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Abstract

Background—When left untreated, age-related macular degeneration (AMD) is the leading 

cause of vision loss in people over fifty in the US. Currently it is estimated that about eight million 

US individuals have the intermediate stage of AMD that is often asymptomatic with regard to 

visual deficit. These individuals are at high risk for progressing to the advanced stage where the 

often treatable choroidal neovascular form of AMD can occur. Careful monitoring to detect the 

onset and prompt treatment of the neovascular form as well as dietary supplementation can reduce 

the risk of vision loss from AMD, therefore, preferred practice patterns recommend identifying 

individuals with the intermediate stage in a timely manner.

Methods—Past automated retinal image analysis (ARIA) methods applied on fundus imagery 

have relied on engineered and hand-designed visual features. We instead detail the novel 

application of a machine learning approach using deep learning for the problem of ARIA and 

AMD analysis. We use transfer learning and universal features derived from deep convolutional 

neural networks (DCNN). We address clinically relevant 4-class, 3-class, and 2-class AMD 

severity classification problems.

Results—Using 5664 color fundus images from the NIH AREDS dataset and DCNN universal 

features, we obtain values for accuracy for the (4-,3-,2-) class classification problem of (79.4%, 

81.5%, 93.4%) for machine vs. (75.8%, 85.0%, 95.2%) for physician grading.

Discussion—This study demonstrates the efficacy of machine grading based on deep universal 

features/transfer learning when applied to ARIA and is a promising step in providing a pre-

screener to identify individuals with intermediate AMD and also as a tool that can facilitate 

*Corresponding author. Phone: 240-228-1000 Fax: 443-778-6904 David.Freund@jhuapl.edu. 

Conflict of interest: The authors have no conflicts of interest.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Comput Biol Med. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Comput Biol Med. 2017 March 01; 82: 80–86. doi:10.1016/j.compbiomed.2017.01.018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifying such individuals for clinical studies aimed at developing improved therapies. It also 

demonstrates comparable performance between computer and physician grading.
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1. Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness for people over 

50 in the United States. ([1],[2],[3],[7]). The intermediate stage of AMD is typically 

asymptomatic, but it often proceeds to the advanced stage during which substantial central 

vision loss may set in, affecting basic tasks including reading, driving, or face recognition 

([7]).

AMD is caused by degeneration of the central portion of the retina known as the macula. 

The intermediate stage of AMD is characterized by the presence of extensive medium-sized 

(63μ to 125μ) drusen or at least one large (>125μ) druse or geographic atrophy not involving 

the fovea. Drusen are made up of long-spacing collagen and phospholipid vesicles between 

Bruch's membrane (the basement membrane of the choriocapillaris) and the basement 

membrane of the retinal pigment epithelium (RPE).

Advanced AMD is characterized by damage to the macula through either the choroidal 

neovascular (“wet”) form or geographic atrophy (GA) of the retinal pigment epithelium 

involving the center of the macula (“dry”) form of AMD. Both forms of advanced AMD can 

lead to rapid or gradual loss of visual acuity caused by a loss of photoreceptors that, in the 

case of wet form, are replaced by scar tissue or, in the case of the dry geographic atrophy 

form, degenerate in roughly circular regions (diameters > ∼175 μm) of hypopigmentation, 

depigmentation, or the apparent absence of the RPE [5]. It is estimated that there are 

currently between 1.75 and 3 million people in the United States with some form of 

advanced stage AMD [7].

While there is currently no definite cure for AMD, the Age Related Eye Disease Study 

(AREDS) has suggested benefits of certain dietary supplements for slowing the progression 

of the disease from the intermediate stage to the advanced stage [35]. Additionally, the 

worsening of vision loss due to CNV can be slowed substantially by intravitreous injections 

of anti-VEGF agents, which reduce the chance of vision loss compared to no treatment [8] 

or when compared with alternative treatments such as photodynamic therapy with 

verteporfin [6] or laser photocoagulation [1]. Early detection is therefore key: the sooner a 

patient with wet AMD begins anti-VEGF injections, the less the risk of vision loss, resulting 

in improved quality of visual acuity for a longer period of time. Thus, it is imperative that 

people with the intermediate stage of AMD be identified as soon as possible and referred to 

a health care provider for education on monitoring for the development of wet AMD and 

possible use of dietary supplements to reduce the risk of developing wet AMD. No treatment 

comparable to anti-VEGF injections currently exists for GA and, consequently, numerous 
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clinical studies are being conducted with the goal of finding a treatment for slowing or 

eliminating GA growth rate [17],[20],[30],[31].

Developing automated diagnostic techniques that detect AMD and assess its severity are a 

key endeavor for several reasons: (1) Cost: Fundus image grading can be a tedious and time 

consuming process requiring the expertise of an extensively trained health care professional. 

(2) Access: access to ophthalmology healthcare at least every two years to detect 

intermediate AMD after age fifty -- so that individuals with intermediate AMD can be 

identified and referred to a physician -- can be difficult in many health care environments. 

Because of the large at risk population of people over fifty (∼110 million in the United 

States [33]), the logistics for screening individuals is prohibitive due to numbers alone. (3) 

Monitoring treatment: Another key role of such automated computer techniques is in helping 

assess the efficacy of treatments for geographic atrophy, where it is critical to monitor 

quantitatively and objectively the disease progression under therapy.

2. Deep Features

This paper proposes the usage of deep convolutional neural networks (DCNN)-derived 

universal features on the specific automated retinal image analysis (ARIA) problem of AMD 

categorization. For the past decades, visual recognition algorithms have leveraged various 

methods with hand-designed feature-based approaches becoming widely used techniques 

[12],[21],[22]. Traditional ARIA methods have primarily followed an algorithmic pattern 

consisting of two steps: i) an image analysis step whereby the image is pre-processed and 

some visual features are computed and ii) a classification step using one of the many 

machine learning methods of record (e.g. SVMs, random forests, logistic regression, 

boosting, etc.) [9],[10],[15],[32],[37]. This type of approach can be used either locally, to 

find and delineate specific lesions, or globally, to diagnose disease from an entire image.

In contrast, the past few years have seen a shift towards methods employing deep learning 

(DL) approaches. In particular, recent progress in DCNN have exploited deeper networks, 

better DCNN parameter optimization, and expanded computational power afforded by 

GPUs, which in turn have led to substantial performance improvement in visual recognition 

tasks [16],[18],[23],[24],[25],[26],[27],[28],[29]. It is therefore natural for the focus of 

ARIA algorithms to leverage these emerging techniques. This paper demonstrates the use of 

one such techniques: using DCNN universal features, to replace hand-designed features, for 

global retinal image analysis and multi-class AMD classification.

When applied to image classification, an important difference between DCNNs and 

conventional machine vision and machine learning methods referred to above is the process 

of feature selection. In particular, prior to classification, conventional methods have included 

a step in which specific visual features are computed such as wavelets or SIFT features [9],

[14],[15]. This manual selection (or feature design) can result in a set of features that are 

suboptimal and overly specialized to a specific data set resulting in poor generalization to 

larger or unknown data sets.
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As a departure from the manual approach described above, DCNN's features are not ‘hand-

crafted’ or specially designed but are found by training a DCNN ([10],[27]). However, this 

optimization frequently requires a very large number of images to reliably learn DCNN 

weights. In contrast, typical ARIA datasets often consists of only a few thousand images. 

One idea instead is to use universal features and transfer learning: one can tap into fully 

connected layers of a DCNN because these provide very compact and pooled spatial feature 

representations. This can be accomplished by using a network that has already been pre-

trained on millions of general purpose images (ImageNet [26]) without any additional 

retraining needed for the DCNN on our specific dataset. When neural networks trained on 

large general-purpose datasets are repurposed, in a transfer learning sense, to address 

problems applied to image domains different from those that the networks were trained on, 

the features are referred to as universal features. The features are then used as input to a 

classifier like an SVM or Random Forrest that is then trained on the specific ARIA data. 

This is the approach we use for ARIA and AMD classification in this study.

3. Problem Structure

We now discuss how this study addresses several clinically relevant N-class AMD 

classification problems including 4-class, 3-class, and 2-class problems. In particular, 

important objectives are to develop techniques that can address AMD severity classification 

that discriminates among individuals with no AMD vs. early stage AMD vs. intermediate 
stage AMD vs. advanced AMD (4-class) as well as among individuals with no or early stage 
AMD vs. intermediate stage AMD vs. advanced AMD (3-class). Such algorithms would be 

beneficial in clinical studies designed to assess new or alternative therapies where it is 

critical to differentiate between intermediate and advanced AMD. In addition, these 

algorithms can be used to automatically and remotely monitor the change in an individual 

level of AMD as it progresses from, say, early stage AMD to intermediate stage AMD. Also, 

because of the importance of identifying individuals in the at risk population with the 

asymptomatic intermediate stage we also consider the important 2-class problem that 

discriminates among individuals with no or early stage AMD vs. intermediate stage AMD or 
advanced AMD. This particular 2-class problem is important in that it identifies individuals 

that need to be referred to a physician immediately and could be implemented in public 

settings especially in under resourced areas where there is limited access to health care.

4. Fundus image Data

The Age-Related Eye Disease Study (AREDS) was a 12-year longitudinal study designed to 

increase understanding of disease progression and risk factors for both AMD and age-related 

cataracts [2,4,30]. During the study, color fundus photographs were taken of each patient at 

the initial baseline visit as well as during follow-up visits. One of the notable features of the 

AREDS study is that these images were quantitatively graded for AMD severity by experts 

at various grading centers [4]. Each image was assigned a category from 1 to 4 with category 

1 denoting no evidence of AMD, category 2 denoting early stage AMD, category 3 denoting 

intermediate stage AMD, and category 4 denoting one of the advanced forms of AMD. 

Figure 1 shows examples of fundus images from each category. We remark here that this set 

of graded images provides a unique “gold standard” data set that can be used to assess the 
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efficacy of machine learning algorithms. It is this set of images that we used for 

characterizing the performance of our N-class classification problem.

5. Methods

2.1 Overview of Approach

The algorithm first preprocesses the image, and then computes universal features, including 

computation over concentric grids inscribed within the retinal fundus image. Thereafter, 

universal features computed in each grid are concatenated into a feature vector that is passed 

on to a linear support vector machine (LSVM) classifier for testing and training. The main 

steps of the method are detailed below. A summary pseudo-code of the entire algorithmic 

pipeline is also shown here:

Pseudo-code

1 Input image preprocessing

a. Compute inscribed square

b. Resize image to OverFeat network input

2 Compute Universal 4096 Deep Features (OverFeat features) and normalize feature vector

3 Do either:

a. Training time: train a linear SVM

b. Test time: run trained linear SVM

2.2 Implementation Details

(1) Preprocessing—Pre-processing the fundus images involves (a) detecting the outer 

boundaries of the retina to crop the images to the square inscribed within the retinal 

boundary (Figure 1). This is done by thresholding out the black background, fitting a circle 

and computing an inscribed square. (b) resizing them to size 231×231 to conform to the 

expected OverFeat input network (see below). As detailed below, additional cropping to 

smaller inscribed squares is also performed.

(2) Universal Features computation—We use OverFeat (OF) features. These use the 

OverFeat DCNN that was pre-trained on an ImageNet data set consisting of over a million 

ImageNet general purpose (non-medical) images including one thousand image classes 

consisting of various objects (e.g. animals, food, household objects, and so forth). The 

implementation code is provided in [36]. Features are calculated by tapping into the second 

to last network layer output. This yields a 4096 long feature vector. This vector is 

normalized (as a unit vector) for illumination invariance.

(3) Linear Support Vector Machine Classification—The normalized feature vectors 

are used to train and test on a LSVM classifier [13]. For training and testing we used the 

standard machine learning approach of n-fold cross-validation [34]. This consists of 

subdividing the data into n equally sized subsets (i.e. folds) and using n-1 folds for training 

and the remaining nth fold for testing. This process is repeated n times, leaving a different 

fold out of the training step each time in order to use it for testing. For this study we used 

n=10.
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(4) Multi-grid processing—As illustrated in Figure 2, we use a multi-grid approach to 

generate the feature vector. Although the details of this approach have been described 

previously [10], we nevertheless provide a brief summary of the method here. In particular, 

the solid light blue line in Figure 2 is the inscribed square that includes the largest usable 

area of the fundus image. The dashed light blue lines show two successive square regions 

centered on the macula. The final feature vector that is ultimately used is obtained by 

concatenating feature vectors generated from each of these three regions. That is, we first 

generate a feature vector of OF features obtained from the fully inscribed square (solid light 

blue line in Figure 2). Next, we generate a separate OF feature vector using only the area of 

the image within the inner most dashed square. Then, a third OF feature vector is generated 

using the area of the image within the outer most dashed square (the area of inner dashed 

square is included). Finally, the three feature vectors are concatenated together to form the 

feature vector used for classification. We note here that this approach is motivated by the 

fact that, for color fundus images, features near the center of the macula are of greater 

significance for classifying the AMD severity category[10][14].

6. Experiments

6.1 AREDS Dataset for testing

For training and testing, we used color fundus images from the NIH AREDS database and 

subsequently characterized the performance of the universal feature-based algorithm. Since 

they are centered on the macula, only field 2 fundus images were used and, to avoid using 

virtually the same image twice, one of the images in cases with stereo pairs was removed. 

This resulted in a total of 5664 available images. Table 1 shows the number of images 

available in each class. Note that these images are a combination of all available baseline 

and follow-up images. As seen in the table below, all classes are well represented with the 

exception of category 2 for which there is significant imbalance and under-representation.

6.2 Performance metrics

To assess the results, we provide both counting and confusion matrices. In the counting 

matrix the columns represent the numbers of samples in the true class and the rows provide 

the classifier prediction breakdown. For example, for the 4-class classification problem, the 

first column corresponds to the breakdown for actual AMD category 1 (class 1), the second 

column correspond to actual AMD category 2 (class 2), the third column corresponds to 

actual AMD category 3 (class 3), and the fourth column corresponds to actual AMD 

category 4 (class 4). Each diagonal element of the counting matrix gives the number of 

images classified correctly for the corresponding class (i.e. column). Off diagonal elements 

show the number of images misclassified and how they were was misclassified. For 

example, the matrix element in the first row and second column shows the number of images 

whose true AMD score is category 1, but were misclassified as AMD category 2. The overall 

accuracy is determined by dividing the total number of correctly classified images (obtained 

by adding the diagonal elements in the counting matrix) and dividing by the total number of 

images (i.e. 5664). Finally, Along with the counting matrix we report normalized values (i.e. 

percentages) which are obtained by dividing the counts in each of the matrix cell by the total 
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number of samples in the specific class, this results in what is usually referred to as the 

confusion matrix.

The algorithm's performance was further assessed by comparing to results obtained by a 

physician. Specifically, an ophthalmologist independently graded all 5664 fundus images 

and the results were compared to both the AREDS AMD scores and the computer's. Finally, 

paired gradings were compared for computer vs. AREDS and the physician vs. AREDS 

using kappa statistics.

6.3 Results for N class classification

Table 2 is the table of counting/confusion matrices comparing the results of the machine 

with those of the physician. In particular, the left column gives the counting matrices for the 

4-class, 3-class, and 2-class classification problems for the results obtained by the machine, 

while the right column gives the corresponding results for the physician. Notice that each of 

the six entries in table 2 is a matrix (i.e., a table in its own right) and that each of these 

matrices has its own rows and columns associated with it. Specifically, the rows and 

columns for each of the six matrices in table 2 correspond to the AMD severity category 

associated with each type of classification problem. As described above, the numbers in each 

matrix indicate the accuracy as well as the types of errors made by either the computer or the 

physician. We note here that, the physician only performed 4-class classification. The 

physicians' results for the 3-class and 2-class classification problem were then derived by 

appropriately combining the classes from the 4-class classification results. On the other 

hand, the computer performed each of the N-class problems separately, starting from scratch 

(so to speak) each time with absolutely no knowledge of results and analysis (i.e. training) 

from a previous classification problem.

In the 4-class problem, it is seen that the computer and physician' results are roughly similar 

with the computer correctly classifying AMD category 1 and 4 more often while the 

physician correctly classified AMD category 2 and 3 more often. One of the salient features 

of the 4-class results is the difficulty both the computer and the physician had distinguishing 

AMD category 1 from AMD category 2. The computer only classified a total of four AMD 

category 2 images correctly and misclassified 127 (64.1%) as AMD category 1. This poor 

performance is to be expected and is due to the relatively very small number (198) of AMD 

category 2 images available to train the classifier. Additionally, because of the much larger 

number of category 1 images present in the training set the classifier is biased to choose 

category 1 over 2. On the other hand, the physician classified 78 AMD category 2 images 

correctly for only a 39.4% correct rate. Furthermore, the physician misclassified 28% of 

AMD category 1 images as category 2 and misclassified 41.4% of AMD category 2 images 

as AMD category 1. The 28% and 41.4% represent the two largest misclassification rates in 

the physicians' 4-class classification counting matrix. These misclassification challenges 

affecting both machine and human are also likely due to the fact that categories 1 and 2 

present very similarly, as category 2 entails the presence of very small number of drusen 

present outside the macula. As in the 4-class classification problem, the computer and 

physician' results are also similar in performance for the 3-class and 2-class problems, with 

the physicians' results being slightly better due to the combining of AMD category 1 AMD 
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category 2 into a single class. For the 3-class problem, the physician does better for class 3 

while the machine does better for class 4. For the two-class problem, the physician does 

slightly better for classes 1&2 while 3&4 are nearly identical for physician and computer.

Table 3 provides a succinct comparison between the computer and physician. Specifically, 

the table compares the overall accuracy between the two, showing the computer accuracy is 

3.6% better in the 4-class problem and the physicians' is 3.5% and 1.8% better in the 3-class 

problem and 2-class problem respectively.

The table also shows both un-weighted and linear weighted kappa scores for the computer 

and the physician. The kappa score is generally considered to be more robust than simple 

percent agreement because it accounts for agreement occurring by chance [4],[11],[19]. 

Following Landis and Koch, the kappa scores for both the computer and the physician show 

substantial agreement with the AREDS grading for the 4-class and 3-class problem and 

values that are usually considered almost perfect agreement for the 2-class problem [4],[19].

The evaluation of our proposed automated algorithm performance and the physician grading 

is made in comparison with the AREDS severity grading that was performed by Reading 

Center Experts at national AREDS grading centers and which was used in this study as a 

gold standard.

As a final comparison between the computer and physician, we note that once the OF 

features were computed, which took about 0.5 to 1s per image to carry out on a non-GPU 

processor, the computer took about 68 minutes to complete all three classification problems 

on a MacBook Pro with a 2.8 GHz Intel Core i7 processor, while the physician took several 

days of actual time dedicated exclusively (i.e., not counting time possibly spent performing 

other duties or sleeping) to completing the task.

In summary, from the accuracy values and the kappa scores it appears that both the machine 

grading and the physician grading perform comparably. This is a very promising outcome 

for the deployment of such algorithms in clinical environments and their use for assessing 

the evolution of disease under treatment in longitudinal studies. In this study, the reduced 

performance of the machine for category 2 AMD can be attributed to the relative imbalance 

and lack of representation of that class that impairs training and introduces bias in the 

prediction. It is expected that with an even larger dataset it would be of interest, as future 

work, to assess if a machine could possibly perform better and possibly have fewer errors 

than a human operator.

Of note, the current study was performed on all of the available AREDS images which are 

commonly referred to as AREDS1. We did not exclude images based on any kind of quality 

criteria because we intended to use a dataset that would be as representative as possible of 

the type of problems that would be seen in actual practice. Although some AREDS1 images 

have artifacts, these images are in general well behaved. Should we have excluded some 

images based on quality this would have undoubtedly raised the performance numbers 

reported above. One mitigating factor in this dataset is that it is made up of digitized images 

taken from analog photographs. This is also a factor that may lower the resulting 

performance.
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7. Conclusion

We used a large publicly available dataset of AMD images, the NIH AREDS dataset, to 

characterize the performance of deep learning universal feature-based multi-class AMD 

severity categorization. The results show that -- with virtually no additional processing -- 

universal deep features combined with support vector machines provide attractive 

performance characteristics and transfer well to the domain of retinal imagery. Considering 

that universal features were used here and that no further DCNN optimization was attempted 

for this problem, the results are very encouraging. The universal features were taken from a 

fully connected layer of the OF DCNN, and the results show that they encapsulate well, and 

in a compact fashion, low level features and spatial characteristics that are also well adapted 

for analyzing retinal fundus images. Clinically, the approach is important since it allows for 

fine categorization of clinically relevant features of AMD as well as the isolation of cases of 

individuals with the often asymptomatic intermediate stage who require immediate referral 

to an ophthalmologist.

Future work may be dedicated to finding techniques for direct DCNN fine tuning and 

retraining for ARIA classification problems in general and AMD in particular. We believe 

that additional ARIA problems other than AMD classification can benefit from the same 

basic approach, this includes for example diabetic retinopathy classification, but it also 

includes tasks such as vessel and optical disk segmentation. More importantly, this approach 

could be beneficial for not only classifying severity within a particular retinal disease, but 

could also assist in diagnosis. That is, distinguishing among various retinal pathologies and 

subsequently classifying the severity level within the identified pathology.
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Figure 1. 
Fundus images showing two examples for each of the four AMD categories. Top row: AMD 

category 1 (healthy retina). Second row: AMD category 2 (early stage AMD). Third row: 

AMD category 3 (intermediate stage AMD). Bottom row: AMD category 4 (advanced 

AMD).
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Figure 2. 
Grid areas used to compute the Overfeat feature vectors.
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Table 1

Number of AREDS images in each AMD category after eliminating redundant data in cases in which two 

stereo images of the same eye were taken on a given visit.

Total Number of Images Images in Category 1 Images in Category 2 Images in Category 3 Images in Category 4

5664 1566 198 1853 2047
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Table 2
Counting/confusion matrices comparing the computer with the physician
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