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Abstract

Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by 

immune complex formation with multi-organ manifestations. Lupus nephritis (LN) is one of the 

most severe types of organ damage in SLE, and it clearly contributes to increased morbidity and 

mortality due to SLE. LN occurs more frequently and is more severe in non-European ancestral 

backgrounds, although the cause of this disparity remains largely unknown. Genetic factors play 

an important role in the pathogenesis of SLE. Although many SLE susceptibility genes have been 

identified, the genetic basis of LN is not as well understood. While some of the established general 

SLE susceptibility genes are associated with LN, recent discoveries highlight a number of genes 

with renal functions that are specifically associated with LN. Some of these genes associated with 

LN help to explain the disparity in the prevalence of nephritis between individuals with SLE, and 

also partially explain differences in LN between ancestral backgrounds. Moreover, not only the 

gene mutations, but also post-translational modifications seem to play important roles in the 

pathogenesis of LN. Overall it seems likely that a combination of general SLE susceptibility genes 

cooperate with LN specific risk genes to result in the genetic propensity for LN. In this review, we 

will outline the genetic contribution to LN and describe possible roles of LN susceptibility genes.
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1. Introduction

Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized 

by multi-organ system involvement. It affects women 9 times more often than men, and 

often is diagnosed in early adulthood, frequently during the childbearing years.

Genetic and environmental factors play important roles in the pathogenesis of SLE [1]. The 

incidence and prevalence of SLE is higher in non-European ancestry, especially in African 

ancestry. The severity of SLE also varies among the ethnic groups, being more severe in 
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non-European populations [2–4]. Supporting a genetic contribution to disease, monozygotic 

twins are much more likely to be concordant for SLE than dizygotic twins (concordance rate 

24% and 2%, respectively) [5]. Familial aggregation of SLE has also been clearly 

documented, and most pedigrees support a non-Mendelian complex inheritance [6]. These 

facts strongly support notion of a polygenic genetic contribution to SLE pathogenesis.

Among the various organ manifestations of SLE, lupus nephritis (LN) is one of the most 

feared, potentially resulting in organ damage and renal insufficiency that results in poor 

clinical outcomes despite recent improvements in SLE treatment.

Genome-Wide-Association Studies (GWAS) and candidate gene association studies have 

revealed numerous risk genes for SLE, including loci which contain genes that function in 

the innate and adaptive immune system [7, 8]. Some of these genes are also closely 

associated with LN. However, most of these previous studies were not primarily focused on 

the nephritis phenotype, and less is known about which genes predispose to LN. Some 

recent studies which have focused on identifying the genes specifically responsible for LN 

have identified intrarenal genes that are associated with LN, but not associated with the 

susceptibility of SLE in general [9, 10]. While the exact functional mechanisms of these 

renal-related candidate genes remains unclear, it seems that the genetic basis of LN involves 

a combination of general SLE susceptibility genes which function in the immune system and 

genes which are more renal-specific that predispose specifically to LN (Figure 1). In this 

review, we outline the genetic contribution to LN and also discuss possible roles of each 

candidate genes in the pathogenesis of LN.

2. Difference in incidence rate and severity of LN between ethnicities

Among various organ manifestations of SLE, LN is one of the most severe, and can progress 

to end-stage renal disease (ESRD) leading to increased morbidity and mortality. LN affects 

about 40% of SLE patients throughout their lifetime [11]. Despite recent advances in 

treatment, patients with LN still have higher morbidity and mortality compared with those 

without LN [11–13]. It is well known that African, Asian, and Hispanic populations are 

more likely to develop LN as compared to European ancestry [3, 11, 14–16]. There are also 

differences in severity of LN among the ethnicities, with LN being more severe in non-

European populations [3, 11]. This disparity between ancestral backgrounds could be related 

to genetic or environmental factors [17]. To investigate the importance of genetic factors, 

Sanchez et al. conducted a study evaluating the genetic impact of the proportion of 

Amerindian vs. European genetic ancestry in admixed populations living in South America. 

This is an informative way to study the contribution of genetics to LN with some control 

over environment, as different individuals living in the same population and same location 

will have different proportional genetic ancestry. This study revealed that an increased 

proportion of Amerindian genetic ancestry correlated with increased risk of developing LN 

[2]. Another study demonstrated familial clustering of ESRD African ancestry SLE patients 

with LN, suggesting shared genetic factors contributing to LN in these families [18]. These 

studies support the idea that genetic factors contribute to the pathogenesis of LN.
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3. LN risk genes and possible functions

Although GWAS studies have identified numerous SLE risk genes, thus far fewer genes have 

been identified as predisposing to the LN phenotype. Most of the reported risk genes for LN 

have been studied in candidate gene studies, after being identified as SLE risk factors in 

GWAS studies [7, 8], with the hypothesis that SLE susceptibility genes may also be LN risk 

genes. More recently, studies have examined the LN phenotype directly, comparing patients 

that have developed LN to those patients who have not developed LN.

3.1. SLE susceptibility genes associated with LN

3.1.1. HLA-DR—The major histocompatibility complex (MHC) region which contains 

human leukocyte antigen (HLA) genes is located on human chromosome 6. This locus 

contains more than 200 genes, many of which function in the immune system. The HLA 

Class II region contains HLA-DR, -DQ, and –DP genes. They are highly expressed on 

antigen-presenting cells and are important for the activation of CD4+ T cells and other 

immune responses. Polymorphisms in the HLA region were among the first to be discovered 

as SLE risk factors, and this locus remains the strongest common genetic risk factor for SLE 

[19].

Among the HLA alleles, HLA-DR2 and HLA-DR3 are the most established SLE 

susceptibility loci proven in previous studies [7, 20]. Large phenotypic association studies 

also revealed HLA-DR3 [9, 21, 22] as a susceptibility gene for LN in European ancestry. 

Additionally, meta-analysis of multiethnic case-control studies identified 7 HLA Class II 

candidate alleles in the association of LN. HLA-DR15 (part of the older HLA-DR2 serotype 

group) and -DR3 were found as risk alleles for LN, and interestingly -DR4 and -DR11 were 

associated with protection from LN [23]. Despite the strong association of HLA alleles with 

both SLE and LN, the actual mechanism of how these HLA-DR haplotypes predispose to 

LN has not been elucidated. Some studies support the idea that particular MHC molecules 

may permit presentation of self peptides in an abnormal way. One study identified a 

dominant HLA-DR3 restricted T cell epitope on the SmD autoantigen, and those mimicry 

peptides were able to activate T cells that were reactive to this epitope [24]. This HLA 

restricted autoreactive T cell activation may then lead to stimulation of autoreactive B cells, 

resulting in the production of autoantibodies. Another group showed the association of 

HLA-DR3 and the presence of anti-Ro autoantibodies in SLE patients, which may also 

support the above mechanism [20].

3.1.2. ITGAM—The ITGAM gene is located on human chromosome 16. It encodes 

CD11b-integrin (alpha M) which is a subunit composing alpha M beta-2 integrin (also called 

complement receptor 3 or Mac-1). Mac-1 is highly expressed in granulocytes, macrophages 

and dendritic cells. Complement (e.g. iC3b) is one of the ligands of Mac-1, and iC3b-coated 

particles such as apoptotic cells will induce phagocytosis by phagocytes via engagement to 

Mac-1. Mac-1 also controls leukocyte migration to inflammation site and facilitate 

adherence to vascular endothelium[25].

A non-synonymous SNP (rs1143679) in the ITGAM gene results in a change of arginine (R) 

to histidine (H) at position 77 (R77H). Human primary monocytes carrying 77H allele 
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showed reduced ability of phagocytosis to iC3b-opsonized particles [26]. Those monocytes 

with 77H allele also failed to repress the production of inflammatory cytokines such as 

interleukin (IL)-1b, IL-6 and tumor necrosis factor alpha, when stimulated with Toll-like 

receptor (TLR) 7/8 ligands. Association of the ITGAM gene with SLE susceptibility has 

been well established in several studies [7, 8, 27, 28]. Associations of ITGAM variants with 

renal involvement in SLE patients has also been shown in several studies [9, 21, 29–31]. 

Yang et al. reported higher prevalence of LN in SLE patients carrying the R77H variant in 

Hong Kong Chinese SLE patients, as compared to SLE patients without LN (OR = 3.35, p = 

0.029). Kim-Howard et al also demonstrated association of the R77H variant with LN in 

large European ancestry SLE cohort (OR = 2.15, p = 4.69 × 10−22). Recently, two large 

studies, primarily designed to identify the association between genetic variants and LN, have 

also confirmed ITGAM as a susceptibility gene for LN [9, 31]. Collectively, defective 

function of the complement receptor due to these variants may result in incomplete 

clearance of glomerular deposits, and facilitate a pro-inflammatory environment in the 

kidney which leads to LN. Interestingly, while many of the other SLE susceptibility genes 

are shared with other autoimmune diseases, ITGAM seems to be an SLE-specific genetic 

risk factor (with the possible exception of systemic sclerosis)[32]. This could indicate a 

specific role for ITGAM in the pathogenesis of SLE and LN, rather than a more general pro-

inflammatory role or global alteration in phagocytic function, but further investigation is 

needed.

3.1.3. FCGR—The FCGR gene locus is located on human chromosome 1 and encodes Fc 

gamma receptors (FcgRs). One key role of FcgRs is to remove immune complexes (ICs) 

[33], and FcgR2A and FcgR3A are expressed on antigen presenting cells (e.g. macrophage 

and dendritic cells). Defective clearance of apoptotic cells is identified in SLE patients, and 

is thought to contribute to disease pathogenesis [34, 35]. Failure of appropriate phagocytosis 

will allow apoptotic cells to proceed to secondary necrosis resulting in the release of nuclear 

self-antigens, which should lead to greater IC formation when combined with SLE-

associated anti-nuclear antibodies. There is one high-affinity receptor (e.g. FcgR1 ) and two 

low-affinity receptors (e.g. FcgR2A and FcgR3) which are activating-type FcgRs, and there 

is one inhibitory-type FcgR known as FcgR2b. Each of these receptors has a different 

binding affinity to IgG subclasses and are present in most of myeloid cells [36]. Genetic 

associations between variants of low-affinity FcgR (i.e. FcgR2A and FcgR3A) and SLE have 

been reported [7, 37]. FcgR2A and FcgR3A are also associated with LN which have been 

proven in several individual studies among multiple ethnicities [38–43].

A non-synonymous SNP (rs1801274) of FCGR2A encoding a G-to-A allele change at 

position 131 results in amino-acid change from arginine (R) to histidine (H). These alleles, 

131R and 131H, have different binding capacity for IgG2. Cells which are homozygous for 

the histidine allele (131H/H) strongly bind IgG2, and cells that are homozygous for the 

arginine allele (131R/R) show a reduction in binding capacity for IgG2 opsonized ICs 

(131H/R has intermediate binding capacity) [44]. In a study of anti-C1q antibody positive 

SLE patients, presence of FCGR2A 131R was associated in the increased risk for LN [45]. 

Zuniga et al. identified that the frequency of FCGR2A 131R allele was significantly higher 

in LN patients with intense IgG2 deposition in the kidney [46]. Also, the frequency of 
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homozygous FCGR2A 131R/R was increased in the LN population as compared to non-

proliferative idiopathic glomerulonephritis[39]. These data suggest that the FCGR2A 131R 

allele results in dysfunctional clearance of IgG2-opsonized ICs, which could allow greater 

IC deposition in the kidney and increased inflammation.

Also, a non-synonymous SNP (rs396991) of FCGR3A encoding T-to-G allele change at 

nucleotide 559 results in an amino-acid conversion from phenylalanine (F) to valine (V) 

[33]. FcgR3A-158V allele binds to IgG1, IgG3 and IgG4 in higher affinity compared to the 

158F allele [33]. Several reports including meta-analysis article revealed that FCGR3A 158F 

allele is strongly associated with LN [40–43]. Although, in the recent large multiethnic lupus 

cohort, patients with SLE who were homozygous for FCGR3A 158V/V progressed to ESRD 

more frequently than compared to those with the 158F/V or 158F/F genotypes (21.9% 

versus 7.5%, p=0.0175) [47]. Low IgG binding capacity FCGR3A (i.e. 158F/F) may be 

needed to initiate LN, while high IgG binding FCGR3A (i.e. 158V/V) may play an 

important role in accelerating the inflammation of LN towards ESRD to explain the above 

discrepancy.

3.1.4. IRF5—The IRF5 gene is located on human chromosome 7 and encodes interferon 

regulatory factor 5 (IRF5), which is a transcription factor which induces the expression of 

inflammatory genes and type I interferon (IFN)-related genes downstream of TLR 

engagement. The genetic association between IRF5 and SLE was first reported by 

Sigurdsson et al. in 2005 [48]. Further studies demonstrated that a haplotype which contains 

multiple functional genetic elements was strongly associated with SLE [49, 50]. Type I 

interferon is known to play a critical role in the pathogenesis of SLE [51] and risk haplotype 

of IRF5 was associated with higher IFN alpha activity in the presence with auto-antibodies 

(i.e. anti-RNA binding protein or anti-double-stranded DNA autoantibodies) [52]. SLE 

patients carrying the risk haplotype of IRF5 also have elevated expression of IRF5 protein 

[53]. Moreover, the IRF5 gene has been associated with autoantibody formation in SLE 

patients and healthy individuals [54, 55]. This same risk haplotype was also identified as a 

LN susceptibility locus strongly associated with proliferative nephritis and severe renal 

insufficiency in patients with SLE [21]. While it is not known exactly how IRF5 genotype 

contributes to nephritis, this gene impacts on both autoantibody formation and type I IFN, 

and these factors may contribute.

3.1.5. TNIP1—The TNIP1 gene is located on human chromosome 5 and encodes the 

protein A20 binding and inhibitor of NF-kappaB 1 (ABIN1). The ubiquitin-binding protein 

ABIN1 is an adaptor protein of the ABIN family that cooperates with A20/TNFAIP3 to limit 

inflammatory responses. A20 is a ubiquitin-editing protein that inhibits transcription factor 

NF-kappaB [56, 57] which is a key player of inflammation in immune system.

In mice, Caster et al. reported that the knockin mouse expressing ABIN1[D485N], an 

inactive form of ABIN1, develops glomerulonephritis similar to class III and IV in human 

LN with enhanced activation of NF-kappaB and MAPK (mitogen-activated protein kinase) 

[58].
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In humans, variants in TNIP1 gene were detected as susceptibility loci for SLE in multi-

ethnic populations (rs7708392 and rs10036748) [59–61]. TNIP1 variants were also 

identified as LN susceptibility loci in Swedish Caucasian (rs7708392) [21], European 

American population (rs7708392) [58] and African American population (rs4958881) [58], 

supporting the important role of ABIN1 in the pathogenesis of LN observed in mice 

experiment. Another study from Japan also revealed the association with LN in Japanese 

population (rs7708392) [62]. Two partial loss-of-function risk haplotypes of TNIP1, 

accompanied with reduced ABIN1 protein expression was identified in SLE patients among 

European population [63]. Therefore, TNIP1 variants may partly be involved in the 

pathogenesis of LN by reducing ABIN1 protein expression and causing the dysregulation of 

NF-kappaB pathways.

3.1.6. STAT4—The STAT4 gene is located on human chromosome 2 and encodes signal 

transducer and activators of transcription-4 (STAT4). STAT4 is known as a susceptibility 

gene for SLE [64]. In 2008, large study conducted by Taylor et al. showed the associations 

between STAT4 (rs7574865) and the presence of LN and anti-dsDNA antibody in European 

ancestry SLE cohorts [65]. Additionally, a recent study in 2013 further confirmed the 

association of STAT4 with the development of proliferative nephritis, a severe subtype of LN 

[21]. A report from Japan confirmed the association of STAT4 (rs7574865) in both SLE 

patients with LN and in those without in this population [66]. The association was stronger 

in the SLE patients with LN and anti-dsDNA antibody, but small sample size precluded 

strong statistical significance for this comparison [66].

STAT4 is a transcriptional factor which is important for T cell signaling. STAT4 is activated 

by interleukin (IL)-12, leading naïve CD4+ T cells to differentiate to Th1 and Th17 cells 

which then play an important roles in inflammation and immune responses. IL-17 producing 

T cells are present in the kidney of LN patients, suggesting that these T cells play a role in 

the pathogenesis of LN [67]. STAT4 is also activated by type I IFN [68], and SLE patients 

carrying the STAT4 risk allele rs7574865 have an increased sensitivity to type I IFN 

supported by the increased expression of IFN inducible genes [69]. The functions of STAT4 

in T cell differentiation, the type I IFN pathway, and the association of this risk allele with 

anti-dsDNA antibody formation could all play a role in considering how this risk allele 

predisposes to LN.

3.1.7. TNFSF4—The TNFSF4 gene is located on human chromosome 1 and encodes the 

TNF Super Family 4 (TNFSF4) protein. TNFSF4, also known as OX40L or CD252 is 

expressed on antigen presenting cells (APC) (e.g. monocytes, dendritic cells and B cells) and 

is a co-stimulatory factor for T cell activation. A genetic variant in TNFSF4 (rs2205960) 

was associated with LN in a European ancestry SLE cohort (OR = 1.14, p = 0.0013) [31], 

and this association was also observed in a Chinese population (rs2205960 and rs10489265) 

[70]. Serum levels of TNFSF4 are significantly higher among SLE patients with LN than 

those without LN [71]. Also, the expression level of TNFSF4 receptor on CD4 T cells has 

been associated with nephritis and disease activity in patients with SLE [72].
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3.2. Newly discovered genes associated with LN, but not related to SLE susceptibility

3.2.1. APOL1—As shown in Figure 2, while some general SLE susceptibility genes 

predispose to LN, there are also some examples of genes which are specifically related to 

LN and not general SLE susceptibility. APOL1 gene is one example of an LN specific gene. 

The APOL genes located on human chromosome 22 and encodes apolipoprotein L-1 

(APOL1). It is a component of circulating HDL (high density lipoprotein) and also exists 

abundantly in many organs including the kidney [73]. APOL1 gene variants were known to 

have a protective effect against African Trypanosoma brucei rhodesiense (T. b. rhodesiense) 

infection [74]. Serum apolipoprotein L-1 from individuals with the APOL1 variant lyses 

Tripanosomes more efficiently than that from individuals without the APOL1 variant [74]. 

Thus, the high prevalence of APOL1 variants in individuals of African descent seems likely 

to have been driven by evolutionary pressure from T. b. rhodesiense infection [75], and this 

variant is almost absent in European ancestry. Interestingly, this APOL1 gene variant in 

African ancestry populations has also been associated with multiple kidney diseases, such as 

focal segmental glomerulonephritis, ESRD in non-diabetic nephropathy and human 

immunodeficiency virus-associated nephropathy [74, 76–78].

More recently, Freedman et al. reported the association of risk variants of APOL1 with 

ESRD in African Americans with LN [10]. SLE patients with LN having APOL1 risk alleles 

G1/G2 were much more likely to progress to ESRD (OR = 2.72, P = 6.23 × 10−6) as 

compared to those patients without risk alleles [10]. However, Lin et al. reported that 

APOL1 risk alleles were not associated with LN in European American population and also 

did not show significant relations with mild LN even in African American population [79]. 

Thus the association between APOL1 and LN could be limited to severe LN which is likely 

to progress to ESRD. From the immunological aspect, APOL1 may also have roles in innate 

immunity and anti-viral activities. Nichols et al. have shown that APOL1 is induced by 

TLR3 agonists and interferons (interferon-alpha, -beta and –gamma) [80]. Additionally, 

APOL1 is involved in autophagy pathway [81]. Of note, APOL1 has not been identified as a 

general SLE susceptibility gene, so it appears to be a modifier gene, important to nephritis 

risk and progression in African ancestry populations. Thus, this gene may partially explain 

the increased incidence and severity of LN in African ancestry SLE patients.

3.2.2. PDGFRA—In a recent study, a variant in the PDGFRA gene (rs1364989) was found 

to be strongly associated with LN in the European population [9]. The PDGFRA gene is 

located on human chromosome 4 and encodes platelet-derived growth factor receptor alpha 

(PDGFRA). PDGF and PDGFR (e.g. PDGFRA) are constitutively expressed in most renal 

cells (e.g. mesangial cells, fibroblasts and vascular smooth muscle cells), and are involved in 

normal kidney development. Alteration of the PDGF system is common in human kidney 

diseases [82]. PDGF-BB (one of the isoforms of PDGF), which is a ligand for PDGFRA, is 

an important factor that promotes mesangioproliferative disease and renal interstitial fibrosis 

[83]. In LN, increased PDGFRA mRNA expression was observed in the kidney (glomeruli 

and tubulointerstitial compartment) of LN patients [9].

Imatinib is a tyrosine-kinase inhibitor that has been used in the treatment of Philadelphia 

chromosome-positive chronic myelogenous leukemia, KIT-positive gastrointestinal stromal 
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tumors, and other diseases. Imatinib is also known to inhibit PDGFR signaling [82]. 

Administration of Imatinib in several experimental studies in lupus mouse models showed a 

significant decrease in LN progression confirmed by histological findings[84, 85], and 

reduced PDGFR expression [84]. However, some animal experiments using trapidil, a broad 

PDGF antagonist, have failed to treat nephritis [86]. These data could support the idea of 

targeting PDGFR in LN, although it seems that the type of inhibitor may be important, as 

the murine studies are not consistent across all types of PDGFR blockade.

3.2.3. HAS2—The HAS2 gene is located on human chromosome 8 that encodes 

Hyaluronan synthase 2 (HAS2); an enzyme responsible for hyaluronan (HA) synthesis. HA 

plays a crucial role in fibrosis in various organs. Renal fibrosis is the principle pathologic 

process that moves LN toward chronic kidney disease and to ESRD. Several reports provide 

evidence that intra- and extraglomerular mesangial cells respond to various cytokines and 

growth factors (e.g. IL-1 beta, PDGF) and result in induction of HA, accompanied by up-

regulation of HAS2 [87–90]. Yung et al. have shown that increased expression of HA in the 

mesangium and tubular portion of the kidney in renal biopsy specimens from LN patients 

[91]. Serum HA concentration was higher in the active phase of LN than in inactive LN. 

They also identified that anti-DNA antibody induced IL-1 beta, which then generates HA via 

overexpression of HAS2 in human mesangial cells [91]. Recent genetic association studies 

have demonstrated association of a variant in the HAS2 gene (rs7834765) with LN (OR = 

3.15) [9]. Again, HAS2 has not been shown to be associated with SLE susceptibility in 

general, but seems to play a role in LN pathogenesis, possibly via HA production and a 

contribution to fibrosis.

4. Epigenetics in LN

Not only genetic changes, but epigenetic changes (i.e. post-translational modifications) also 

play an important role in the pathogenesis of SLE [92]. DNA methylation is one of the 

important post-translational regulatory modifications, typically occuring at CG 

dinucleotides. DNA methylation results in gene silencing by tightening the chromatin 

structure and limiting the access of transcriptional factors, while DNA hypomethylation 

induce transcripition of genes.

Impaired DNA methylation status in CD4+ T cells of SLE patients was reported more than 

20 years ago [93]. As next-generation sequencing technology has advanced, genome-wide 

methylation studies have demonstrated the differences in methylation profiles of CD4 T cells 

in SLE patients compared to those of healthy controls. Some studies have shown a 

difference in methylation profiles between different groups of SLE patients [94, 95]. Of 

note, hypomethylation of type I IFN-regulated genes known to play important roles in the 

pathogenesis of SLE are reported in SLE patients [96, 97]. More recently, Coit et al. 

identified that there are more robust differences in methylation status of type I IFN-regulated 

genes when compared between SLE patients with LN and SLE patients without LN [98].

These studies shed light to another aspect of genetic involvement in the pathogenesis of SLE 

and LN, although there is still much work to be done to clarify their specific role to LN, and 

take advantage of this knowledge to design treatments.
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5. Conclusions

Genetic factors play an important role in predisposing SLE patients to LN. The genetic 

factors discussed above are summarized in Table 1. The prevalence and severity of LN 

differs among individuals and ethnicities, and there are some examples of differences in 

genetic factors predisposing to LN in different populations. Despite the identification of 

numerous general SLE susceptibility genes, only a small number of these general SLE genes 

are associated with LN. Of note, the magnitude of the OR for general SLE susceptibility 

genes as risk factors for LN was lower than their impact upon SLE in general. This supports 

the idea that these general SLE susceptibility genes impact SLE more broadly than their 

impact upon LN alone. The more recent discovery of genes with renal function that are 

associated specifically with LN is fascinating and provides additional insight into the 

pathogenesis of LN. It seems that the predisposition to LN involves a combination of general 

SLE susceptibility genes and genes with renal function that are associated specifically with 

LN. Figure 3 shows some potential functional relationships between the loci discussed in 

this review. Moreover, new generation sequencing technique has revealed not only the 

genome mutation, but the post-translational modification may contribute in the pathogenesis 

of SLE and LN. Further epidemiologic and functional studies will better define the 

relationships of these genes with LN pathogenesis, and likely will identify additional gene 

loci involved in this serious disease manifestation.
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Highlights

• Some general SLE susceptibility genes predispose to LN

• APOL1, PDGFR and HAS2 are novel LN susceptibility genes

• Combination of general SLE and LN specific genes contribute to LN
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Figure 1. Interactions between multiple factors predisposing to LN
Interactions between genetic factors and environmental factors predispose to SLE and LN.

LN, lupus nephritis; SLE, systemic lupus erythematosus
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Figure 2. SLE and LN susceptibility genes
Venn diagram of SLE and LN susceptibility genes.

LN, lupus nephritis; SLE, systemic lupus erythematosus
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Figure 3. Genetic contribution to immune system in the pathogenesis of LN
Altered functions of complement receptors (Mac-1) and FcgR will result in defective 

clearance of apoptotic cells and move towards secondary necrosis. Phagocyted nuclear 

antigens will activate TLRs and altered IRF5 leads to increased production of IFN alpha. 

Co-stimulatory factors (i.e. HLA and OX40L) activate T cells and result in IFN gamma 

production via STAT4 activation. Altered ABIN1 function, caused by TNIP1 variant leads to 

dysregulation of NF-kappaB activation. Auto-antibodies will be produced by B cells with 

the help of activated T cells. IFNs will induce APOL1 expression in the kidney. IL-1 beta, 
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secreted by activated APC (e.g. macrophages) and the signal of PDGF via PDGFR will 

eventually lead to increased expression of HA via HAS2.

ABIN1, A20 binding and inhibitor of NF-kappaB 1; APC, antigen presenting cell; APOL1, 

apolipoprotein L-1; FCGR, Fc gamma receptor; HA, hyaluronan; HAS2, hyaluronan 

synthase 2; HLA, human leukocyte antigen; IFN, interferon; IL, interleukin; IRF5, 

interferon regulatory factor 5; ITGAM, integrin alpha M; OX40L, OX40 ligand; PDGFRA, 

platelet-derived growth factor receptor alpha; STAT4, signal transducers and activators of 

transcription 4; TLRs, Toll-like receptors; TNFSF4, tumor necrosis factor super family 4;

* Susceptible genes.
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Table 1

Confirmed Susceptibility Loci Associated with lupus Nephritis

Genes associated with SLE and LN

Gene name Chromosome SNP associated with LN Known fuction Reference

HLA-DR 6 - Antigen presentation [9, 21–23]

ITGAM 16 rs1143679
rs9888739 Clearance of immune complex [9, 21, 29–31]

FcgR 2A
FcgR 3A 1

rs1801274 (H131/R131
polymorphism)

rs396991 (F158/V158 polymorphism)
Clearance of immune complex [38, 39, 46]

[40–43, 47]

IRF5 7 rsl0488631
rs2070197

Innate immunity, type I IFN pathway [21]

TNIP1 5
rs7708392
rs4958881
rs6889239

Inhibition of NF-kappaB pathway [21, 58, 62]

STAT4 2

rs7574865
rs7568275
rs7582694
rs11889341

T cell signaling [21, 65]

TNFSF4 1 rs 22D5960
rs10489265 Costimulatory factor for T cell activation [9, 31, 70]

Genes not associated with SLE, but associated with LN

Gene name Chromosome SNP associated with LN Known function Reference

APOL1 22 Gl/G2 haplotype Innate immunity autophagy [10]

PDGFRA 4 rs1364989 Kidney development [9]

HAS2 8 rs7834765 Organ fibrosis [9]

APOL1, apolipoprotein L-1; FCGR, Fc gamma receptor; F158, phenylalanine residue at position 158; H131, histidine residue at position 131; 
HAS2, hyaluronan synthase 2; ITGAM, integrin alpha M; LN, lupus nephritis; PDGFRA, platelet-derived growth factor receptor alpha; R131, 
arginine residue at position 131; SLE, systemic lupus erythematosus; SNP, single nucleotide polymorphism; STAT4, signal transducers and 
activators of transcription 4; TNFSF4, tumor necrosis factor super family 4; TNIP1, TNFAIP3-interacting protein 1; V158, valine residue at 
position 158
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