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Abstract

One of the most common analysis tasks in genomic research is to identify genes that are 

differentially expressed (DE) between experimental conditions. Empirical Bayes (EB) statistical 

tests using moderated genewise variances have been very effective for this purpose, especially 

when the number of biological replicate samples is small. The EB procedures can however be 

heavily influenced by a small number of genes with very large or very small variances. This article 

improves the differential expression tests by robustifying the hyperparameter estimation 

procedure. The robust procedure has the effect of decreasing the informativeness of the prior 

distribution for outlier genes while increasing its informativeness for other genes. This effect has 

the double benefit of reducing the chance that hypervariable genes will be spuriously identified as 

DE while increasing statistical power for the main body of genes. The robust EB algorithm is fast 

and numerically stable. The procedure allows exact small-sample null distributions for the test 

statistics and reduces exactly to the original EB procedure when no outlier genes are present. 

Simulations show that the robustified tests have similar performance to the original tests in the 

absence of outlier genes but have greater power and robustness when outliers are present. The 

article includes case studies for which the robust method correctly identifies and downweights 

genes associated with hidden covariates and detects more genes likely to be scientifically relevant 

to the experimental conditions. The new procedure is implemented in the limma software package 

freely available from the Bioconductor repository.
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1. Introduction

Modern genomic technologies such as microarrays and RNA sequencing have made it 

routine for biological researchers to measure gene expression on a genome-wide scale. 

Researchers are able to measure the expression level of every gene in the genome in any set 

of cells chosen for study under specified treatment conditions. This article focuses on one of 

the most common analysis tasks, which is to identify genes that are differentially expressed 

(DE) between experimental conditions.

Gene expression experiments pose statistical challenges because the data are of extremely 

high dimension while the number of independent replicates of each treatment condition is 

often very small. Simply applying univariate statistical methods to each gene in succession 

can produce imprecise results because of the small sample sizes. Substantial gains in 

performance can be achieved by leveraging information from the entire dataset when making 

inference about each individual gene.

Empirical Bayes (EB) is a statistical technique that is able to borrow information in this way 

(Efron and Morris, 1973; Morris, 1983; Casella, 1985). EB has been applied very 

successfully in gene expression analyses to moderate the genewise variance estimators 

(Baldi and Long, 2001; Wright and Simon, 2003; Smyth, 2004). These articles assume a 

conjugate gamma prior for the genewise variances and produce posterior variance estimates 

that are a compromise between a global variance estimate and individual genewise variance 

estimates. The posterior variance estimators can be substituted in place of the classical 

estimators into linear model t-statistics and F-statistics. Wright and Simon (2003) and Smyth 

(2004) derived exact small sample distributions for the resulting moderated test statistics. 

They showed that the EB statistics follow classical t and F distributions under the null 

hypothesis but with augmented degrees of freedom. The additional degrees of freedom of 

the EB statistics relative to classical statistics represent the information that is indirectly 

borrowed from other genes when making inference about each individual gene.

EB assumes a Bayesian hierarchical model for the genewise variances but, instead of basing 

the prior distribution on prior knowledge as a Bayesian procedure would do, the prior 

distribution is estimated from the marginal distribution of the observed data. Smyth (2004) 

developed closed-form estimators for the parameters of the prior distribution from the 

marginal distribution of the residual sample variances. This procedure is implemented in the 

limma software package (Ritchie et al., 2015) and the resulting EB tests have been shown to 

offer improved statistical power and false discovery rate (FDR) control relative to the 

ordinary genewise t-tests, especially when the sample sizes are small (Kooperberg et al., 

2005; Murie et al., 2009; Ji and Liu, 2010; Jeanmougin et al., 2010). The limma software 

has been used successfully in thousands of published biological studies using data from a 

variety of genomic technologies, especially studies using expression microarrays and RNA-

seq.

This article improves the limma EB differential expression tests by robustifying the 

hyperparameter estimation procedure. As in the original method, we fit genewise linear 

models to the log-expression values and extract residual variances, but now we give special 
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attention to residual variances that are exceptionally large or exceptionally small. Genes 

corresponding to extreme variances will be considered ‘outliers’. Following terminology 

used in the genomics literature, we refer to outlier genes with large variances as 

‘hypervariable genes’. We show that, for certain genomic datasets, a small number of outlier 

genes can have an undesirable influence on the hyperparameter estimators, decreasing the 

effectiveness of the EB differential expression procedures. (Figure 1 plots residual standard 

deviations for three datasets. In each study there are special biological factors that cause a 

subset of the genes to have larger than expected residual variances.) We show that in such 

cases the effectiveness of EB can be restored by a robust approach that isolates the outlier 

genes. We develop a robust estimation scheme with a positive breakdown point for the 

hyperparameters and incorporate this into the differential expression procedure. The robust 

EB procedure has the effect of decreasing the informativeness of the prior distribution for 

hypervariable genes while increasing its informativeness for other genes. This effect has the 

double benefit of reducing the chance that hypervariable genes will be spuriously identified 

as DE while increasing statistical power for the main body of genes.

Our robust EB approach uses more diffuse prior distributions for the variances of 

hypervariable genes. A conjugate prior is still used for each gene and this allows us to 

preserve a key feature of the original EB differential expression procedures, which is the 

ability to derive exact small-sample null distributions for the test statistics. Our robust EB 

approach is fast and numerically stable without difficult convergence issues. It reduces 

exactly to the original EB procedure when there are no hypervariable genes. Simulation 

studies show that the robustified tests for differential expression have similar performance to 

the original tests in the absence of outlier genes but have greater power and robustness when 

they are present.

To the best of our knowledge there has been no previous work on robust EB for variances. 

Most robust EB schemes in other contexts have been based on heavy-tailed prior 

distributions. We have avoided such an approach because crucial advantages of the original 

DE procedures would thereby be lost, in particular the posterior mean variance estimators 

would no longer be available in closed form and the test statistics would no longer yield 

exact p-values. Efron and Morris (1972) proposed limited translation rules when estimating 

means of standard normal distributions. This proposal originated the idea of limited learning 

for extreme cases, but with the aim of limiting the bias in extreme cases rather than 

improving estimation of the hyperparameters. Gaver and O’Muircheartaigh (1987) analyzed 

a Poisson process using a heavy-tailed (log-Student) prior distribution for the Poisson mean. 

This approach achieves insensitivity to outliers but loses efficiency as well as being less 

mathematically tractable. Liao, McMurry and Berg (2014) estimated log-fold expression 

changes and achieved robustness with respect to misspecified working priors by 

conditioning on the rank of each estimated log-fold-change rather than on the actual 

observation. Again this is less mathematically tractable than our approach.

Our robustified EB procedure has been implemented in the limma software package and can 

be invoked by the option robust=TRUE in calls to the eBayes or treat (McCarthy and 

Smyth, 2009) functions. Invoking the option requires no other changes to the analysis 
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pipelines from a user point of view. All downstream functions recognize and work with 

robust EB results as appropriate.

The following sections review the EB approach to differential expression, then derive the 

robust estimators and modified differential expression scheme. We evaluate the performance 

of the robustified procedure using simulations, then present three case studies in which the 

EB approach identifies genetic instabilities specific to each study. We give a detailed 

analysis of a microarray study of PRC2 function in pro-B cells for which a gender effect 

produces hypervariable genes. The EB procedure is effective at downweighting sex-linked 

genes associated with the unwanted covariate in favor of genes of more scientific interest. 

Finally we discuss possible generalizations of our robust EB approach to other contexts.

2. Linear models and moderated t-statistics

Consider a genomic experiment in which the expression levels of G genes are measured for 

n RNA samples. We follow the notation and linear model formulation introduced by Smyth 

(2004). Write ygi for the log-expression level of gene g in sample i. The log-expression 

values satisfy genewise linear models

where yg is the column vector (yg1,…, ygn)T, X is an n × p design matrix of full column rank 

representing the experimental design and βg is an unknown coefficient vector that 

parametrizes the average expression levels in each experimental condition. For each gene, 

the ygi are assumed independent with

where  is an unknown variance and the wgi are known weights. The least squares 

coefficient estimator is

where Wg is the diagonal matrix with elements wg1,…, wgn. The residual sample variances 

are

where  and dg is the residual degrees of freedom. Usually dg = n − p, but genes with 

missing y values or zero weights may have smaller values for dg. Conditional on , 

is assumed to follow a chisquare distribution with dg degrees of freedom, an assumption we 

write as
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We assume a conjugate prior distribution for  in order to stabilize the genewise estimators. 

The  are assumed to be sampled from a scaled inverse chi-square prior distribution with 

degrees of freedom d0 and location ,

It follows that the posterior distribution of  given  is scaled inverse chi-square,

and the posterior expectation of  given  is  with

The  are the EB moderated variance estimators. The moderated t-statistic for a given 

coefficient βig is

where vi is the ith diagonal element of (XTWgX)−1. If the null hypothesis βgj = 0 is true, then 

 follows a t-distribution on dg +d0 degrees of freedom (Smyth, 2004). In general, any 

ordinary genewise t or F-statistic derived from the linear model can be converted into an EB 

moderated statistic by substituting  for , in which case the denominator degrees of 

freedom for the null distribution increase from dg to d0 + dg.

3. Robust hyperparameter estimation

Under the above hierarchical model,  follows a scaled F-distribution on dg and d0 degrees 

of freedom,

The log-variances log  follow Fisher’s z-distribution, which is roughly symmetric and has 

finite moments of all orders. The limma package estimates the hyperparameters and d0 by 
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matching the theoretical mean and variance of the z-distribution to the observed sample 

mean and variance of the zg. The empirical estimates  and d0 are then substituted into the 

above formulas to obtain  and to conduct genewise statistical tests for differential 

expression.

As the observed variance of the log  increases, the estimated value of d0 decreases, 

meaning that less information is borrowed from the prior to form the moderated t-statistics. 

In the examples shown in Figure 1, the variance of log  would be much reduced if a small 

number of the most variable genes were excluded. We therefore seek to replace limma’s 

moment estimation scheme for the hyperparameters with a robust version.

Our approach is to apply moment estimation to the Winsorized sample variances. The idea 

of Winsorizing is to reset a specified proportion of the most extreme sample variances to less 

extreme values (Tukey, 1962). Let pu and pl be the maximum proportion of outliers allowed 

in the upper and lower tails of the  respectively. Typical values are pl = 0.05 and pu = 0.1, 

although any values strictly between 0 and 0.5 are permissable. Let ql and qu be the 

corresponding quantiles of the empirical distribution of , so that pl of the variances are less 

than or equal to ql and pu are greater than or equal to qu. The empirical Winsorizing 

transformation is defined by

Write zg = log win  for log-transformed Winsorized variances, and let  and  be the 

mean and variance of the observed values of zg.

Define the Winsorized F-distribution as follows. If  then the Winsorized random 

variable is

where now ql and qu are the lower tail pl and upper tail pu quantiles of the  distribution.

Write ν(dg, d0) and ϕ (dg, d0) for the expected value and variance of log win(f). An efficient 

and accurate algorithm for computing ν and ϕ using Gaussian quadrature is described in 

Section 10.

Assuming that the dg are all equal, the hyperparameter d0 is estimated by equating 

 and solving for d0 using a modified Newton algorithm (Brent, 1973). Having 

estimated d0, the logarithm of the parameter  is estimated by .
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If the dg are not all equal, then the  are transformed to equivalent random variables with 

equal dg before applying the above algorithm. Details of this transformation are given in 

Section 10.

4. Gene-specific prior degrees of freedom

Having estimated d0 and s0 robustly, we can identify genes that are outliers in that their 

variances are too large to have reasonably arisen from the estimated prior. The question 

naturally arises as to how to handle such outliers. One reasonable approach would be to 

ignore the prior information for such genes, on the basis that the prior appears to be 

inappropriate. This approach would assign d0 = 0 for such genes, meaning that ordinary t-
tests would be used for these genes instead of EB moderated statistics. On the other hand, 

the prior should in principle still have some limited relevance even for the outliers. Our 

approach is to assign gene-specific prior degrees of freedom, d0g, whereby d0g = d0 for non-

outlier genes but outlier genes are assigned smaller values depending on how extreme the 

outlier is. In effect we assume that each hypervariable gene g has a true variance  sampled 

from  with 0 < d0g < d0.

We start by identifying a lower bound for the d0g from the largest observed  value. 

Specifically we find doutlier such that the maximum  is equal to the median of the 

 distribution. A fast stable numerical algorithm for finding doutlier is given in 

Section 10.

Next we evaluate the posterior probability that each gene is a hypervariable outlier. Let pg be 

the p-value for testing whether gene g is a outlier, defined by  where 

. Let π0 be the prior probability that gene g is not an outlier and let rg be the 

marginal probability of observing a residual variance more extreme than . The posterior 

probability given  that case g is not an outlier is πg = pgπ0/rg. Assuming that most genes 

are not outliers, we conservatively set π0 = 1. The marginal probability rq can be estimated 

empirically from the rank of  amongst all the observed values of , i.e., by rg = (r − 0.5)/G 

where r is the rank of  Substituting these values in the above formula yields a conservative 

estimate πg = pg/rg.

The initial estimate of πg is not necessarily monotonic in  or pg. We ensure that πg is a 

non-decreasing function of pg in the following manner. First the cases are ordered in 

increasing order of pg. Then the cumulative mean  is computed for each 

g. Let gm be the first value of g for which  achieves its minimum. All πg for g = 1,…, gm 

are set to the minimum value of , to allow for the possibility that πg might be small for a 

group of cases but not for the most extreme case. Finally, a cumulative maximum filter is 

applied to the πg, after which the πg are non-decreasing. In practice, this process is nearly 

identical to using isotonic regression (Barlow et al., 1972) to enforce monotonicity.
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Finally the genewise prior degrees of freedom are defined by

This process ensures that d0g = d0 for most genes, but any gene that is a clear outlier with a 

very small pg value will be assigned a much lower value.

5. Covariate dependent priors

In gene expression experiments, the variance of the log-expression values often depends 

partly on the magnitude of the expression level (Sartor et al., 2006; Law et al., 2014). It is 

therefore helpful to extend the EB principle to permit the prior variance  to depend on the 

average log-expression Ag of each gene. This extension generalizes the prior distribution for 

 to be gene-specific:

where  varies smoothly with Ag. In other words, the prior distribution depends on the 

covariate Ag. Such a strategy is implemented in the limma package (Ritchie et al., 2015).

Our strategy for robust EB with a variance trend is as follows. First we fit a robust lowess 

trend (Cleveland, 1979) to log  as a function of Ag We detrend the log  by subtracting the 

fitted lowess curve, then apply the robust EB algorithm described above to the detrended 

variances. The final genewise prior values  are the product of the unlogged lowess trend 

and the  estimated from the detrended variances.

6. Software implementation

The robust hyperparameter estimation strategy described above is implemented in the limma 

function fitFDist-Robustly. The tail proportions for Winsorizing are user settable with 

defaults pl = 0.05 and pu = 0.1. This function is called by squeezeVar, which computes EB 

moderated variances. squeezeVar in turn is called by user-level functions including 

eBayes and treat in the limma package and estimateDisp and glmQLFit in the edgeR 

package (Robinson, McCarthy and Smyth, 2010). These functions integrate the robust EB 

strategy into analysis pipelines for gene expression microarrays and RNA-seq. glmQLFit is 

also called in analysis pipelines of the csaw and diffHic packages for the analysis of ChIP-

seq and Hi-C sequencing data (Lun and Smyth, 2016, 2015a).

7. Evaluation using simulated data

Simulations were used to evaluate the performance of the robust hyperparameter estimators. 

Expression values were generated for 10,000 genes and 6 RNA samples. The RNA samples 

were assumed to belong to two groups, with three in each group, leading to a linear model 
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with dg = 4 residual degrees of freedom. Genewise variances and expression values were 

generated according to the hierarchical model of Section 2 with s0 = 0.2 and with d0 = 2, 4 

or 10. Both the standard and robust hyperparameter estimators were found to be accurate in 

the absence of outliers (Figure 2a, c). When 250 hypervariable genes were included, 

however, the robust estimators were considerably more accurate than the standard (Figure 

2b, d). The hypervariable genes were simulated to have d0g = 0.5. Next we checked type I 

error rates for the EB t-tests in the absence of outliers. Both standard and robust tests were 

found to control the error rate correctly (Table 1). In all simulations, the tail proportions pl 

and pu were at their default values.

Finally we evaluated statistical power and FDR control. Each simulated dataset now 

included 500 DE genes, with log fold changes generated from a N(0, 4) distribution. In the 

absence of hypervariable genes, the standard and robust EB tests were indistinguishable in 

terms of false discoveries or power (Figure 3a,c). In the presence of 250 outliers, the robust 

tests consistently gave fewer false discoveries (Figure 3b) and higher power (Figure 3d). As 

expected, the improvement achieved by the robustified tests was greater for larger values of 

d0. For simplicity of interpretation, no genes were both DE and hypervariable in these 

simulations.

8. Case studies

8.1. Loss of polycomb repressor complex 2 function in pro B cells

Polycomb group proteins are transcriptional repressors that play a central role in the 

establishment and maintenance of gene expression patterns during development. Suz12 is a 

core component of Polycomb Repressive Complex 2 (PRC2). Majewski et al. (2008, 2010) 

studied mice with a mutation in the Suz12 gene that results in loss of function of the Suz12 

protein and hence PRC2. They profiled gene expression in hematopoietic stem cells from 

these mice. Here we describe a gene expression study of a different hematopoietic cell type 

from the same Suz12 mutant mice strain. This study profiles gene expression in pro-B cells, 

an early progenitor immune cell intermediate in a series of development stages between 

hematopoietic stem cells and mature B-cells.

Our interest is to study development, so cells were isolated from 16-day embryonic mice. 

For this study, RNA was extracted from foetal pro B cells that were isolated from the liver of 

four wild-type mice and four Suz12 mutant mice. RNA was hybridized at the Australian 

Genome Research Facility to Illumina Mouse Whole-Genome-6 version 2 BeadChips, a 

microarray platform containing about 48,000 60-mer DNA sequences probing most genes in 

the genome. Intensities were background corrected, quantile normalized and transformed to 

the log2-scale using the neqc function (Shi, Oshlack and Smyth, 2010). One of the Suz12 
mutant samples was discarded because it clustered with the wildtype instead of the Suz12 
samples, leaving four wild-type and three Suz12 mutant samples. Probes were filtered from 

further analysis if they failed to achieve a detection p-value of less than 0.01 in at least two 

of the remaining samples, leaving 14,084 probes for analysis.

Linear modeling was applied to the normalized log-expression values, resulting in a residual 

sample variance on 5 degrees of freedom for each probe. Figure 1a shows the residual 
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standard deviation plotted against the average log intensity for each probe. The gray curve 

shows the estimated trend for the prior variance. The robust algorithm identified a number of 

outlier variances (Figure 1b). The non-robust estimate of the prior degrees of freedom was 

11.9. The robust algorithm estimated prior degrees of freedom 14.1 for most genes, but with 

prior degrees of freedom as low as 0.5 for the outlier variances (Figure 4a).

Further examination showed that many of the probes identified as outliers corresponded to 

genes known to have sex-linked expression, including many on the X or Y chromosomes 

(Figure 1ab). The most outlying variances corresponded to Y chromosome genes Erdr1 and 

Eif2s3y up-regulated in males, and X chromosome gene Xist, known to be up-regulated in 

females. Other outliers gene were ribosomal genes Rn18s and Rpl7a, suggesting ribosomal 

RNA retention in one or more samples, and hemoglobin genes Hbb-y and Hbb-b1 
suggesting red blood or bone marrow content in some tissue samples. None of these genes 

should be related to the Suz12 mutation.

Differential expression between the Suz12 mutants and the wildtype mice was assessed 

using EB moderated t-statistics. P-values were adjusted to control the false discovery rate at 

less than 5% (Benjamini and Hochberg, 1995). The standard and robust procedures found 

251 down-regulated and 35 up-regulated probes in common (Figure 4b). However 22 and 16 

down-regulated genes were found only by the robust or standard procedures respectively. 

The non-robust unique genes tended to be sex-linked or hemoglobin related (Xist, Apoa2, 

Hbb-b1 etc) whereas the robust unique genes were related to programmed cell death 

(Bcl2l1), cell cycle (Ccne2) or chromatin remodeling (Myst2). For up-regulated genes, 8 and 

10 unique probes were found by the robust and non-robust procedures respectively. The non-

robust unique genes tended to be Y chromosome sex-linked genes (Ddx2y, Erdr1 etc) 

whereas the robust unique genes appeared related to the PRC2 process of interest.

Investigation after the analysis confirmed that two of the Suz12 mutant embryos were in fact 

female, whereas all the other mice were male. This sex imbalance was an unwanted 

complication in the experiment, difficult to avoid without sex-typing of the embryo mice at 

the time of tissue collection. The results show that the robust EB method was successful in 

identifying and downweighting genes that are associated with the hidden covariate. The 

robust procedure results in more statistical power to detect other genes that are more likely 

to be of scientific significance.

8.2. RNA-seq profiles of Yoruba HapMap individuals

As part of the International HapMap project, RNA-Seq profiles were made of cell lines 

derived from B lymphocytes from 69 different Yoruba individuals from Ibadan, Nigeria 

(Pickrell et al., 2010a,b). Genewise read counts were obtained from the 

tweeDEseqCountData package version 1.8.0 from Bioconductor and were transformed to 

log2-counts per million with precision weights using voom (Law et al., 2014). The analysis 

compares males to females. Figure 1c shows the genewise standard deviations and Figure 1d 

gives a probability plot of the standard deviations against the fitted  distribution. The 

hypervariable genes were identified as B cell receptor segments on chromosomes 2 and 22. 

B cells contain a random selection of these segments in order to generate a repertoire of 

antigen binding sites. The robust analysis reveals that the cell lines were clonal, each cell 
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line apparently derived from a single B cell or from a very small number of original cells. It 

would be appropriate to remove the receptor segments from the RNA-seq analysis, and the 

robust EB procedure effectively achieves that.

8.3. Embryonic stem cells

Sheikh et al. (2015) used RNA-seq to profile embryonic stem cells. Genewise read counts 

were transformed using voom. Figure 1e shows the genewise standard deviations and Figure 

1f gives a probability plot of the standard deviations against the fitted  distribution. The 

hyper-variable genes are predominately associated with the ribosome or with hemoglobin, 

suggesting inconsistenciees in cell purification and RNA processing. Other hyper-variable 

genes are located in the major histocompatibility complex, known to be one of the most 

variable parts of the genome.

9. Discussion

In recent years we have routinely checked for hyper-variable genes in gene expression 

studies. We have found that many studies harbor a subset of outlier genes. In many cases, the 

identities of the hyper-variable genes suggest a mechanism for their variability. We have 

analyzed studies, for example, where the hypervariable genes are enriched for sex-linked 

genes, for ribosomal genes, for mitochondrial genes, or for B cell receptor segments. In 

other cases, hypervariable genes may be associated with a particular cell type suggesting 

inconsistent cell population proportions in the different biological samples. In some cases 

the reasons why some genes are highly variable between individuals are unknown. The 

phenomenon is common enough to be viewed as an unavoidable part of cutting edge 

genomic research rather than a result of flawed experimental procedures. In most cases the 

studies are overall high quality.

Hypovariable genes can also arise, although usually for technical rather than biological 

reasons. Quantile normalization (Bolstad et al., 2003) of expression data can occasionally 

produce expression values that are numerically identical for all samples for a given gene 

when the number of samples is small. Sequencing data can also give rise to variances that 

are zero or very small because of the discreteness of read counts.

This article describes a robustified version of EB differential expression analysis. This 

procedure protects against hyper and hypovariable genes in the sense that it allows non-

outlier genes to share information amongst themselves as if the outlier genes were not 

present. In many cases, this results in a gain in statistical power for the non-outlier genes. 

Hypervariable genes are not removed from the analysis but instead borrow less information 

from the ensemble and are assigned test statistics closer to ordinary t-statistics. Hypovariable 

genes on the other hand are moderated as for non-outlier genes—this increases their 

posterior variances closer to typical values.

A key feature of our procedure is that a conjugate Bayesian model is used for each gene, 

enabling closed-form posterior estimators and exact small-sample p-values. Robustness is 

achieved by fitting the prior distribution to non-outlier genes and by assigning lower degrees 

of freedom to the hyper-variable outliers. We have proposed a practical algorithm for 
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assigning prior degrees of freedom to outlier genes. In practice, the list of DE genes is not 

sensitive to the exact values of the prior degrees of freedom, provided that d0g = d0 for non-

outliers and d0g is substantially smaller for clear outliers. For many datasets the list of DE 

genes is unchanged for a range of reasonable values for doutlier.

The default values for the Winsorizing tail proportions pl and pu work well in our practical 

experience. Users however may choose to increase the default values for datasets where high 

proportions of outlier genes are expected.

Simulations show that the robustified EB procedure estimates the hyperparameters equally 

as accurately as the original method in the absence of outliers. When outliers are present, 

however, the robustified EB procedure was able to simultaneously increase power and 

decrease the false discovery rate when assessing differential expression.

The robust EB method developed here has been applied not only to microarray data, but also 

to data from RNA-seq (Good-Jacobson et al., 2014), ChIP-seq (Lun and Smyth, 2016, 

2015b) and Hi-C (Lun and Smyth, 2015a) technologies. With microarrays, the linear models 

are fitted to normalized log-intensities. With RNA-seq, the number of sequence reads 

overlapping each gene can be counted and the EB models can be applied to the log-counts-

per million (Law et al., 2014). Alternatively, the robust EB method can be applied to count 

data by way of quasi-generalized linear models. Lun, Chen and Smyth (2016) analyzed 

RNA-seq read counts used quasi-negative-binomial generalized linear models. The limma 

robust EB variance estimation method was applied to the genewise residual deviances 

leading to the construction of EB quasi-F-tests. The robust EB method has also been used to 

estimate the prior degrees of freedom for the weighted likelihood approach used in the 

edgeR package, again using residual deviances (Chen, Lun and Smyth, 2014).

In this article we view genes as outliers rather than individual expression values as outliers. 

An alternative robustifying approach would be to replace least squares estimation of the 

genewise linear models with robust regression (Gottardo et al., 2006; Zhou, Lindsay and 

Robinson, 2014), and the limma package has included an M-estimation option for this 

purpose for over a decade. In principle, the two approaches are complementary and both can 

be used simultaneously, i.e., one could apply the robust EB procedure of this article to 

variances estimated by robust regression. The robust regression approach assumes that the 

expression values for a gene contain one or two outliers that are “errors” whereas the other 

values are “correct”. Our experience suggests that this scenario is relatively rare for gene 

expression data. The outlier-gene approach of this article allows a more general context in 

which a hypervariable gene may produce an arbitrary number of inconsistent expression 

values that cannot be meaningfully categorized into correct and incorrect. The robust 

regression is only applicable to experimental designs with at least three expression values 

per experimental group, whereas the outlier-gene approach can be usefully applied to any 

experimental design, even down to studies with a single residual degree of freedom.

The robust EB strategy of this article could in principle be applied in other EB contexts. The 

basic idea is to estimate hyperparameters robustly, then to test for outlier cases, and finally to 
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assign a more diffuse prior to outlier cases. This approach may be particularly attractive for 

use with conjugate Bayesian models and seems different from previous robust EB strategies.

It is interesting to contrast our approach with the large literature on robust Bayesian analysis 

(Berger, 1984, 1990; Insua and Ruggeri, 2000). Robust Bayesian analysis considers a class 

of possible prior distributions and tries to limit or at least quantify the range of posterior 

conclusions as the prior ranges over the class. The issues that concern us in this article are 

different in a number of important ways. The issues that we address are specific to empirical 

Bayes and do not arise in true Bayesian frameworks for which hyperparameters do not need 

to be estimated. Our aim is not to limit the influence of the prior but to increase it for the 

majority of genes. Our method applies only to large scale data with many cases (probes, 

genes or genomic regions) whereas robust bayesian analysis is typically concerned with 

individual cases.
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10. Appendix: Details of computational algorithms

10.1. Standard (non-robust) moment estimation of the hyperparameters

In order to calculate the EB moderated t-statistics, the hyperparameters d0 and  need to be 

estimated. Here we summarize the original (non-robust) methods-of-moments strategy for 

estimating the hyperparameters proposed by Smyth (2004). The marginal distribution of the 

gene-wise residual variances  is . It is convenient to work with the logged 

variances, defined by , as these have finite moments and a roughly normal 

distribution for which the methods of moments should be efficient. The theoretical mean and 

variance of zg are available as

and

where ψ and ψ′ represent the digamma and trigamma functions respectively. Write  and 

 for the observed mean and variance of the zg. These have theoretical expections
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and

The equation for  can be solved for d0, then that for  can be solved for .

Alternatively a abundance-dependent trend can be put on s0. In that case, a regression spline 

with 4 df is used to model zg − ψ(dg/2) + log(dg/2) a function of average log2-expression, , 

and the fitted values from the regression are used in place of .

10.2. Tranforming samples variances to equal residual degrees of freedom

The ordinary non-robust moment estimators for the hyperparemeters do not require the 

residual degrees of freedom to be equal for all genes, but the robust estimation scheme does 

require this. In practice, the dg are usually equal, but occasionally some genes may have 

reduced dg because of missing expression values for some samples. If this is the case, we 

transform the sample variances  so they can be treated as being on the same degrees of 

freedom. Let d be the maximum dg. First the hyperparameters d0 and  are estimated by the 

non-robust algorithm. Then the  are transformed to  where 

denotes here the cumulative distribution function of the F-distribution on k1 and k2 degrees 

of freedom.

10.3. Computing Winsorized moments

Here we describe the computation of the mean ν(dg, d0) and variance ϕ(dg, d0) of the log 

Winsorized F-distribution. Let Z = log win(f) denote the log-Winsorized F random variable 

defined in Section 3 of the main paper. The expected value is

with plu = (1 − pl − pu). After transforming Z to the unit interval, the conditional expectation 

can be re-interpretted as

where U is uniformly distributed on the interval from a = ql/(1 + ql) to b = qu/(1 + qu) and
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where pdf is the probability density function of the F-distribution on dg and d0 degrees of 

freedom. The expectation in terms of the uniform random variable can be evaluated 

efficiently by Gauss-Legendre quadrature, as described in the next section.

Having computed the mean, the variance of Z can be obtained as

where ν = ν(dg, d0). The second term containing the conditional expectation can be re-

interpretted as (b − a) E{h(U)} with

to permit evaluation by Gauss-Legendre quadrature.

10.4. Evaluating an integral using Gaussian quadrature

To compute the Winzorized moments, we need E{h(U)} where U is uniformly distributed on 

interval [a, b]. We compute this expectation using Gauss-Legendre quadrature. Specifically, 

we use the function gauss.quad.prob from the statmod package (Smyth, 2015). This function 

computes Gauss quadrature weights and nodes using an adaption of the algorithm and 

Fortran code published by Golub and Welsch (1969). For any desired order k, nodes ui and 

weights wi can be computed such that

The approximation is exact if h(u) can be expressed as a polynomial of order 2k − 1 or less 

on [a, b]. The accuracy of Gauss-Legendre quadration is excellent if h(u) is a reasonably 

smooth function taking finite values on the interval.

All results reported in the article use k = 128 nodes. This is sufficient for close to double-

precision accuracy provided a is bounded above zero and b is bounded below one.

10.5. Solving for doutlier

Let  be the maximum of  over all genes g. We wish to find doutlier such that 

, where  is the right tail probability of the F distribution with dg 

and d0 degrees of freedom. Initializing doutlier = d0 and then repeating
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converges monotonically to the required value. Sufficient accuracy is achieved after two or 

three iterations.
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Fig 1. 
Hypervariable genes for the three case study datasets. Left panels plot genewise residual 

standard deviations vs average log2-expression. Right panels show probability plots of the 

standard deviations after transforming to equivalent normal deviates. Hypervariable genes 

are marked by chromosome number in panels a–d and by gene function in panels e–f. For 

each dataset the hypervariable genes have clear biological interpretations.
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Fig 2. 
Boxplots of standard and robust hyperparameter estimates from 1000 simulated datasets. 

True values are 0.4 for  and either 2, 4 or 10 for d0. Panels a, c show estimates when no 

outliers are present. Panels b, d show estimates when the data includes 250 hypervariable 

genes.
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Fig 3. 
Detection of differential expression. Panels a–b show the number of false discoveries 

amongt the 500 top-ranked genes. Panels c–d show power, the proportion of truly DE genes 

selected as significant at various FDR cutoffs. Results are averaged over 1000 simulations. 

Simulations b and d include 250 hypervariable genes. Results are shown for both standard 

and robust EB tests and for three values of the prior degrees of freedom.
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Fig 4. 
(a) Square-root standard deviation plotted against average log intensity for each probe. The 

gray line shows the trended estimate of the prior variance. Points are colored by the 

estimated prior degrees of freedom: probes with larger sample variances have smaller df. (b) 

Venn diagram showing overlap the numbers of significant genes for Suz12 versus wildtype 

using the standard and robust methods.
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