff of 0.05 reveals metabolites that are responsive
to lung tumors, circadian time point, or both. Numbers of oscillating metabolites using
JTK cycle are indicated from WT, TB or BOTH categories. C) Phase analysis was
performed using JTK_cycle to identify the phase of peak metabolite expression. D)
Oscillating metabolites are displayed based on biological sub-pathway, including amino
acid, carbohydrate, cofactors, lipids, nucleotides, peptides and xenobiotics. E) Examples of
energetic metabolites that are dampened in TB mice. NAD*= nicotinamide adenine

dinucleotide; ATP= adenosine 5’-triphosphate.
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Figure 3. The circadian clock is unaffected by lung adenocarcinoma
A) Heatmap for ‘BOTH’ category genes that are unaltered in expression between WT and

TB mice. B) GO pathway analysis using biological process for ‘BOTH’ oscillating genes. C)
BMAL1 protein phosphorylation by western and circadian expression of the clock genes,
Bmall, Clock, Rev-erba, Dbp, Per?and Cry1, as determined by quantitative real-time PCR
(RT-PCR). D) Locomotor activity analysis for WT and TB mice, as calculated by the free-
running period (Tau) in dark/dark (D/D) conditions. An n=12 WT and n=12 TB mice were
used for behavioral analysis. E) Food intake of WT and TB mice shown over a 48-hour
period (left panel). Total food intake was normalized to body weight of each animal. An n=7
WT and n=8 TB mice were used for indirect calorimetry analysis. F) VCO,/VO, is shown
as the respiratory exchange ratio (RER) for WT and TB mice over a 48-hour period. Average
RER is quantified during the light and dark phases (right panel). Error bars indicate standard
error of mean (SEM). Significance was calculated using Student’s T test and * and **
indicate p-value cutoffs of 0.001 and 0.0001, respectively.
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Figure 4. Lipid metabolism is altered in TB mice
A) Western blot analysis for phospho-AMPK (Thr 172) and total AMPK in WT and TB

mice, at the indicated circadian times. Quantification of pAMPK/total AMPK signaling is
shown as a histogram. The ratio of AMP/ATP is shown over the circadian cycle and is
elevated at all ZTs. B) Gene expression as determined by RT-PCR and protein expression of
SREBP1c in WT and TB mice. Precursor (P) indicates uncleaved protein and mature (M)
shows cleaved SREBP1 protein. C) Gene expression by RT-PCR was performed for Fasn,
Acaca, and Elovli6in WT and TB mice over the indicated ZTs. D) Levels of fatty acids and
fatty acid esters as determined by metabolomics analysis for myristate, linolenate,
palmitoleate and eicosapentaenoate (EPA). E) Gene expression of Srefp2and its target
genes Lss, Hmgces1 and Pmvk as determined by RT-PCR. F) Total cholesterol levels in WT
and TB mice over the circadian cycle were determined by metabolomics analysis. Error bars
indicate SEM. Significance was calculated using Student’s T test and * indicates a p-value
cutoff of 0.05.
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Figure 5. Lung tumor-induced inflammation in the liver
A) Serum samples from WT and TB mice were assayed in an unbiased, multiplexed

cytokine array platform and displayed as a heat map. Red indicates increased levels of
cytokines and green indicates decreased cytokine levels in TB normalized to WT mouse
serum. Specific profiles of pro-inflammatory cytokines (IL-6, IL-1a and TNFa) and anti-
inflammatory IL-10 are shown. B) Gene expression as profiled by RT-PCR is shown for
ll6ra, Il1r1and Tnfrsf1b. C) Stat3 gene expression as shown by RT-PCR. Phospho-STAT3
(Tyr 705) and total STAT3 protein levels over the circadian cycle in WT and TB mice. D)
Gene expression profiles of Socs3, Socs1and Socs7by RT-PCR. E) Known STATS3 target
genes were compared to our transcriptomics data. Heat map displays gene expression
profiles in the TB-specific group normalized to WT, with red and green representing up and
down-regulated genes, respectively. Additionally, to determine enrichment of STAT3 target
genes in WT and TB, Fisher’s exact test was used. The ** indicates the odds that the overlap
of 39 genes in TB over random is 1.716 and the p-value is 0.00358, which satisfies a
p<0.005 threshold. For WT the odds ratio is 1.345 with a p-value of 0.209. F) Recruitment
of p-STAT3 to the STAT binding element (SBE) in the Socs3 promoter or to the 3
untranslated region (UTR) as determined by chromatin immunoprecipitation (ChIP). Error
bars indicate SEM. Significance was calculated using Student’s T test and * indicates a p-
value cutoff of 0.05.
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Figure 6. Lung adenocarcinoma alters hepatic insulin signaling and glucose production
A) Western analysis of phospho-AKT (Ser 473), total AKT and total IRS1 in WT and TB

mice over the circadian cycle. B) Serum insulin levels were measured by ELISA at ZT 8 and
16 in WT and TB mouse serum. Insulin levels at ZT 16 are statistically significant as
indicated by # (p-value = 0.053, using Student’s T-test). C) Insulin tolerance test (ITT) in
WT and TB mice. D) Overnight fasting glucose levels in WT and TB mice. E) Glucose
tolerance test (GTT) in overnight fasted WT and TB mice. F) Gluconeogenic gene
expression profile of Pepck (PckZ) by RT-PCR was done in livers of WT and TB mice. G)
Levels of phosphoenolpyruvate (PEP) were determined by metabolomics analysis from
livers of WT and TB mice. H) RT-PCR of glycolytic gene expression of L-PK (Pk/r) and
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GK (GcK) over the circadian cycle. 1) Gene expression of lactate dehydrogenases Ldha and
Ldhcin WT and TB mice by RT-PCR. J) Levels of pyruvate were determined by
metabolomics in livers of WT and TB mice. Error bars indicate SEM. Significance was
calculated using Student’s T test and * indicates a p-value cutoff of 0.05.
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Figure 7. Lung adenocarcinoma distally rewires circadian hepatic metabolism
Schematic overview depicting the effects of the tumor macroenvironment on circadian

hepatic metabolism. Our results show that lung tumors, acting through the inflammatory
STAT3-Socs3 axis, operate to distally rewire circadian transcription and metabolism by
acting as an endogenous circadian organizer (ECO). This manifests in loss of hepatic insulin
signaling, glucose intolerance, and deregulated lipid metabolism through the AMPK/SREBP

pathway.
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