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Summary
The widespread adoption of health information technology (HIT) has led to new patient safety ha-
zards that are often difficult to identify. Patient safety event reports, which are self-reported de-
scriptions of safety hazards, provide one view of potential HIT-related safety events. However, iden-
tifying HIT-related reports can be challenging as they are often categorized under other more pre-
dominate clinical categories. This challenge of identifying HIT-related reports is exacerbated by the 
increasing number and complexity of reports which pose challenges to human annotators that 
must manually review reports. In this paper, we apply active learning techniques to support classifi-
cation of patient safety event reports as HIT-related. We evaluated different strategies and demon-
strated a 30% increase in average precision of a confirmatory sampling strategy over a baseline no 
active learning approach after 10 learning iterations.
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Introduction
Over 90% of hospitals in the United States have adopted basic electronic health record technology 
which includes functions such as clinical information, computerized provider order entry (CPOE), 
results management, and decision support [1]. These health information technology (HIT) systems 
have a tremendous impact on clinical care processes. While HIT can improve care processes, it can 
also pose serious safety hazards if not designed, developed, implemented, and used effectively [2]. In 
order to optimize HIT and reduce safety hazards, it is imperative that we develop an in-depth under-
standing of HIT system-induced errors during the clinical care process.

Patient safety event (PSE) reports, which are descriptions of safety hazards or errors reported and 
initially categorized by frontline staff, offer one view of the impact of HIT on safety. Most hospitals 
have a PSE reporting system in place and frontline clinicians are encouraged to report events. PSE 
reports generally consist of structured and unstructured data elements. The structured data el-
ements generally require the reporter to select a predefined category that best represents the nature 
of the event report (fall, medication, laboratory, etc.). The unstructured data consists of a free-text 
narrative describing the hazard [3]. Free-text narratives can be a rich source of information, particu-
larly for complex events. In most hospitals, the PSE reports are then reviewed by a patient safety of-
ficer or other analysts to identify trends.

Often the predefined category from the structured data is misleading for several reasons. First, 
many safety hazards cannot be classified into one specific category. This is particularly true for HIT-
related events. For example, consider an entry error while ordering a medication using CPOE. This 
event may be categorized as a medication-related event or a HIT-related event. Most PSE reporting 
systems do not allow two primary structured categories to be selected. Second, frontline staff may 
not have the time to determine the specific category that is the best fit for the event being entered 
given other clinical duties he or she must perform. Third, frontline staff may not know how each 
category is specifically defined by the analyst that reviews PSE reports. Below are examples of PSE 
free-text descriptions that were categorized by the frontline staff into a general predefined category 
of “Other” and “Diagnosis/Treatment” (respectively). Both events have a clear HIT contributing fac-
tor:

“Admission weight of 75 kg entered into EHR in pound field as 75 lbs. This weight was automatically converted 
to 34.02 kg. This caused the drip calculations to be based on weight of 34.02 kg.”
“Pt [Patient] on electronic board was automatically removed after system reset at midnight. Pt missed medi-
cation at appropriate time.”

To identify HIT-related events, which is a critical step to improve HIT systems and improve safety, 
PSE events must be manually reviewed by patient safety officers or other analysts to identify those 
events that have a HIT component. Accurately identifying HIT-related events from PSE databases 
containing tens of thousands of reports is labor intensive. Consequently, the manual review process 
is a serious limiting factor in identifying HIT hazards from PSE data.

To improve HIT safety event analysis and the categorization of PSE events as being HIT-related, 
we examine the utility of applying an active learning (AL) approach to identify HIT-related PSE re-
ports. We implement and evaluate different AL strategies, describe a system for annotation, and dis-
cuss insights gained from this real-world application.

Background
Although an agreed upon definition of HIT safety hazards is lacking, there has been tremendous in-
terest in better understanding these hazards to reduce patient harm [4–7]. For the purposes of this 
study, we utilized the Agency for Healthcare Research and Quality’s (AHRQ) definition of a HIT 
hazard to identify HIT-related events [8]. “A [HIT] hazard is a characteristic of any [HIT] appli-
cation or its interactions with any other health care system (e.g. the people, equipment and work 
spaces of an ICU) that increases the risk that care processes will be compromised and patients 
harmed… hazards may arise due to the inadequacies in the design, manufacture, implementation, 
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or maintenance of [HIT]. They may also arise in the interactions between [HIT] and other complex 
health care systems… [and] combine with other characteristics of the care system to overwhelm the 
vigilance and skill of the health care team...” [8].

Most research seeking to understand HIT safety hazards has focused on developing taxonomies 
and analysis tools, including computational approaches, to identify HIT-related safety event reports. 
However, these models have relied on static, manually annotated datasets which are time consum-
ing, labor intensive, and costly [4, 9–11]. Active learning offers a potential solution to this resource 
intensive manual coding process.

Active learning
Active learning (AL) is a semi-supervised human-in-the-loop machine learning approach that lever-
ages both human insight and natural language processing algorithms to annotate data [12, 13]. The 
motivation behind AL is that human annotation is resource intensive and, strategically, data points 
that would add the most value to a machine learning model should be annotated. While the benefits 
of AL have been demonstrated in several research areas including medical and clinical applications 
[12, 14–16], most previous research has used simulated human annotators as opposed to actual 
human annotators [17, 18]. The reliance on simulated humans can be a major weakness when this 
approach is applied to PSE data given the difficulty in interpreting PSE reports. In addition, the da-
tasets previously used have been well annotated and cleaned making it difficult to translate the 
methods to real-world problem areas like HIT safety hazard identification. In this paper we build 
upon previous research by comparing three different AL strategies integrated with machine learning 
models to identify HIT-related PSE reports from a large set of diverse reports [9]. We compare the 
three different AL strategies to a support vector machine (SVM) model with no AL and examine 
model evolution characteristics and outputs.

Methods
We first describe the dataset used and the AL workflow, ▶ Figure 1. We then discuss three AL query 
strategies and the evaluation metrics.

Dataset
Data were comprised of a selection of anonymous PSE reports from the Institute for Safe Medication 
Practices (ISMP) between 2007 and 2016. As a Patient Safety Organization (PSO), ISMP serves as a 
safe harbor for all PSE reports from hospitals in Pennsylvania, US. Although ISMP as an organiz-
ation is focused on improving medication safety, the dataset that was analyzed contains all cat-
egories of PSE reports (fall, medication, surgery, etc.) and is not limited to medication reports. Data 
were divided into a set of 252 labeled reports and 5,000 unlabeled reports randomly selected from 
the ISMP dataset. Labeled reports were annotated in the context of HIT as either “Likely” (120/252), 
“Unlikely” (96/252), or “Need More Information” (36/252). “Likely” refers to HIT likely being a con-
tributing factor, based on the HIT hazard definition, the PSE free-text narrative, and reasonable as-
sumptions about clinical practice [8]. Examples of “Likely” reports include: usability design issues 
(e.g. information hard to find or difficult data entry) that result in order or administration error, 
downtime occurrences, and system interaction inaccuracies. “Unlikely” refers to HIT unlikely being 
a contributing factor of the PSE given the narrative and reasonable assumptions about clinical prac-
tice. Reports lacking sufficient detail to make the above distinction were coded as “Need More Infor-
mation.” The labeled reports were annotated by three annotators [RR, KA, JH] with expertise in 
human factors and HIT. Inter-rater reliability (IRR) between the three annotators was assessed for 
every set of 50 reports; differences were reconciled through discussion. IRR resulted in a final Fleiss’ 
kappa of 0.81 for the three-way labeling task. This study was approved by the MedStar Health Re-
search Institute Institutional Review Board (protocol #2014–101).
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Active Learning Workflow

Reports were preprocessed by removing punctuations, numbers, and common stop words. Reports 
on average contained 27 words with a standard deviation of 33. Words were converted to lower case, 
stemmed, and a term frequency-inverse document frequency (tf-idf) vector for each report was gen-
erated. These tf-idf feature vectors were used for the training and model development in this bag-of-
words approach and there were approximately 700 features. We initialized an SVM learning model 
with a radial basis function trained on an approximately balanced dataset of 216 manually anno-
tated reports (120 “Likely”). This approach has been shown to perform well in similar tasks [19, 20].

The resulting SVM was then applied to 5,000 unlabeled reports. Five reports from the unlabeled 
set were then selected for human annotation using one of the query strategies described below. The 
annotated reports were then added to the labeled reports and removed from the unlabeled set. The 
model was retrained (one learning iteration) and the human was presented with five new reports. 
We developed a system with a minimalistic user interface that allows the human to annotate each re-
port, providing feedback to the underlying SVM model. While this batch learning approach might 
converge slower than an incremental approach, we believe reviewing reports in batches is more re-
flective of an actual human annotation process [14]. In addition, to reduce Type II errors, reports 
annotated as “Need More Information” were excluded from the training process.

Stopping criteria
To better evaluate and compare the incremental benefits of the AL strategies, we set the number of 
learning iterations to ten (stopping criteria). We examined the results after each iteration to under-
stand the evolution of the models. 

Query strategies – sample reports
We utilized the LIBSVM probability estimate extension for SVM class labels in our AL workflow 
[21]. For this binary classification task (“Likely” or “Unlikely”), probabilities associated with SVM 
predictions is a fitted logistic distribution using maximum likelihood to the decision values [21]. As 
a result, each SVM prediction has an associated likelihood probability (ranging from 0.5 to 1). For 
example, a model is more confident in a “Likely” prediction with 0.98 probability compared to an-
other “Likely” prediction with a probability of 0.75. In addition, previous research has identified the 
importance of minimizing AL iteration time when involving human annotators [17]. We used these 
concepts to select the three different AL query strategies below.

Uncertainty Sampling – Baseline (USB)
In USB, reports with the lowest likelihood probability, regardless of their predicted classification, 
were selected for annotation. This approach parallels other uncertainty sampling approaches in that 
the highest uncertain, or least confident, model predictions are selected for annotation [22]. There 
was no specific cut-off threshold used for sampling. Instead the associated classification probability 
was used to rank the results. The top 100 results were evaluated, a typical approach for information 
retrieval tasks [23].

Uncertainty Sampling – Likely (USL)
This strategy modifies the USB approach in that only uncertain reports tending towards “Likely” 
were selected, ▶ Figure 2. This approach is motivated by decreasing the occurrence of false positives.

Confirmatory Sampling – Likely (CSL)
This approach requires annotators to confirm reports predicted as “Likely” with high probability 
[16]. The motivation for this last strategy is to reduce false positives and thus improve the precision 
of the model early in its development.
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Evaluation

We evaluated and compared four model conditions: three different AL models and a control SVM 
without AL: USB, USL, CSL, and SVM. Each AL condition was randomly assigned to a different an-
notator. To equalize the amount of training data across conditions, we added an additional 50 anno-
tated reports (reports were randomly selected from the initial unlabeled reports) to the training data 
in the control SVM condition. Each model was evaluated based on precision, or positive predictive 
value (PPV), at K, where K is a threshold parameter. This is a common approach for evaluating in-
formation retrieval search results when global sensitivity and specificity metrics are difficult to as-
sess [23]. For example, it is very difficult to fully evaluate the number of false positives or false 
negatives in a Google search. Instead only the top K retrieved search items are reviewed rather than 
doing an exhaustive review. In addition to assessing high probability K (where K = 100) reports, we 
also reviewed K reports predicted as “Likely” with low probability. This evaluation was done 
through manual review and was to assess the performance at model boundaries. Lastly, we reported 
on the evolution of the AL model predictions.

Results

Model classifications
Each model had high precision when evaluating high probability predictions, with the Uncertainty 
Sampling - Likely strategy, USL, (0.85) slightly outperforming other models, ▶ Table 1. This demon-
strates there was little performance difference in sampling strategy for reports that can be easily 
identified as HIT-related. However, Confirmatory Sampling - Likely (CSL) had the highest precision 
for lower bound reports (a ten-fold increase and a 30% average precision increase over the SVM 
control). This difference in performance suggests CSL may be better at discerning or identifying 
more complex reports, specifically with earlier detection and removal of false positives. Being able to 
identify HIT-related reports after fewer iterations is beneficial for annotators in that their time 
would be spent reading more relevant reports. CSL also had the fewest “Likely” categorized reports 
after ten iterations which could also be reflective of more efficient filtering of false positives. Having 
a lower number of “Likely” labeled reports while still maintaining reasonable precision suggests 
better overall model performance, although this requires additional investigation to confirm.

Model evolution
We investigated the evolution of predictions after each AL iteration, ▶ Figure 3. The number of re-
ports where the predicted label switched from “Likely” to “Unlikely” (left sub-graph) and from “Un-
likely” to “Likely” (right sub-graph) are shown for each AL strategy. The results after each learning 
iteration are shown on the vertical axis. Confirmatory Sampling - Likely (CSL) had the least label 
prediction fluctuations suggesting more stable and gradual model changes through each iteration. 
USB had the most oscillation in predictions through each iteration which could be reflective of sam-
pling at decision boundaries. Furthermore, the variability with USL tended to have reports relabeled 
as “Likely.” This may be due to better identification of false positives which is also reflected in less 
“Likely” labeled reports after ten iterations.

Discussion
The active learning (AL) approach offers a potentially resource efficient alternative approach to 
manual review of PSE reports to identify reports that are HIT-related. Instead of randomly sampling 
reports to review, AL leverages human insight encoded in the iterative training process to more in-
telligently sample reports. We demonstrated that a confirmatory sampling strategy has on average 
higher precision at identifying HIT-related events. The success of the confirmatory sampling strat-
egy suggests that earlier removal of false positives and giving humans more useful reports to anno-
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tate is more effective than other strategies. At a practical level, patient safety analysts might utilize 
AL with a confirmatory sampling strategy when reviewing PSE reports to develop categorization 
models and this would result in a less resource intensive review process. Patient safety analysts may 
be able to review fewer reports and therefore spend time on other important activities to improve 
safety. Furthermore, the degree of HIT literacy and insight of the reporters are examples of report 
variability that make AL useful in this real-world application. This method is also preferred over it-
erative development of keyword search phrases because AL utilizes advanced statistical techniques 
to identify relevant reports. 

Applications of Active Learning
Our work suggests that AL has real-world applicability. It can be used to identify HIT-related events 
from large datasets where human annotation is a major barrier to understanding trends and pat-
terns in the data. Our AL approach required the development of a system that was used by the 
human annotators to rapidly review data and annotate the data for further model refinement. The 
system we built required several important design decisions to fit the needs of the human anno-
tators. First, query strategies and the sampling size were selected to reduce the model iteration time 
to 1–2 seconds. Second, for this initial evaluation, we only provided the free-text of the reports to the 
annotators. Future research could investigate additional design decisions such as the impact of 
showing annotators model predictions and confidence levels on the annotation process. 

Limitations
This analysis is limited by the integrity and quality of voluntary, self-reported PSE data. The data 
used in our analysis stemmed from one source, the Institute for Safe Medication Practices, which 
sources data from hospitals in Pennsylvania, US. To improve the generalizability of the results, addi-
tional data sources must be examined. In addition, we excluded the reports classified as “Need More 
Information” to simplify the modeling approach. Future work might use the approach of assigning 
annotator weights or confidence assumptions to reports in this category [24]. Only 200 output re-
ports from each condition were evaluated. Additional evaluation techniques could be developed to 
address this type of real-world evaluation challenge. We tested ten AL iterations with three anno-
tators. It would be interesting to compare these results with an approach that uses more learning it-
erations and annotators with different domain expertise. Lastly, model learning time and complexity 
will increase with the number of reports. Different techniques, such as staged learning increments 
and parallel distributed machine learning systems, are needed to maintain a short iteration time and 
acceptable user experience [25, 26].

Conclusion
PSE reports offer a lens to better understand how HIT impacts patient safety and patient care. To 
improve the analysis of patient safety event reports to identify HIT-related events, we demonstrate 
the benefits of an AL approach with confirmatory sampling over a SVM model with no AL, helping 
to focus and increase the value of human annotators.

Question
Which metric is generally more useful when evaluating the relevance of the first 100 retrieve reports 
from an active learning approach?
 A – Specificity
 B – Sensitivity
 C – Positive Predictive Value
 D –    Negative Predictive Value
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Correct answer is C: Positive Predictive Value, or precision, is a standard metric used for evaluating 
information retrieval tasks and is more appropriate than other metrics because such metrics cannot 
be accurately or meaningfully calculated without a fully annotated dataset (Manning 2008). For 
example, it is burdensome to fully evaluate the number of false positives or false negatives in a 
Google search. Instead, one typically only reviews the top few search returns.
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Fig. 1 Active learning experiment workflow shows an iterative loop requiring human annotation feedback to up-
date a machine learning model until an externally defined stopping criteria is met.

Fig. 2 Black solid circles indicate the unlabeled (circles with “?”) samples selected under the two different uncer-
tainty sampling strategies for a binary classification task (“L” circles as “Likely” and “U” circles as “Unlikely”).
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Uncertainty Sampling – 
Baseline (USB)

Uncertainty Sampling – 
Likely (USL)

Confirmatory Sampling – 
Likely (CSL)

Control SVM (SVM)

Precision (K=100)

High Probability

0.83

0.85

0.84

0.83

Low Probability

0.02

0.02

0.28

0.02

Average

0.43

0.44

0.56

0.43

Label “Likely”

68% (3364/4950)

61% (3009/4950)

34% (1678/4950)

74% (3661/4950)

Table 1 Comparison of model performance evaluated for precision, or positive predictive value, at K=100, for both 
high and low probability classifications as well as the percent of “Likely” categorized reports.
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