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Abstract

Histone ubiquitination plays a non-degradative role in regulating transcription and the DNA 

damage response. A mechanistic understanding of this chromatin modification has lagged that of 

small histone modifications because of the technical challenges in preparing ubiquitinated 

nucleosomes. The recent structure of the DUB module of the SAGA coactivator complex bound to 

a nucleosome containing monoubiquitinated H2B has provided the first view of how specialized 

subunits target this enzyme to its substrate. Single particle electron microscopy of the intact SAGA 

coactivator suggests how the DUB module and histone acetyltransferase module engage a 

nucleosomal substrate. A cryo EM study of 53BP1 bound to nucleosomes containing ubiquitinated 

H2A and H4 methylated at K20 extends our understanding of recognition of biologically distinct 

combinations of chromatin marks through multivalent interactions.

Introduction

The information in the eukaryotic genome is accessed in the context of chromatin, a 

nucleoprotein complex consisting of DNA and histone proteins. The fundamental unit of 

chromatin, the nucleosome core particle, comprises about 147 base pairs of DNA wrapped 

around an octamer core containing two copies each of histones H2A, H2B, H3, and H4 [1]. 

Post-translational modifications of specific histone residues serve as an additional layer of 

“metadata” that regulates all processes requiring access to genomic DNA. Histone 

modifications play a central role in regulating transcription, with specific combinations of 

histone modifications associated with activation or repression of gene expression. These 

distinct patterns of modifications, known as the “histone code” [2], provide docking sites for 

the transcriptional machinery as well as additional chromatin-modifying enzymes, modulate 

nucleosome dynamics and likely play additional roles that are yet to be understood. Histone 

modifications also play an important role in mediating the response to DNA damage [3] and 

chromosome condensation during mitosis [4]. Proteins that govern the histone code can be 

categorized as histone “readers,” which bind to specific histone marks, “writers,” the 

enzymes that covalently attach the modifications, and “erasers,” the enzymes that remove 

the modifications.
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Whereas most histone modifications consist of small chemical groups, histones can also be 

modified by the covalent attachment of the 76-amino acid protein, ubiquitin, to the ε-amino 

group of lysine [5,6]. Histone ubiquitination serves a signaling, rather than a degradative 

role, and its relatively large size and complexity distinguishes it from small side chain 

modifications such as acetylation, methylation, or phosphorylation. Ubiquitin is attached to 

specific lysine residues by a cascade of E1/E2/E3 conjugation machinery, with the E2/E3 

pair conferring substrate specificity [7]. Ubiquitination of histone H2B, Lys120 

(H2BK120ub) is enriched at actively transcribed genomic loci [8], whereas ubiquitin 

attached to histone H2A, Lys 119 (H2AK119ub) is a mark found in heterochromatic regions 

[9]. In response to DNA double strand breaks (DSBs), histone H2A is also ubiquitinated at 

K13/K15 (forming H2AK13ub or H2AK15ub, respectively), where this mark is required for 

recruiting the DSB repair machinery [10]. Histones H1, H3 and H4 have also been shown to 

be ubiquitinated in response to UV irradiation [11,12]. In many cases, there is “cross-talk” 

between histone ubiquitination and other types of histone modifications, with the ubiquitin 

mark either recognized in conjunction with specific marks such as methyl-lysine, or 

examples where histone ubiquitination is a prerequisite for deposition of other histone 

modifications such as methylation or acetylation [13–15].

Until recently, our structural understanding of how histone ubiquitination marks are 

attached, recognized and removed has been restricted to studies of the readers, writers and 

erasers in the absence of their chromatin targets. This changed with the 2014 report of the 

structure of the PRC1 E3/E2 enzyme pair bound to a nucleosome [16], which provided the 

first view of how a “writer” complex specifically targets histone residue H2AK119 in a 

chromatin context [17]. In this review, we describe recent advances that have shed light on 

how a “reader” recognizes ubiquitinated histones in conjunction with methyl marks, how an 

“eraser” complex specifically removes ubiquitin from histone H2B, as well as how the large, 

multifunctional chromatin-binding enzymatic complexes coordinate the structural dynamics 

of multiple subcomplexes to modify nucleosomes.

Docking of the SAGA DUB module on ubiquitinated nucleosomes

The SAGA (Spt-Ada-Gcn5 acetyltransferase) transcriptional coactivator complex integrates 

histone code reader, writer and eraser functions and is conserved across all eukaryotes [18]. 

The 19-protein SAGA complex acetylates histone H3 [19], removes monoubiquitin from 

histone H2B-K123(yeast)/K120(humans) [20], and recognizes a variety of histone 

modifications including methyl lysine [21] and acetyl lysine [22] via distinct reader 

domains. SAGA also promotes formation of the transcription pre-initiation complex and 

binds directly to the TATA-binding protein (TBP) subunit of the general transcription factor, 

TFIID [23]. Mass spectrometry and deletion studies [24,25] have shown that the proteins in 

the 1.8 MDa yeast SAGA complex are organized into four distinct subcomplexes: the 

deubiquitinating (DUB) module; the histone acetyltransferase (HAT) module; the Spt 

module, which interacts with transcription factors, including TBP; and the TAF module, 

which is thought to maintain the architecture of the overall complex. These activities are 

coordinated to transition chromatin to an “open” state favoring recruitment of RNAPII and 

its cofactors.
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While there is no high-resolution structure of the intact SAGA complex, crystal structures of 

small pieces of the SAGA complex have provided snapshots of some of its functional 

groups. These include structures of the Gcn5 acetyltransferase domain in the presence [26] 

and absence [27] of its cofactor, acetyl-CoA, and H3 peptide, the acetyllysine-bound 

bromodomain of Gcn5 [28], and the Sgf29 tandem Tudor domain bound to methylated 

histone peptides [21]. The largest portion of SAGA for which there is atomic resolution 

information is the four-protein yeast DUB module, which consists of the catalytic subunit, 

Ubp8, complexed with Sgf11, Sus1 and Sgf73 [20,29–31]. Crystal structures of the DUB 

module with and without bound ubiquitin [32,33] revealed how the four subunits adopt an 

interwoven structure containing two lobes: a catalytic lobe containing the Ubp8 cysteine 

protease USP domain and the C-terminal zinc finger of Sgf11, and an assembly lobe 

containing the Ubp8 ZnF-UBP domain, the Sgf11 N-terminus, Sus1 and Sgf73.

The way in which the subunits of the SAGA DUB module target this complex to its 

chromatin target was revealed by the recent crystal structure of the yeast DUB module 

bound to nucleosomes containing ubiquitinated H2B (Figure 1A) [34]. Ubiquitin was 

conjugated to H2B K120 via a non-hydrolyzable linkage, generating the necessary material 

for the 3.9 Å resolution structure of this ~390 kDa complex. The overall conformation of the 

DUB module is unchanged from the apo enzyme [33] or the structure with ubiquitin alone 

[32], indicating that the complex provides a rigid scaffold for recognizing its ubiquitinated 

substrate. The arginine-rich Sgf11 zinc finger, which is located adjacent to the Ubp8 active 

site, plays a pivotal role in docking the DUB module on the conserved nucleosome acidic 

patch, which is located in a cleft between histones H2A and H2B (Figure 2B). This mode of 

interaction, in which an “arginine anchor” [17] binds to the acidic patch, is shared by nearly 

all structures determined to date of proteins or peptides bound to nucleosomes: the LANA 

peptide [35], RCC1 [36], the Sir3-BAH domain [37], and the PRC1 complex composed of 

Ring1B and Bmi1 [16]. Ubp8 mediates additional contacts with the C-terminal helix of 

H2B, as well as with the conjugated ubiquitin. Interestingly, there are no contacts with the 

nucleosomal DNA other than a single predicated contact mediated by Ubp8 residue, Arg 

374.

The observed docking of the DUB module bound to a nucleosome explains the recent 

finding that phosphorylation of H2A-Y57 (H2A-Y57p) by casein kinase 2 (CK2) inhibits 

DUB module-dependent deubiquitination of H2B-Ub in both yeast and human cells [38]. 

Modeling of H2A-Y57p in the structure of the DUB module bound to a ubiquitinated 

nucleosome [34] indicated that this newly discovered histone PTM has the potential to alter 

interactions between the arginine anchor and the acidic patch (Figure 1C). This hypothesis 

was confirmed through use of a fully synthetic strategy to incorporate phosphotyrosine into 

histone H2A at Y57 [39]. Nucleosomes containing H2A-Y57p and H2B-Ub made by native 

chemical ligation [40] were used to confirm that this phosphorylation indeed inhibits DUB 

module activity in vitro [39].

H2B ubiquitination has been shown to promote recruitment of the histone chaperone, FACT 

[41], which promotes H2A/H2B eviction in advance of the transcribing RNA polymerase II 

and nucleosome reassembly in its wake [42]. It is not known whether SAGA deubiquitinates 

H2B before or after the nucleosome is disassembled, or whether an ejected H2A/H2B-Ub 
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dimer bound to FACT could also be a substrate. Since interactions between the DUB module 

and the nucleosome are limited to the surface of the H2A/H2B heterodimer, ubiquitinated 

dimers could, in theory, also be targeted during transcription. While there is, as yet, no 

structural information for the full-length FACT Spt16/Pob3 heterodimer bound to H2A/H2B, 

several recent structures of FACT have mapped interactions between FACT domains and the 

histone octamer [43–45]. None of these structures indicate overlap between FACT and the 

DUB module docking site (Figure 2), leaving open the possibility that SAGA could remove 

ubiquitin from nucleosomes while FACT is still bound. FACT subunits have been shown to 

physically associate with SAGA in mass spectrometry experiments [24], consistent with a 

scenario in which FACT and SAGA may act on a nucleosome simultaneously. In vitro, the 

SAGA DUB module can deubiquitinate H2B in the presence of FACT when assayed on 

either H2A/H2B-Ub heterodimers or intact ubiquitinated nucleosomes [34]. Further studies 

will be needed to sort out the sequence of biochemical events during transcription in the 

presence of intact SAGA and the transcribing polymerase.

A broader role for SAGA subunits in directing H2B deubiquitination in 

humans

The pivotal role played by the Sgf11 subunit in both directing the catalytic Ubp8 subunit to 

its substrate [34] and maintaining Ubp8 in its active conformation [33,46] explains a recent 

report that multiple DUBs regulate H2B ubiquitination levels in human cells [47]. The 

human SAGA DUB module is composed of USP22, ATXN7L3, ENY2 and ATXN7, 

homologues of yeast Ubp8, Sgf11, Sus1 and Sgf73, respectively. A recent study showed that 

ATXN7L3 and ENY2 can also form complexes with two additional USP DUBs, USP27x 

and USP51, and target them to H2B-Ub [47]. The requirement of ATXN7L3 for H2B 

deubiquitination by USP22, USP27x, and USP51 suggests that all three use the ATXN7L3 

zinc finger to dock the H2A/H2B acidic patch in a manner similar to that shown in the 

structure of the yeast DUB module bound to ubiquitinated nucleosomes.

Locating the DUB module in intact SAGA

A clear picture of the three-dimensional organization of the entire 19-protein SAGA 

complex will ultimately be needed to determine how histone deubiquitination is coordinates 

with SAGA’s other activities, including histone acetylation and preinitiation complex 

assembly [48,49]. A recent negative stain electron microscopy (EM) structure determined to 

30.3 Å (EMDB ID: 2693) was used to locate the DUB module within intact yeast SAGA as 

well as determine how SAGA docks on an unmodified nucleosome core particle [50]. By 

determining structures of intact SAGA as well as deletions of Sgf73 solved to 25.8 Å 

(EMDB ID: 2694), which anchors the DUB module to the rest of the coactivator complex, 

the authors used observed differences in density to locate the DUB module proximal to the 

HAT module. This could explain why deletions of components of either module lead to 

reduced activity in the other subcomplex, even though they appear to fold independently 

[50]. In the negative stain structure, unmodified recombinant nucleosomes associate with the 

region identified as the DUB module, suggesting that DUB module can associate with 

nucleosomes even in the absence of conjugated ubiquitin. The position of the nucleosome 
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relative to the DUB module does not, however, agree with the crystal structure of the 

isolated DUB module bound to ubiquitinated nucleosome [34]. This discrepancy may arise 

from the absence of ubiquitin, which forms extensive contacts with Ubp8, non-specific 

binding by SAGA, or from the difficulty in docking the crystal structure of the apo DUB 

module in a low resolution map. High resolution studies with nucleosomes containing H2B-

Ub, and possibly additional histone modifications, will ultimately be needed to resolve this 

issue.

A separate EM study of the intact SAGA complex [51] pinpointed a role for the DUB 

module subunit, Sgf73, in modulating conformational flexibility of the entire complex. The 

first ~100 residues of Sgf73 form an integral part of the DUB module [31–33], while the 

remaining C-terminal portion of Sgf73 anchors this protein to the remainder of SAGA, 

contacting multiple subunits as judged by mass spectrometry and cross-linking studies [25]. 

Setiaputra and colleagues [51] utilized the GraFix cross-linking technique [52] to limit 

conformational exchange of SAGA particles. The authors thereby captured three discrete 

forms of SAGA, which they call the “arched” (EMDB ID: 6299), “curved” (EMDB ID: 

6300), and “donut” (EMDB ID: 6301) conformations, determined at 45.3 Å, 41.7 Å, and 

38.9 Å resolution, respectively. These conformations result from mobility of three distinct 

regions of the complex. The “head” appears largely globular; the elongated “tail” region, 

which was largely absent in the particles analyzed in previous studies; and the “torso” 

region, which connects the head and tail, composed of a “hinge” that associates with the tail 

and “shoulder” which does not. The tail travels over 50 Å throughout the dynamic range of 

conformations, with intermediates of each observed in class averaging, suggesting that the 

motions of SAGA are coordinated. Loss of the DUB module by deletion of Sgf73 

significantly alters the distribution of conformations, making the donut form less frequent 

and reducing the number of particles in which the HAT module is present. The authors 

suggest that the DUB module may occupy a central region of SAGA toward which the tail 

curls, which contains the HAT complex. This further suggests that the DUB and HAT 

modules may contact one another in the donut conformation, enabling both enzymatic 

subcomplexes to act on the same nucleosome substrate.

Setiaputra and colleagues also determined where each subunit is located within the complex 

by GFP-tagging proteins within each module and searching for additional density [51]. This 

approach, coupled with cross-linking mass spectrometry allowed the authors to construct a 

detailed map of SAGA in which the TAF module and Spt7, Spt20, and Tra1 of the SPT 

module form a highly interconnected core around which the rest of the subunits are 

peripherally arranged (Figure 3). Taken together, these results demonstrate that SAGA exists 

in a dynamic state, adopting discrete conformational intermediates that are coordinated by 

its subunits. The observed conformational exchange is likely an important mechanism 

whereby SAGA coordinates its multiple functionalities to properly regulate transcription.
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Recognition of histone ubiquitination and methylation in the DNA damage 

response

In addition to its role in transcription regulation, histone ubiquitination plays an important 

role in signaling the presence of DNA double strand breaks (DSBs) and in recruiting the 

necessary repair enzymes [3,53]. The ubiquitin E3 ligase, RNF168, ubiquitinates histone 

H2A at Lys 13/15 (forming H2AK13ub or H2AK15ub) near DNA double strand breaks 

(DSBs) [10]. This event triggers the recruitment of 53BP1 [54], a large protein that serves to 

determine the choice between non-homologous end joining and homologous recombination 

in response to a DSB [55]. 53BP1 is also essential to the accumulation of DNA damage 

response proteins, including EXPAND1 [56] and RIF1 [57]. 53BP1 uses its ubiquitination-

dependent recruitment (UDR) domain to engage the H2AK13/15ub marks, while the 

proximal tandem Tudor domain of 53BP1 binds to H4 dimethylated at Lys 20 (forming 

H4K20me2) [54]. H4K20me2 is an abundant mark in the genome, found in 80% of 

nucleosomes in asynchronous, undamaged cells [58]. The 53BP1 protein associates weakly 

with H4K20me2 alone. However, binding studies indicate that 53BP1 affinity for chromatin 

is increased when ubiquitin is conjugated to H2AK13/15, triggering the accumulation of 

53BP1 at damage foci.

A recent cryo electron microscopy (cryo-EM) structure has provided insights into how 

53BP1 recognizes tandem ubiquitin and methyl marks. Using nucleosomes ubiquitinated at 

H2AK15 and containing a methyl lysine mimic at residue 20 of histone H4, Wilson et al. 

[59] generated complexes with the minimal required fragment of 53BP1 (residues 1484–

1631), which contains both the UDR and tandem Tudor domain, fused to glutathione-S-

transferase (GST). The single particle reconstruction of the 53BP1-bound nucleosome was 

determined at 4.5 Å resolution (Figure 4) and the structure of a ubiquitinated nucleosome 

alone was determined at a resolution of 7.7 Å. A comparison of the structures revealed that 

ubiquitin is dynamic in the absence of 53BP1, whereas its position is constrained when 

53BP1 is bound. Density corresponding to the UDR domain of 53BP1 was threaded 

between the ubiquitin and the H2B C-terminal helix, where its position was consistent with 

predicted electrostatic complementarity between the UDR, ubiquitin and the H2A/H2B 

acidic patch. The concerted engagement of the 53BP1 UDR with H2AK15ub and its tandem 

Tudor domain with H4K20me2 is required for high-affinity binding, in addition to contacts 

made with the H2A/H2B acidic patch and the H2B/H4 cleft. While electron density for the 

tandem Tudor domain was insufficient to unambiguously position it in the model, its 

corresponding density was centered upon H4K20me2. The authors tested whether H2BK120 

ubiquitination might interfere with 53BP1 binding, due to the close approach of the UDR to 

the H2B C-terminal helix; however 53BP1 recruitment is unaffected by H2BK120ub, 

suggesting that these marks are not mutually exclusive. This recent structure demonstrates 

how chromatin-binding proteins attain specificity through coordinated binding of multiple 

histone PTMs, and suggests the potential for binding events to couple conformational 

changes of the modified nucleosome with downstream processes.
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Conclusions

The recent findings discussed above leave the field poised for further interrogation, thanks to 

dual advances in chemistry and structural biology. Thanks to robust methodologies for 

incorporating ubiquitin at specific histone residues with either non-hydrolyzable [34,59] or 

native isopeptide linkages [14,40], as well other histone modifications, there are now 

multiple approaches to generating the needed chromatin templates. The recent advances in 

high-resolution cryo-electron microscopy [60] make it possible to obtain structural 

information on very large complexes that are typically not amenable to study by x-ray 

crystallography or NMR spectroscopy. While the challenges of determining atomic-

resolution structures of transcriptional coactivators such as SAGA and DNA repair 

complexes bound to chromatin remain significant, in part due to the flexibility of the histone 

tails, the near future prospects for further advances are highly promising.
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Highlights

• New advances have made it possible to determine structure of complexes 

containing ubiquitinated nucleosomes.

• X-ray crystallographic and EM studies shed light on how the SAGA complex 

engages nucleosomes containing monoubiquitinated H2B.

• The intact SAGA complex adopts multiple discrete conformations.

• An EM study shows how 53BP1 recognizes tandem ubiquitin and methyl 

marks in the nucleosome.
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Figure 1. 
Docking of the SAGA DUB module on H2B-ubiquitinated nucleosomes. (A) Structure of 

the yeast DUB module (Ubp8, Sgf11, Sgf73, Sus1) bound to a nucleosome core particle 

containing monoubiquitinated H2B. Surface representation of the histone octamer shows 

negative (red) and positive (blue) electrostatic potential. (B) Docking of the arginine-rich 

Sgf11 zinc finger (green) on the acidic cleft (red) between H2A and H2B. (C) Modeling 

showing position of phosphorylated H2A-Y57 at the interface between the DUB module and 

histones H2A and H2B.
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Figure 2. 
Structural insights into relation of FACT and DUB module binding to histones. All panels 

show relative position of DUB module (gray surface) on either H2A/H2B or H3/H4. (A) 

Docking of DUB module relative to a peptide derived from the C-terminus of Spt16 solved 

to 1.80 Å resolution (PDB ID: 4WNN). (B) The Spt16M domain from Chaetomium 

thermophilum fused to H2B solved to 2.35 Å resolution (PDB ID: 4KHA). (C) Structure of 

the human FACT mid-AID domain bound to an H3/H4 tetramer solved to 2.98 Å resolution 

(PDB ID: 4Z2M).
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Figure 3. 
Model of the arrangement of SAGA subunits as determined by crosslinking mass 

spectrometry and electron microscopy subunit localization experiments. Sphere size is 

proportional to molecular weight. Binding sites of transcription factors are indicated, as 

determined by pull-down experiment and electron microscopy. Adapted from D. Setiaputra 

et al., 2015, Journal of Biological Chemistry, 290, p. 10057. © 2015 The American Society 

for Biochemistry and Molecular Biology with permission.
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Figure 4. 
Electron density at 4.5 Å resolution for the complex of the 53BP1 tandem Tudor-UDR 

construct bound to nucleosomes containing H2A ubiquitinated at K15 and H4 methylated at 

K20. All density is shown at threshold of 0.37 except that which corresponds to the 53BP1 

tandem Tudor domain, shown at a threshold of 0.17. The 53BP1 UDR (purple) can be 

clearly seen threading between the disk face of the nucleosome and the tethered ubiquitin.
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