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Abstract

Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In 

the last decade, developments in the field of biomolecular engineering and crosslinker chemistry 

have greatly influenced the development of this field. With all these new approaches at our 

disposal, several new immobilization methods have been created to address the main challenges 

associated with immobilized antibodies. Few of these challenges that we have discussed in this 

review are mainly associated to the site-specific immobilization, appropriate orientation, and 

activity retention. We have discussed the effect of antibody immobilization approaches on the 

parameters on the performance of an immunoassay.
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1. Introduction

Immobilized biomolecular systems have revolutionized how we analyze biological/

biochemical matrices. However, in such complex matrices, capturing an analyte of interest 

with high specificity and sensitivity is crucial. Therefore, biorecognition elements, such as 

receptors and antibodies, are required for capturing a specific analyte out of a complex 

biological sample. Antibody is one such category of biorecognition molecules that 

specifically binds to their corresponding antigen. This leads to the core of our long-standing 
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interest in the development of immunodiagnostics. In addition to specificity, lower limits of 

detection and high sensitivity are the key features of an ideal immunoassay and can be 

achieved by employing antibodies as capture agents. For this, antibodies are immobilized on 

the surface of a solid support.[1] Thus, a suitable immobilization approach is always sought 

that preserves maximum antibody functionality by site-directed and oriented molecular 

presentation. In this review, we are discussing antibody immobilization strategies that 

provide (i) site-specific capture guided through various tags and functional groups on 

antibodies and (ii) orientation achieved through pre-capture biomolecules.

1.1. Antibody

An antibody that is the key constituent of an assay is an immunoglobulin (Ig), typically type 

G (IgG). It has a molecular weight of ~150 kDa with molecular dimensions of 

approximately 142 × 85 × 45 Å3 [2], as shown in Figure 1.

Structurally, an IgG is a homodimeric protein with two identical pairs of heavy and light 

chains linked by disulfide bonds.[4] It is worth noting that the structural and molecular 

composition can vary according to class/isotype (e.g., IgA, IgD, IgE, IgG, and IgM) and 

even subclass (e.g., IgG1, IgG2a and 2b, IgG3 and IgG4) of antibodies.[5] Like any other 

protein, chemically an antibody possesses carboxyl, amine, hydroxyl, sulfhydryl, alkyl, and 

aryl functional groups.[6] Researchers, however, have customized antibodies by adding 

different functional groups via molecular engineering. In addition, several engineered short 

variants of these full-length antibodies have been developed. Those antibody derivatives 

include, but are not limited , Fab (antigen binding fragment), single-chain variable fragment 

(scFv), and single domain antibody (sdAb). A Fab is a part of an IgG, which contains a 

whole light chain, and the variable region and the first constant region of heavy chain 

(Figure 1). ScFv is composed of variable regions of the heavy and light chains of IgGs, with 

a linker peptide. An sdAb only contains a monomeric variable region without any linker 

peptide. It is derived from either camelid antibodies (called VHH fragment) or novel antigen 

receptors IgNAR (VNAR fragment), both of which lack the light chains in their structure. 

The antigen binding capacity is completely gained by the VHH and VNAR fragment.

Antibodies possess highest binding affinity for their corresponding antigen, even if there are 

additional receptors that may recognize the given antigen. Therefore, antibodies make 

excellent probes for immunoanalysis. In addition to these intrinsic properties, antibodies 

must be immobilized on a solid support with intact structure and functional activity. It is 

well known that immobilization of antibodies results in activity loss. Therefore, it is crucial 

to achieve comparative functionality of the immobilized antibodies with respect to those in 

solution. This allows us to make an educated choice of a suitable immobilization strategy. 

Such strategies must encourage the use of mild chemistries that don't affect the antigen-

binding activity and specificity of antibodies along with their compatibility with different 

surfaces. In addition, these strategies should provide effective orientation to the immobilized 

antibodies in order to have their antigen-binding sites freely presented to interact with the 

analyte in the biological matrix.
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2. Applications of Antibodies

Antibodies in the development of biosensors and other systems have revolutionized the areas 

of medical diagnosis, therapeutics, and separation and purification sciences. Immobilized 

antibody systems are regularly being used in food & drug industry, clinical diagnosis, and 

environmental monitoring in the form of different analytical technologies. A continuous 

effort to improve the form and factor of immobilized antibody systems has been made since 

the development of first plate-based immunoassay in 1980 for increasing the application 

coverage. Microplate-based conventional immunoassays, such as enzyme-linked 

immunosorbent assay (ELISA) and immuno/histochemistry (IHC which is performed in the 

plates with either glass slide bottom or glass slides are kept at the well bottom for reaction), 

constitute the biggest fraction of in-vitro analysis. A few of the most important applications 

of antibodies are summarized in this section.

2.1. Diagnostics

Core component in clinical disease diagnosis is antibody-based immunoassays. Traditional 

immunoassays are mainly ELISA and IHC. Capture antibodies immobilized on solid 

supports facilitate efficient analyte capture in these assays. A second antibody conjugated to 

a type of enzyme (peroxidase and phosphatase) is used for catalyzing a colorimetric 

reaction. Such colorimetry-based immunoassays are multistep procedures and thus are 

usually time consuming. However, recently, several important developments have been 

registered in the field of plate-based ELISA.[7,8] Dixit and colleagues have designed and 

developed a new approach for generating fast sandwich assays with human fetuin A (HFA) 

as the model analyte.[7,8] Their reported assays were completed within 3 hours from the 

scratch against routine ELISA methods that usually take 6 hours or more to completion. 

They have achieved at least 20-fold better sensitivity (~23 pg/mL) compared to the routine 

approach (625 pg/mL).

Although work from Dixit and colleagues has led to new frontiers in the field of plate-based 

immunoassay development, the need of faster point-of-care systems is the current trend.[7,8] 

In modern immunoassays, such as lateral flow assays, the antibodies for capture and 

detection are stored within the diagnostics system.[9] Both the events are allowed to take 

place simultaneously on the support within the moving liquid front, which makes these 

assays very fast. Signal generation has also changed in form factor where a preferable 

method would be direct colorimetry using colored particles over enzyme-mediated. A 

pregnancy strip test for human chorionic gonadotropin (hCG) is an excellent example of 

modern immunoassay featuring immobilized antibodies.

Researchers are trying to develop highly integrated and multiplexed immunoassays in 

several different biosensor formats for detecting important diseases and disorders. Vashist et 

al. have reported the development of integrated fast immunoassays for human fetuin A in 

real-time label free mode by employing BIAcore 3000-based surface plasmon resonance 

(SPR) measurement.[10] Several optical biosensor-based assays have been reported for fast 

and sensitive detection of important proteins and analytes in biological fluids. Modani et al. 

(2016) reported a microarray-based detection of shiga toxin producing E. coli using an SPR 

imager for fast real time analysis.[11] Such hybrid cross-platform immunoassays are now 

Shen et al. Page 3

Methods. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



getting more common as they produce fast results allowing for real time monitoring at the 

same time.

Rusling and colleagues have reported highly multiplexed ultra-sensitive sandwich 

immunoassays based on electrochemical sensing.[12] Eight biomarker proteins captured by 

1 μm magnetic beads immobilized with 400, 000 enzyme labels and 120, 000 antibodies 

were assayed on multi-electrode system with biomarker-specific antibodies crosslinked to 

the gold nanoparticles electrostatically grafted on the electrode surface. They have achieved 

detection of these biomarkers with subpicogram sensitivity.

In-vivo imaging is another very important diagnostics domain. Antibodies conjugated to 

contrast agents, such as nanoparticles [13–15] and gadolinium liposomes [16], permit 

selective and sensitive imaging via specific antigen-antibody interaction, providing a 

targeted molecular imaging. Quantum dots (QDs) have become a good in-vivo imaging 

choice due to their high quantum yields, good biostability and photostability, and availability 

of approaches for conjugating them with antibodies.[17] Wang et al. fabricated antibody-

functionalized Ag2S QDs featuring high near infrared (NIR) fluorescence intensity, small 

size and low in vivo toxicity.[18] The Ag2S QDs were covalently immobilized with 

antibodies against vascular endothelial growth factor (VEGF). These conjugates were 

successfully demonstrated for targeted imaging of VEGF positive human glioblastoma 

tumors within mice.

2.2. Therapeutics

There are approximately 30 FDA approved/under review antibody-based drugs for 

therapeutic use in various diseases including cancer.[19] These therapeutic antibodies may 

be employed as either standalone drug or as payloads with pro/drugs conjugated to them. 

Direct conjugation of antibodies may affect the potential biological activity of these drugs; 

thus, these drugs are usually encapsulated in a payload vehicle, such as polymeric 

nanoparticles. Antibodies can be grafted on drug-encapsulating polymeric nanoparticles for 

targeted delivery. Also, these constructs reduce the overall toxicity of the encapsulated drugs 

by minimizing systemic exposure to cells, while improving the stability of drugs.

Several reviews have described many effective conjugation strategies for generating various 

antibody-drug/nanoparticle conjugates.[3,20] Conjugation strategies are similar to those 

employed for antibody immobilization on solid support (Figure 2). Polymeric nanoparticles 

offer a broad range of covalent attachment chemistries for antibodies. Qian and group made 

a maleimide-functionalized amphiphilic diblock copolymer encapsulating arsenite ions.[21] 

They further decorated such arsenite-containing micelles with anti-CD44v6 scFvs for 

targeted delivery of arsenite to tumor cells. Unlike post-labelling the antibody to a well 

formed nanoparticle, Goodall & colleagues have recently reported a pre-labelling method by 

covalently incorporating scFv antibodies to poly(N-isopropylacrylamide) chains before their 

assembly onto a thermoresponsive polymeric nanoparticle.[22] The scFv maintained its 

immunoreactivity before and after assembly, even after glutaraldehyde cross-linking for 

stabilizing the immunoparticles.
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2.3. Separation and purification sciences

Immunoaffinity separation for purification of a variety of analytes is a standard procedure in 

industrial and academic settings. An analyte-specific antibody immobilized on a solid 

chromatographic support, such as superparamagnetic microparticles,[23,24] agarose 

microbeads,[25] and monoliths [26–28], can extract the analyte of interest from the complex 

sample matrix, which is mostly cell lysates. Target analytes (antigen) can be captured via 

specific antigen-antibody interaction by highly specific monoclonal antibodies.

Immunoaffinity chromatography (IAC) is another way for the identification, quantification, 

or purification of antigens using solid support matrix immobilized with corresponding 

antibodies (Figure 3).[29,30] Monoclonal antibodies are preferred and their immobilization 

onto supports can be through either covalent linkage or non-covalent interaction such as 

biotin-(strept)avidin systems.[30] Due to the specificity of antigen-antibody interaction, high 

degree of protein purification can often be achieved in one step by IAC.[31] More recently, 

IAC was demonstrated for ultrafast immunoextractions that are capable of operating on the 

millisecond time scale. Operation in such short time manner can guarantee that all the 

extracted molecules (drugs or hormones) are in the unbound forms from proteins of choice.

For most of the antibody applications, receptor antibody must be immobilized to a solid 

support. There are several approaches to graft antibodies on such supports and we will 

discuss those in next section.

3. Antibody Immobilization Chemistries

3.1. Passive adsorption/Passivation

Passive adsorption of antibodies onto a support is the simplest approach for immobilization. 

There is no prerequisite of modification of either antibodies or the surface. This makes 

passivation of antibodies on the surface the most common approach employed to develop 

clinical immunoassays. However, a precise control over the orientation of antibodies is one 

of the major concerns (Figure 4).

Chemically antibodies are proteins. During passivation various non-covalent interactions 

govern the adsorption chemistry of. Hydrophobic, van der Waals, and pi-pi interactions are 

the key forces in immobilizing antibodies onto the surface of a solid support, which is 

usually a hydrophobic plastic. It involves various non-covalent interactions (e.g. 
hydrophobic forces and electrostatic interactions - a case of chemisorption), thus pH and 

ionic strength are critical for the antibody adsorption and the following antigen binding.[33]

Passive adsorption results in randomly orientated antibodies, which may depend on the 

dipole moments of antibodies and surface charges of the supports.[34–37] Improved 

oriented antibody adsorption has been reported using different pretreatment to either 

antibodies or to the supports, including UV light,[38] electric field, [39] electrochemistry,

[40] and plasma-immersion ion implantation [18]. Jian and group has described that certain 

degree of orientation can be achieved for passively adsorbed IgG1 and IgG2a type antibodies 

on charged surfaces. They have observed that at low surface charge density and high ionic 

strength of the solution, van der Waals interaction dominates resulting in multiple 
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orientations. At high surface charge density and low ionic strength they demonstrated that 

immobilization takes place via preferred positively or negatively charged domains on an 

antibody resulting in certain degree of orientation.[35,41]

In addition, adsorption is a dynamic process between solution and bound phases of 

antibodies. Apart from the random orientation, immobilized antibodies can easily leach out 

in presence of another protein possessing higher charge or more number of hydrophobic 

pockets. This is attributed to relatively weak and reversible interactions, thus inefficient 

antigen binding can happen even if higher amount of antibodies are adsorbed on the 

supports.[42] In addition, randomly adsorbed antibodies have poor affinity toward their 

antigens with relatively low antigen holding capacity. Ishihara group demonstrated a 

significant 100-fold reduction in antigen – antibody reaction equilibrium dissociation 

constant (Kd) with an approximate antigen holding capacity of 1.8 per antibody.[43] 

O'Kennedy and colleagues have demonstrated using surface plasmon resonance biosensor 

that mass density of orientated anti-human fetuin A (HFA) antibodies on protein A was 1.3 – 

fold higher than the randomly immobilized antibodies. Ordered presentation of antibodies 

has also allowed for a ~2 – fold higher HFA mass capture with respect to that captured by 

randomly immobilized antibodies.[10] To address those issues, antibody immobilization 

strategies via covalent binding or alternative specific, strong, and directional non-covalent 

interactions are preferred. These immobilization strategies have been already employed in 

the fields of ELISA and lateral flow assay, which were exclusively based on passive 

adsorption of antibody.[7,44]

3.2. Crosslinker mediated

Crosslinker is a class of chemicals that possess a reactive center at each terminal and are 

able to bind two corresponding functionalities. Based on the terminal reactive center, these 

could be either homo or heterobifunctional. Such linkers are widely used for developing 

convenient immobilization strategies, which is attributed to the commercial availability of 

the crosslinkers in various compositions, lengths, and physico-chemical properties.[51] The 

crosslinkers mainly aim at the primary amine (−NH2) and carboxyl (−COOH) groups since 

they are abundant and well distributed over the antibody surface. However, due to the same 

reason, the reactions between crosslinkers and these functional groups are not selective, 

resulting in a random orientation and in some instances loss of functional activity of the 

immobilized antibodies. Antibodies also possess sulfhydryl (−SH) groups in the form of 

disulfide bonds, which are responsible for their structural stability.[52] Researchers, via a 

selective partial reduction of hinge-region disulfide bonds, generated free pendent sulfhydryl 

groups, which can be attached to a variety of solid supports using sulfhydryl-specific 

heterobifunctional linkers in a very selective site-specific manner.[53] Antibodies also 

possess an unusual functionality in form of carbohydrate/sugar moieties at each of the two 

CH2 regions. Specific oxidation of such moieties yields aldehyde (−CHO) groups, which are 

highly reactive toward amine groups resulting in Schiffs base. Apart from that specific 

amine-terminated crosslinkers, such as α,Ω-bis aminoPEG, can also be used for 

immobilization.
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All of the popular crosslinkers are listed in Table 1; such as, glutaraldehyde for amine-to-

amine conjugation,[54] carbodiimide for carboxyl-to-amine linking, maleimide for 

sulfhydryl groups, and hydrazides for aldehyde groups. The site-specificity of the amine- 

and carboxyl-specific crosslinkers decreases reciprocally with the increasing number of 

respective functional groups, leading to the loss of orientation.[55,56] However, linkage via 

sulfhydryl or aldehyde groups on the antibodies is more selective, and provides better 

orientation. Since, generating sulfhydryl and aldehyde groups on the antibodies requires 

relatively aggressive conditions, thus it may lead to some unwanted reactions and may affect 

the binding of antibodies to their target antigens.[57–59]

3.3. Site-directed chemistries

3.3.1. Antibody thiols/sulfhydryls—As mentioned above, site-specific sulfhydryl 

groups can be generated via selective reduction of disulfide bonds in hinge region. The free 

sulfhydryl groups can be reactive towards supports bearing gold,[60–64] maleimides,[65] 

pyridyl disulfides,[66,67] and others[68]. However, undesired reduction of other disulfide 

bonds may take place, although the resulting antibody fragments still might maintain their 

biological functions on the sensor surface.[69] Dixit et al. have thiolated antibodies with the 

reaction of 2-iminothiolane.HCl at primary amines without reducing their disulfide bonds 

without noticing any substantial activity loss.[70] Protein engineering strategies to introduce 

free sulfhydryl group(s) onto antibodies offer extreme control over the number and location 

of sulfhydryl group(s) in the construct.[71–73] Hortigüela et al. fused cysteine-containing 

peptide linkers to scFv antibody fragments at the position distal to the antigen binding sites 

for immobilization on maleimide-activated supports in covalent and orientated manner.[72] 

There are several approaches to fabricate antibody drug conjugates (ADCs) based upon site-

specific crosslinking of small drug molecules through their sulfhydryls. These strategies can 

be potentially employed with certain thiol-reactive reagents for site-specific antibody 

immobilization. These approaches include genetic substitution of available serine or other 

residues to cysteine [74,75]; reduction of the number of interchain cysteines to make the 

leftover cysteines clearly defined [76]; covalent re-bridging of the disulfide bond using 

bis(sulfone) reagents, special maleimides, and others [5,77,78]; and genetic incorporation of 

selenocysteine to introduce conjugation selectivity to maleimides [79].

3.3.2. Antibody sugar chain—Periodate-mediated oxidation of polysaccharide moieties 

of antibodies yields aldehyde groups that can be employed for immobilizing antibodies 

either via hydrazide-derived crosslinkers or amine surfaces.[80–84] Alongside 

polysacchrides, some critical amino acids such as methionine, tryptophan, and histidine may 

also get oxidized during periodate reaction, thus affecting the site-selectivity of this 

approach. This slight non-specificity in oxidation may also affect the binding of antibodies 

to their target antigens.[57–59] In addition, the aldehyde groups might be reactive towards 

amine and sulfhydryl groups, resulting in inter-antibody cross-linking and thus aggregation.

Boronic acids, unlike oxidizing the sugar moieties, interact with vicinal diol in 

polysaccharide molecules and form boronate esters.[85,86] Therefore, boronic acid-coated 

surfaces can equally be used to capture antibodies via boron-polysaccharide interactions and 

are good alternative. Many reports demonstrated the use of aminophenylboronic acid-coated 
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support to immobilize antibodies in a site-directed manner.[63,87,88] However, boronate 

ester chemistry is reversible at physiological pH, and thus any glycoproteins in the sample 

may compete for the antibody immobilization. Adak et al. employed a crosslinker to 

overcome these drawbacks.[49] This crosslinker was a branched structure and possesses 

boronic acid and diazirine-containing photoreactive moiety (Figure 5). Antibodies were 

captured on the surface functionalized with this bifunctional crosslinker. At the first step 

boronic acid part reacts with the di-ols of the polysaccharide moieties resulting in weakly 

captured antibodies; while at the second step, the diazirine part forms a covalent linkage 

with the carboxy end of the antibodies when photoactivated with light at 360 nm 

wavelength. This results in site-specific covalent immobilization of antibodies onto the 

surface. In some conjugation methods immobilization was facilitated by site-specific 

modification of antibodies via polysaccharide moieties. These approaches mainly included 

generation of aldehyde groups via enzymatic methods and/or glycoengineering, [89–91] and 

incorporation of unnatural fucose-derivatives (e.g. thiol-fucose) to polysaccharide moieties 

[92].

3.3.3. Nucleotide binding site (NBS)—Nucleotide binding site (NBS) is a conserved 

region in the variable domain of all immunoglobulins. As its name suggests, NBS exhibits 

affinity for nucleotides and some aromatic amino acids, since there are several amino acids 

with aromatic side chains in the conserved regions of NBS and π-π stacking interactions 

might contribute to the affinity.[93,94] Handlogten et al. performed a computational 

screening for better NBS binding candidates and found several top hits.[94] The follow-up 

experimental investigation showed indole-3-butryic acid (IBA) had the best binding affinity 

for NBS with Kd of 1~8 μM. Alves et al. [95], in subsequent studies, demonstrated how high 

site-specificity allowed for ordered antibody capture on IBA-terminated surfaces (Figure 6). 

Following the initial capture of antibodies, photo-crosslinking was used to create a covalent 

bond between antibody and surface, similar to that presented by Adak et al. [49]. They also 

used the same photo-cross-linking strategy to prepare biotin labeled antibodies and coated 

such conjugates onto a streptavidin plate for enhanced antigen detection.[96,97] Although 

NBS is present in the variable region of an antibody but it is still distant from the antigen 

binding site (Figure 6),[93,94] and doesn't affect antigen binding capacity of the antibodies. 

In addition to NBS, other unconventional binding sites on antibodies, which are specific for 

small molecules, have been identified and may offer alternative conjugation/immobilization 

strategies.[98,99]

3.4. Bi-orthogonal covalent chemistries

3.4.1. Diels-Alder reaction—Diels-Alder (D-A) reaction is a classical organic reaction 

widely used in synthetic organic chemistry. It is a [4+2] cycloaddition between a conjugated 

diene and a double bond, forming a 6-membered unsaturated ring. The half-life of D-A 

reaction at ambient temperature is ~2 hours [100] and aqueous surroundings can largely 

accelerate the reaction rate [101], thus making it promising for the immobilization of 

biomolecules onto the solid supports. Shi et al. developed self-assembled micellar 

nanoparticles presenting furan groups at their surface, which reacted with the maleimide-

modified antibodies via D-A reactions. They employed these immunopolymeric 

nanoparticles for targeted drug delivery.[102] There are other potential strategies that were 
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developed to immobilize proteins and can be further extended to covalently capture 

antibodies. Stamos et al. site-specifically immobilized five individual proteins onto 

microarray supports via the D-A reaction to study the protein-protein interactions.[103] In 

their design, a 3-amino-L-tyrosine was incorporated to each protein, which was further 

oxidized to an o-iminoquinone for linking to the acryloyl-derivatized supports via D-A 

reactions.[103,104]

3.4.2. Staudinger ligation—Staudinger ligation is developed from classical Staudinger 

reaction by Saxon and Bertozzi in 2000,[105] and has been utilized for labeling, synthesis 

and for immobilization [106–108]. Staudinger ligation is a reaction between azide-

containing proteins and phosphine-containing esters or thioesters of the surface, resulting in 

covalent amide bonds. Although, Staudinger ligation is mostly used for small molecules, 

peptides, and protein immobilization,[109–113] it can be potentially used for antibody 

immobilization. For instance, Soellner et. al. first reported a site-specific immobilization of a 

truncated ribonuclease S (RNAse S’) onto a glass slide.[109] They installed an azido group 

into a 15-mer peptide derived from RNAse S’ and linked the resulting peptide onto the 

surface presenting diphenylphosphine moieties by Staudinger ligation.

They further incubated the peptide coated surface with the rest of RNAses S’ to generate a 

surface of active RNAses S’. A major drawback of this method is that it requires protein 

engineering to incorporate active azide analogs, such as methionine analog 

azidohomoalanine [114] or unnatural amino acid p-azido-L-phenylalanine [115] at specific 

sites in the proteins, which may affect their final activity.

3.4.3. Click chemistry—“Click chemistry” is a term introduced by Sharpless et al. to 

describe a series of reactions that meets a set of stringent criteria such as high yields, simple 

reaction conditions, simple product isolation, etc.[116] The most popular click chemistry 

reaction is the copper(I)-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) where an 

azide reacts with an alkyne to form a five-membered heteroatom ring in the presence of 

copper(I). For example, Finetti et al. successfully immobilized an azido modified anti-mouse 

IgG antibody on alkyne-functionalized gold nanoparticles via CuAAC click chemistry.[117] 

Due to the cytotoxicity of copper(I) catalyst, some copper-free click reactions have been also 

developed, such as strain-promoted azide-alkyne cycloaddition (SPAAC) where the alkyne 

part is a highly strained cyclic alkyne (e.g. cyclooctyne).[118,119] Trilling et al. introduced 

the azido group(s) to a VHH antibody that recognizes foot-and-mouth disease virus (FMDV) 

and attached the VHH antibodies to a cyclooctyne functionalized SPR chip via both the 

CuAAC and SPAAC reactions (Figure 7).[120] Comparing VHH antibodies bearing a single 

azido group (site-directed immobilization) and five azido groups (relatively random 

immobilization), the authors found that the site-directed strategy significantly improved the 

analytical performance of SPR. They were able to increase detection sensitivity by a factor 

of 800.

3.5. Site-directed Capture

3.5.1. Small affinity tags—Small affinity tags are receptor-ligand type biomolecule pairs 

with highly specific binding partners. These mainly include biotin-strep/avifin, 
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polyhistidine/(Metal)+2-nitrolotriacetic acid, and other peptide affinity tags. Due to their 

small size they can be easily crosslinked or genetically fused at any noncritical locations of 

antibodies without affecting conformation or immunoreactivity. The immobilization of 

antibodies via biotin-(strep)avidin interaction is one of the most common immobilization 

approaches featured with good stability, high efficiency, high specificity and extremely high 

binding affinity (kd = ~fM). Biotins are usually attached to the antibodies in a random or 

site-specific fashion using above mentioned chemical conjugation methods or enzymatic 

approaches,[121–123] while (strep)avidins are often coated on the supports via passive 

adsorption or other chemistries [124,125].

Polyhistidine tag (His-tag), typically hexahistidine, is a well-known genetically encoded 

affinity tag having an affinity for certain transition metal ions such as Ni2+, Co2+ and Cu2+. 

His-tagged recombinant antibodies are immobilized on Ni2+ chelated nitrilotriacetic acid 

(NTA) supports.[71] However, the binding affinity between His-tag and Ni2+ (kd = ~μM) is 

relatively low and continuous efforts to improve the affinity are being made. The low affinity 

can be enhanced by using multivalent NTAs,[126,127] increasing histidine numbers per tag 

to 10~12 residues, introducing tandem His-tags,[128,129] or introducing thioalkane 

chelators [130]. Although, His tags are constantly being employed for antibody purification 

and immobilization,[131] the overall immobilization efficiency may significantly decrease 

due to the competition with other metal-binding endogenous proteins [132]. Ericsson and 

colleagues proposed that a stable binding on Ni-NTA surface can be achieved by introducing 

photo-reactive crosslinkers. In the presence of Ni2+, human IgG with C-terminus His-tag 

was first captured on such surface, followed by covalent bonding via photo-reactive 

crosslinkers.[133]

Besides His-tag, other peptide affinity tags such as FLAG tag are also used for 

immobilization. FLAG-tag, consisting of the sequence motif DYKDDDDK, can be 

genetically incorporated into proteins and such FLAG-tagged proteins can be further 

captured by a support bearing anti-FLAG antibodies. Such protein immobilization via 

FLAG-tag is based on antigen-antibody interaction, instead of chelation, so stronger affinity 

and better specificity can be expected.[134]

3.5.2. Enzyme-substrate—Certain enzyme inhibitors can form covalent bonding with 

the active site of corresponding enzymes and thus irreversibly inhibit the enzyme activity. 

Inspired by this irreversible inhibition mechanism, such enzymes or their active domains can 

be genetically fused with desired proteins for highly site-specificity immobilization. Such 

constructs can be selectively and covalently linked to a surface presenting enzyme substrate/

inhibitor. Cutinase and its phosphonate inhibitors are one of the widely used enzyme-

inhibitor pairs that fall into this catalog. Cutinase is a serine esterase which can covalently 

link its Serine residue in the active site with phosphonate ligands via esterification reaction. 

It is a relatively small enzyme (22 kD) with its active site far away from both N- and C-

termini, offering some flexibility for designing the whole fusion protein. Kwon et al. fused 

antibody fragments (e.g. scFv and VHH) to cutinase and used phosphonate ligands presented 

supports to capture the fusion proteins (Figure 8).[135] A flexible 15-mer (GGGGS)3 

polypeptide linker was inserted between antibody fragments and cutinase, which facilitated 
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individual protein folding. The immobilized antibodies exhibited high affinity and specificity 

for their target antigens, as elucidated via a series of SPR and fluorescence studies.

Beside enzyme-inhibitor pairs, it is also a good idea to create covalent bonds between two 

reactants in an enzyme-mediated fashion. In this method, one reactant is introduced in the 

antibody while other is grafted on the surface, and in presence of a specific enzyme a 

covalent bond is created between them. Antibodies, unlike the previous enzyme-based 

methods, antibodies will most likely retain their functional activity due to minimal hindrance 

in their protien folding event. In addition, the amounts of enzymes used in this method are 

relatively smaller than the previous approach. Biotin ligase and numerous other enzymes 

participating in posttranslational covalent modification of proteins in vivo, including 

transferases (e.g. transglutaminases and peptidases) and oxidoreductases (e.g. tyrosinases 

and peroxidases), are few systems employed for such immobilizations.[136–139] Recently, 

Sortase A (Srt A)-mediated ligation strategy has been established.[140,141] SrtA is a 

transpeptidase which recognizes a penta-peptide motif LPXTG (where X is any amino acid). 

Upon recognition, the S-atom of Cys-184 of SrtA is attached to the threonine of the motif 

via nucleophilic substitution, resulting in a stable LPXT-thioacyl-SrtA intermediate. This 

intermediate would undergo another nucleophilic substitution where the α-amino group of 

an oligoglycine attacks and makes the enzyme SrtA as a leaving group. Using such SrtA-

mediated reaction, radioactive metal complexes, highly potent anti-tumor drugs, and certain 

enzymes could be site-specifically labelled to antibodies for different purposes such as in 
vivo imaging, drug delivery and antibody-antigen detection.[142–145]

3.5.3. Immunoglobulin (Ig)-binding proteins—Protein A and protein G are derived 

from bacteria Staphylococcus aureus and Streptococcus species, respectively. These proteins 

possess multiple binding domains specific for the Fc portion of the mammalian Igs. Their 

binding properties are different and dependent on the subclasses of Igs and their species of 

origin. Protein G has binding affinity for a broader range of Igs than protein A; however, 

native protein G also has binding regions for other molecules (e.g. albumin), for which 

researchers have developed genetically truncated protein G with only Fc-binding 

capabilities. Protein A/G, a recombinant fusion protein consisting of Fc-binding domains 

from protein A and protein G, was also developed and binds to the broadest range of Igs. 

There is an additional Staphylococcal protein that binds to Igs via the kappa light chains and 

is called protein L. All of these Ig binding proteins have been successfully used in 

biosensors and immunoseparations to achieve orientated immobilization of intact antibodies, 

which significantly improved the experiment performance compared with random antibody 

immobilization.[10,62,146] Although, a very homogeneous and functional layer of 

antibodies have been achieved on several occasions with the use of Ig-binding proteins, there 

are few concerns that may be potentially associated with this strategy.

Orientating Ig-binding proteins on surface due to their 3D structure and orientation [147] is 

a primary challenge as the problem of protein orientation now simply shifted from one 

protein (antibody) to the other (protein A or G). The orientation of Ig-binding proteins can 

also be accomplished via either site-specific fusion of cysteine residues,[148,149] gold 

binding peptide,[150,151] His-tag [152–154] to protein A or G, or enzymatic conjugation,

[43] which can provide a well-ordered protein A or G scaffold. The unclear stoichiometry of 
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Ig binding to protein A or G having multiple Ig binding domains with different binding 

affinities presents another crucial challenge for capturing antibodies with these proteins. 

Given this, only two antibodies can stoichiometrically bind at the maximum binding 

capacity of protein A, G, or A/G.[10] Nilsson and group has developed engineered analog of 

protein A, the Z domain [155] that was demonstrated for Igs binding [156–159]. Miyao et al. 

constructed solid surfaces bearing either one or two Z domains for antibody immobilization 

and they found that the tandem Z domains (i.e. ZZ domains) captured the antibody more 

efficiently than single Z domain, suggesting multiple Ig binding domains may adopt a 

cooperative manner for Ig binding.[160] Ig binding via protein A or G is a non-covalent and 

reversible binding, which is good for protein A or G regeneration, thus improving their 

reusability.[161] However, the binding reversibility poses a problem for the stability of 

protein-antibody adduct that may not be suitable for certain applications. In this scenario, for 

applications like immunoprecipitation, antibodies of protein A-Ig adduct may co-elute with 

the other antibodies or proteins. Therefore, scientists usually crosslink Igs captured on 

protein A or G via chemical crosslinkers such as dimethyl pimelimidate (DMP) and 

bis(sulfosuccinimidyl) suberate (BS3).[162–165] However, crosslinkers like DMP may also 

modify the amine groups on the antigen biding sites, leading to a decrease in antigen binding 

efficiency.[166] Konrad et. al. [167] and Yu et. al. [168] have separately addressed this 

challenge by incorporating photo-reactive crosslinkers into Z domain to create UV light-

induced covalent bond between Z domain and Igs at the Fc regions. Following such 

principle, Hui et al. fabricated a bifunctional Z domain protein bearing photo-reactive 

crosslinker and azido group.[169] They first captured IgGs onto Z domain followed by UV-

induced crosslinking. This adduct has free azido group facilitating direct immobilization on 

cyclooctyne functionalized nanoparticles via SPAAC click chemistry (Figure 9). Another 

example is covalent immobilization of antibodies through directly loading antibodies onto 

the surface bearing Ig binding protein with photo-reactive crosslinker, followed by washing 

and UV irradiation.[170]

3.6. Miscellaneous

3.6.1. Calixarene derivatives—Calixarene is a widely studied organic host system 

which is a cup-shaped cyclic oligomer. Chemical architecture of the calixarene molecules 

can be adjusted for the polarity and other physico-chemical properties of the cuplike 

structure, making calixarenes interact with a wide range of guest species.[171] Lee et al. 

synthesized two novel calixarene derivatives, ProLinker A and ProLinker B, for protein 

immobilization on the microarrays.[172] Further studies showed the ProLinkers efficiently 

orientated the antibodies in a site-directed manner,[173,174] and such strategy got even 

more orientated antibodies than crosslinker or protein G mediated immobilization strategies 

[175]. The mechanism of antibody orientation is not well understood; host-guest 

interactions, hydrophobic forces, and dipole-dipole interactions are suggested for the highly 

stable immobilization and proper orientation of antibodies.[173–175] Calixarene-mediated 

antibody immobilization has been adopted by many research groups for developing 

immunosensors based on all kinds of techniques, including SPR and LSPR,[175] ECL,[176] 

and electrochemical impedance spectroscopy [177].
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3.6.2. Material binding peptide—Researchers have identified affinity peptides for 

certain materials, such as polystyrene (PS), polymethyl methacrylate (PMMA), gold, silver, 

and others using phage display and computer simulations.[178–180] These peptide ligands 

can be site-specifically fused to recombinant antibodies and thus orient the fusion proteins 

on the solid support.[181] For example, a polystyrene-binding peptide (PS-tag) fused VHH 

was constructed and used for ELISA,[42] where PS-Tag facilitated not only adsorption but 

also orientated adsorption on PS support via hydrophobic forces.[42,182–184] Besides PS-

tag, PMMA- [185] and spider silk protein [186] tags have been reported as fusion proteins to 

recombinant antibodies for orientated immobilization on corresponding solid supports.

Researchers have reported polypeptides generated through combinatorial peptide selection 

that can bind to the metal surface, especially gold, with high affinity.[179,180] Interestingly, 

gold binding polypeptide (GBP) has its inherent binding chemistry as it carries no cysteine 

residue. Park and group have developed GBP- fused with single-chain antibody (ScFv) for 

detecting viral antigens (Figure 10).[187] Several other groups have also reported GBP-Ig 

fusion proteins for achieving highly orientated immobilization of antibodies.[150,151,188] 

Hattori and colleagues reported the development of GBP fused antibodies to achieve one-

step antibody immobilization.[189] Moreover, antibodies that can specifically bind to gold 

surface have been developed.[190,191] These antibodies were further constructed as 

bispecific fragments consisting of fragments of two different monoclonal antibodies that can 

recognize gold and the analyte proteins.[192] Such bispecific antibodies can be immobilized 

on gold surface in one-step manner and exhibited an increased immunoreactivity to target 

analyte.

3.6.3. Oligonucleotide-antibody conjugates—Oligonucleotide labelled antibodies 

can be immobilized onto a solid support pre-loaded with complimentary oligomers via 

highly specific Watson-Crick base pairing. The oligonucleotides are very stable and can be 

customized with different sequence and reactive groups. The oligonucleotide labelling 

strategies are usually non-selective.[193,194] However, the site-specificity during 

immobilization can be achieved via unnatural amino acid [195,196] or oligonucleotide 

labelled protein G [197]. The immobilization via oligonucleotide hybridization is simple but 

efficient approach and suitable for surface regeneration in a timely manner.[194] It also has 

possibility to simply convert an oligonucleotide array to an antibody array for high-

throughput analysis.[198]

3.6.4. Unnatural amino acid—Incorporation of unnatural amino acids to proteins 

provides potential site-specific modification. Therefore, orientated protein immobilization 

could be expected via unique chemistries brought by unnatural amino acid.[199,200] As 

mentioned before, a 3-amino-L-tyrosine was incorporated to proteins for D-A reactions.

[103,104] Introduction of a reactive azido group into the protein can be achieved by several 

aminoacid derivatives, such as azidohomoalanine,[114,120] p-azido-L-phenylalanine,[201] 

p-propargyloxyphenylalanine,[115] and others. In addition, antibody with site-specifically 

labelled oligonucleotides can be produced using p-acetylphenylalanine incorporated 

antibody and aminoxy-functionalized single-stranded oligonucleotide, which resulted in a 

stable oxime linkage.[195,196] It has been shown that few such amino acids, such as p-
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benzoyl-L-phenylalanine, can work as photo-reactive crosslinker for covalently coupling 

antibody and its affinity partner, where the photo-reactive crosslinker could be incorporated 

into either antibody or its affinity partner.[169,202]

3.6.5. Molecular imprinting—Molecular imprinting technique can offer artificial 

receptor sites for various molecules with antibody-like specificity.[203–207] Bereli and 

colleagues have developed MIPs with Fc fragment templated with poly(hydroxyethyl 

methacrylate) cryogel and used it for immobilizing anti-IgG in a site-directed fashion.[208] 

However, while immobilizing the template protein on the particle surface, it can still be 

randomly bound. This may result in an incorrect or poor affinity MIP. Corman et al. 

synthesized L-lysine imprinted nanoparticles and claimed for its ability to bind to the L-

lysine molecules of the C-terminus on the antibodies.[209] L-lysine however doesn't 

represent a specific epitope and may introduce great variability. Therefore, Zhou group used 

borate-assisted molecular imprinting method targeting polysaccharide-containing Fc portion 

of the antibodies via boron-polysaccharide interactions.[210] They were able to capture anti 

HIV1 antibodies specifically via their carbohydrate regions, which were later detected via 

ECL.

3.6.7. Ig binding peptide—Combinatorial peptide selection can generate not only 

material-binding peptides, but also peptides having affinity for certain proteins, such as Fc 

region of IgG [211–213] and enzymes (namely horseradish peroxidase, alkaline phosphatase 

and β-Gal β-galactosidase) [214–216]. Jung et al. demonstrated that highly oriented layer of 

antibodies was obtained when immobilized on gold SPR chips coated with Fc-specific 

peptides.[211] They have shown that such peptides bound with human IgG1 and rabbit IgG 

with near nanomolar affinity. Orientation obtained with these peptides has significantly 

improved the antigen binding capacity with respect to the antibodies immobilized via EDC/

NHS-mediated crosslinking.[211]

3.6.9. Carbohydrate-binding module—Carbohydrate-binding modules (CBMs) are 

protein domains derived from carbohydrate related enzymes, which exhibit their function for 

specific recognition of certain carbohydrate.[217,218] The most used CBMs are those that 

have affinity for cellulose, which can be used as affinity tags for purification and 

immobilization of peptides and proteins.[219–221] Ofir et al. prepared a series of scFv 

antibody fragments coupled with cellulose-binding domains and used them to construct a 

CBM-based microarray for HIV serodiagnosis.[222,223]

3.7. Conclusions and Perspective

On concluding remarks, in the past decade there has been tremendous progress on the front 

of orientated and site-specific antibody immobilization. However, there is a limited 

understanding of several of the methods and approaches employed for achieving orientation 

and site-specificity. Staphylococcal Ig-binding proteins, including protein A, G, L, and 

recombinant A/G, offer a significant orientation and are very simple to use, such that an 

untrained person can perform immobilization with these proteins. It is attributed to the five 

affinity domains present on each protein, which simply omits any special considerations 

regarding orientating these precapture proteins ahead of immobilizing the incoming 
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antibodies. Nonetheless, the biggest challenge with staphylococcal precapture proteins is 

variable affinity of the binding domains. If a high affinity domain is involved in the 

interaction with the surface then immobilization will be sub-optimal.

On the contrary, highly site-specific strategies were developed that involve covalent 

chemical bonding. Biorthogonal chemistries, which are mainly cycloadditions at [4+2] and 

[3+2], are very straight forward like the Ig-binding proteins. However, these chemistries are 

superior to antibody-binding proteins due to their high site-specificity and covalent linkage 

that they offer. In spite, the degree of orientation obtained with these cycloadditions may not 

be as comparable as for Ig-binding proteins. Similarly, sugar chain-specific capture, affinity 

peptides, NBS-based immobilization, and other strategies offer unique advantages with 

respect to each other. There is not a single strategy which offers all the desired advantages, 

such as orientation, site-specificity, high package density on the surface, and preserved 

antibody activity.

In summary, obtaining an ideal antibody immobilization regimen is nearly impossible. 

However, a combination of approaches may be introduced, such as antibody orientation on 

covalently immobilized protein A or polysaccharide-based antibody capture stabilized with 

photoreactive crosslinking, and others. Multifunctional polymer coatings in tandem with 

synthetic or genetically engineered ligands for obtaining robust, site selective, orientated, 

high density, and homogeneous antibody immobilization should be the futuristic path, 

without affecting their functional activity.
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Highlights

• Methods for site-selective orientated antibody immobilization are discussed, 

in particular to unconventional approaches

• Focus on methods employing site-specific chemical tools for creating 

covalent interactions

• Potential applications of the immobilized antibody systems are described
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Figure 1. 
Illustration showing detailed structure of an antibody depicting various regions. Adapted 

from ref. [3] with permission from Macmillan Publishers Ltd: [Nature Chemistry], copyright 

(2016).
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Figure 2. 
Illustration showing various functional groups on an antibody that can potentially be 

employed for immobilization. Modified from ref. [3] with permission from Macmillan 

Publishers Ltd: [Nature Chemistry], copyright (2016).

Shen et al. Page 31

Methods. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Affinity chromatography at work. The illustration demonstrates the work flow of affinity 

capture.
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Figure 4. 
Antibody and its variants in various orientations on the surface when physisorbed. Adapted 

from ref [32] published by The Royal Society of Chemistry.
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Figure 5. 
Fabrication of antibody microarrays by light-induced covalent and orientated 

immobilization. Reprinted from ref [49]. Copyright (2014) American Chemical Society.
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Figure 6. 
Orientated surface immobilization of antibodies at the conserved nucleotide binding site for 

enhanced antigen detection. Reproduced from [96] with permission from Elsevier.
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Figure 7. 
Orientation of llama antibodies strongly increases sensitivity of biosensors. Reproduced 

from [120] with permission from Elsevier.
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Figure 8. 
Antibody arrays prepared by cutinase-mediated immobilization on self-assembled 

monolayers. Reproduced from [135]. Copyright (2004) American Chemical Society.
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Figure 9. 
Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles 

through a combination of recombinant protein Z domain crosslinked to IgG via BPA binding 

immobilized on nanoparticle surface using click chemistry.
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Figure 10. 
Immobilization of scFv via fused gold-binding protein has a high affinity for the gold 

surface. GBPs have no sulfhydryls that may facilitate gold binding; however, it is mainly the 

affinity of the protein towards metal as described in ref [187]. Copyright (2012) MDPI.
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Table 1

The list of some popular protein crosslinkers used in antibody immobilization

Cross-linking targets Crosslinker reactive groups Example products Ref

Carboxyl reactive Carbodiimide EDC [45]

DCC

Amine reactive NHS ester BS3 [46]

Imidoester DMP

Aldehyde glutaraldehyde

Sulfhydryl reactive Maleimide [47]

Aldehyde reactive Hydrazide [48]

Alkoxyamine

Photo-reactive Diazirine [49]

Aryl azide

to amine or sulfhydryl Epoxide [50]
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