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Abstract

Different types of genomic aberration may simultaneously contribute to tumorigenesis. To obtain a 

more accurate prognostic assessment to guide therapeutic regimen choice for cancer patients, the 

heterogeneous multi-omic data should be integrated harmoniously, which can often be difficult. 

For this purpose, we propose a Gene Interaction Regularized Elastic Net (GIREN) model that 

predicts clinical outcome by integrating multiple data types. GIREN conveniently embraces both 

gene measurements and gene-gene interaction information under an elastic net formulation, 

enforcing structure sparsity and the “grouping effect” in solution to select the discriminate features 

with prognostic value. An iterative gradient descent algorithm is also developed to solve the model 

with regularized optimization. GIREN was applied to human ovarian cancer and breast cancer 

datasets obtained from The Cancer Genome Atlas, respectively. Result shows that, the proposed 

GIREN algorithm obtained more accurate and robust performance over competing algorithms 

(LASSO, Elastic Net and superPC, with or without average pathway expression features) in 

predicting cancer progression on both two datasets in terms of median Area Under Curve (AUC) 

and Interquartile Range (IQR), suggesting a promising direction for more effective integration of 

gene measurement and gene interaction information.
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1 INTRODUCTION

CANCER progression can be quite different between patients, yet the patients were often 

treated with the same therapeutic regimen. To improve the efficacy of medical treatment, the 

cancer patients are now often further classified into a few subtypes (or risk groups) based on 

their bio-molecular markers to guide the physicians in the choice of the most appropriate 

therapy[1], and it is thus urgent to improve the ability to make accurate prognostic 

assessments [2].

Recently, high throughput (HT) technologies, such as microarray and next generation 

sequencing, enabled the global unbiased comparison of gene expression profiles between 

healthy and diseased tissues and between patients having different responses to the same 

drug therapy[3]. Since last decade, several techniques in the literature have studied the 

clinical outcome prediction based on microarray data. A semi-supervised PCA (Principle 

Component Analysis) method was proposed to predict patient survival time based on gene 

expression data [4]. An integrative method was proposed to predict the outcome by 

integrating four different genomic profiles (mRNA, DNA methylation, DNA copy number 

alteration and microRNA) [5]. Other methods similar to Google’s PageRank algorithm 

together with other algorithms were also proposed in recent studies on predicting disease 

progression and patient survival variables from gene expression data in order to personalize 

treatment options[6].

Many different types of aberrations are known to present in cancer genome, such as, DNA 

methylation, DNA copy number variation, post-transcriptional RNA modifications, etc. 

These genomic changes may affect the expression level of gene, alter the function of gene 

product, and ultimately contribute to tumorigenesis [7, 8]. For instance, genome-wide hypo-

methylation causes genome instability; while the hyper-methylation of CpG islands in 

cancer has often been associated with inactivation of tumor suppressor genes. It was recently 

shown that cancer-and tissue-specific methylation variation in adjacent regions, termed CpG 

island shores, is also related to gene expression change [9]. Besides, genes are more likely to 

be repressed when they locate in partially methylated domains [10] or long hypo-methylated 

domains [11] in cancer. Nevertheless, the relative merits of DNA methylation and gene 

expression in predicting cancer stages and patient survival still remain poorly characterized 

in many cancers. Conceivably, gene expression profiles, methylation profiles and other gene 

measurements can be conveniently integrated to predict clinical outcome to improve the 

prediction performance. Naturally, the comprehensive characterization of complex disease 

calls for coordinated efforts to collect and integrate genome-scale data from large patient 

cohorts. A prime example of such coordinated effort is The Cancer Genome Atlas (TCGA: 

http://cancergenome.nih.gov), which currently profiles patients of a variety of cancers for 

different genomic profiles including gene expression, DNA methylation, DNA copy number, 
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miRNA, etc. together with the clinical information such as age, gender, treatment received, 

survival time, etc. Translating these data types into effective diagnosis and prognosis 

strategies is the key goal for the TCGA project, which requires more effective tools designed 

to integrate these multi-dimensional, disparate genomic data and clinical features [12]. Such 

integrated analysis would be more likely to reveal important features that would otherwise 

be statistically insignificant. In addition, it will provide better insights into the mechanisms 

underpinning different phenotypes in cancer.

For classification purpose, gene measurement across different stages (or phenotypes, such as 

cancerous and health tissue) has been regarded as one of the most important factor for 

feature selection in classification. This concept has been widely used so far for classification 

of disease or for prediction clinical outcomes [5, 13] based on various bio-molecular data 

types. We call the correlation between gene measurements “between profile redundancy”. It 

refers to highly correlated features which are not favored for classification purpose. It has 

been pointed out that removal of the correlation between features can significantly improve 

the classification performance [14]. Given the prediction power of all the features are the 

same, for many classifiers, the prediction result based on 10 independent features are more 

likely to be better than that from 10 highly correlated features, because the independent 

features contain more information. In general, if multiple features are highly correlated, we 

want to use only one or a summarized measurement of them so as to reduce “between profile 

redundancy”. Please note that, “between profile redundancy” can be actually important for 

noise reduction at feature level, e.g., “between profile redundancy” may be used to generate 

more robust features of classifier with clustering approach [14–16] and pathway features 

may be generated from gene expression profiles with redundancy [17].

Additionally, gene-gene interactions have long been recognized to be fundamentally 

important for understanding genetic causes of complex disease traits [18]. The phenotype 

can often be considered as a result of underlying interplays between multiple key genes. 

Understanding gene interactions should be beneficial when we predict the progression 

outcome based on integrated genome information. In this paper, we call gene interaction 

information the“ within profile redundancy” for cancer progression prediction, which may 

represent different physical interactions such as protein/DNA interaction (transcription 

factor targets), protein-protein interaction (PPI), RNA-binding protein (RBP), etc. 

Conceivably, if multiple genes interact with each other, we don’t want to use all of them as 

predictor because the information they carry are inevitably correlated due to the interaction, 

even though this correlation may not directly observed on the gene measurement data 

available. Previously, the network information coupled with gene expression measurements 

has been used for marker gene prediction and classification [19–21]. Binder and 

Schumacher extended component-wise likelihood-based boosting techniques for 

incorporating pathway information so as to boost estimation of high-dimensional risk 

prediction models [17]. Gade et al. proposed to fuse miRNA and mRNA expression with 

correlations and miRNA target information to improve clinical outcome prediction in 

prostate cancer [22]. Edwards et al. developed an approach to analyze gene expression 

profiles under the framework of Bayesian network using transcription factor network [23]. 

All these approaches together with recent development [24–27] substantially expanded the 

prediction power and capacity of classifier in clinical outcome prediction.
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In this paper, we propose a statistical framework, Gene Interaction Regularizing Elastic Net 

(GIREN), which conveniently integrates gene measurements and gene interaction 

information for cancer clinical outcome prediction. Developed rigorously based on Elastic 

Net, the model assumes a sparse learning machinery and seeks to simultaneously mitigate 

the “between profile redundancy” (from gene measurements) and “within profile 

redundancy” (from transcription factor targets and protein-protein interaction), 

systematically taking advantage of both the measurements data and the interaction data. 

Meanwhile, the prominent features of elastic net, i.e., grouping effect of correlated features 

and the sparsity in solution, are also inherited automatically by GIREN.

We tested the proposed method on two human cancer datasets obtained from The Cancer 

Genome Atlas (TCGA) with cross validation to predict cancer progression. Result shows 

that, by taking advantage of the interaction information, GIREN outperforms original elastic 

net and SuperPC significantly on both two datasets.

2 METHODS

2.1 Constraints Imposed by Sparsity

The goal of our work is to identify potential marker genes for cancer progression prediction, 

thus we designed an objective function with two components. The first component is based 

on the profile matrix X with dimension m × s, where m indicates the number of involved 

features, whiles indicates the number of samples. When there are more than one type of 

profile involved, e.g., there are both DNA methylation profile and gene expression profile, X 

can be constructed by concatenation by  where X1 is the gene expression matrix 

with size of m1 × s, X2 is DNA methylation matrix with size of m2 × s, and m1 refers to the 

number of involved genes in gene expression matrix, while m2 refers to the number of 

involved locus in DNA methylation matrix. Thus, m=m1+m2.

The other component to be considered is the effect of gene-gene interactions [28]. To 

minimize the dependency of selected biomarkers, the goal is to obtain a set of sparse 

coefficients for genes with predictive merit for risk group prediction. For this purpose, we 

adopted an elastic net penalized regression formulation to capture the contributions of each 

gene for progression by achieving a sparse solution for coefficients, which helps to select 

marker-genes (or a specific stage of that gene). In order to mitigate the “between profile 

redundancy”, we made the hypothesis that there is no correlation between gene expression 

and methylation profile, i.e., the gene expression and methylation profile for each gene are 

modeled to be independent. In case two measurements of a gene, e.g., the expression and 

methylation level, is highly correlated, and this gene contributes greatly to the prognosis, 

then only one measurement should be selected from either-gene expression profile or 

methylation profile, i.e., the-model should exhibit “grouping effect” in its solution [29]. 

Genes which are highly correlated will be grouped into one set. In order to obtain “grouping 

effect”, the model should be strictly convex. Thus the objective function to be minimized so 

as to reduce “between profile redundancy” can be defined as:
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(1)

where the input for the objective function is the concatenated matrix X, β is the coefficient 

of length m. It will refer to the selected genes with a sparse solution. y is a vector of length s, 

which indicates the clinical outcome, such as risk group indicator, the OS/PFS, etc., for the 

patients.

Due to the strictly convex characteristics for “grouping effect”, the “elastic net” penalty 

termed 0.5(1−α)║β║2+α║β║ is constrained with 0 <α<1. Thus, the “between profile 

dependency” can be effectively removed. In addition, this penalty also promotes sparsity 

which removes automatically the genes that do not contribute to the outcome y.

2.2 Constraints Imposed by Gene Interactions

In our proposed method, the prior knowledge also consists of various gene interactions, such 

as protein-protein interaction. Conceivably, genes interact with each other are functionally 

correlated, thus gene interaction information can in theory help to avoid the “within profile 

redundancy”. The goal of our method here is to define a gene interaction network based 

constrain such that any variables linked in the network are more likely to be placed into the 

same set so as to avoid redundancy. Let A denote the adjacency matrix derived from the 

constructed gene interaction network. A has value 0 or 1, with size m × m. aij=0 means the 

interaction between the i -th and j -th feature is weak, while aij=1 means the interaction is 

strong. To ensure genes with known interactions having similar coefficients such that they 

are more likely to be grouped together, we would like to maximize the total grouping effects 

reflected within gene-gene interaction network (or minimize the within profile redundancy), 

which can be define as the following objective function.

(2)

where Tr(·) refers to the trace of a matrix. Please note that O2 needs to be maximized, while 

O1 should be minimized.

2.3 Gene Interaction Regularized Elastic Net

An important characteristic of original elastic net method is that it can handle the “grouping 

effect”. We make the gene interaction as the regulation based on elastic net regression model 

to predict the risk group of cancer patients. The inputs in GIREN are the profile matrix X 
and gene-gene interaction network matrix A. And thus the total redundancy (or the objective 

function of GIREN) can be formulated as follows:
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(3)

where parameters λ and γ are the weights for the elastic net penalty and gene interaction 

constraint, respectively. The objective function should be minimized to approach the 

optimization, i.e., minimizing both the “between profile redundancy” and the “within profile 

redundancy”.

2.4 Algorithm

In the original elastic net problems, the penalty is often required to be strictly convex such 

that the solution of coefficients in regression model keeps the“ grouping effect”. Therefore, 

the penalty in objective function (3) should also comply with stringent convex constrain.

The contour plot of β is shown in Fig. 1. Note that when γ/λ=0.5, the penalty still remains 

convex but not strictly convex. When the ratio is higher than 0.5, the penalty is not convex 

anymore. The penalty function is singular (without first derivative) at 0. In the first and third 

quadrant, the penalty function is strictly convex, while in the second and fourth quadrant, the 

penalty function becomes concave. Since our goal to identify the potential subset of genes 

that contribute most to the clinical outcome imposes the sparseness and “grouping effect” in 

the modular solution, we constrain the ratio γ/λ=0.5 to keep the stringent convexity 

characteristic, so as to preserve the “grouping effect” in its solution. That is, selected groups 

of genes will present the close value of coefficient. The higher correlated the genes are, the 

more close the returned coefficients will be. Based on the solution, genes that have high 

correlation between gene expression and methylation profile are only selected either from 

gene expression matrix or methylation matrix.

Since the penalty is strictly convex, we can follow an iterative gradient descent algorithm 

[30] to seek for the minimization of GIREN objective function. In order to achieve the 

optimization of (3), the updated value of βj is formulated as follows.

(4)

where S(z,γ)+ function is the soft-thresholding operator defined in [31].

(5)
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We implemented GIREN in MATLAB (version 2011b) environment. The MATLAB code 

together with original dataset is available online (https://github.com/lzcyzm/GIREN) for 

testing and comparing with other approaches. The computational load is still relatively 

affordable on smaller dataset or after a feature selection procedure. The implementation 

steps can be summarized as the following:

Implementation steps of GIREN algorithm

1) Initialize coefficients β, and set the iteration index to 1. Define the convergence criteria variable crit, and set crit=0

2) In the t -th iteration, fix all the βt and calculate the value of objective function F with (3).

3) For j=1,⋯,m

f = 2 ∑
i = 1

n
xi j yi − β0

t

e = 2 ∑
i = 1

n
xi j

2 − γai j + λ 1 − α

β j
t + 1 =

0 when λα > f
f − λα

e when λα < f and f > 0

f + λα
e when λα < f and f < 0

(6)

4) Fix the updated βt+1, and calculate the value of the objective function. That is, update the value of objective 
function Fnew with (3).

5) Update crit by (7).

crit =
F − Fnew

F (7)

6) Repeat step 2)–5) until the convergence criterion is satisfied. That is, when crit is smaller than a predefined 
threshold.

3 TESTS ON REAL DATA

3.1 Data and Preprocessing

The developed approach is tested on human ovarian and breast cancer datasets, respectively.

In ovarian cancer study, a total of 514 tumor samples and 12 normal samples with matching 

gene expression (Affymetrix U133A) and methylation profiles (Illumina HumanMethylation 

27) are obtained. Since the chemotherapeutic response plays an important role in the 

progression of ovarian cancer, a rigorous sample selection process was applied to find 

eligible samples for outcome prediction following our previous protocol [32]. Specifically, 

we restrict samples to be specifically treated with paclitaxel and carboplatin: the treatment 

had to be started within 30 days after surgical resection and to last for at least 4 cycles. The 

censored samples whose survival time is shorter than the median of uncensored samples’ 

were removed from the analysis because we are unable to identify their belongings to the 
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high or low-risk group. Those whose “reported survival time” is longer than median of 

uncensored samples are retained. As a result, there were only 79 samples remained, 

including 68 alive and 11 deceased ovarian cancer patients with survival time ranging from 

16 to 3825 days. The gene expression matrix included normalized log2 expression level for 

13262 genes. Methylation matrix includes the beta value for 27578 locus, each value 

referring to the percentage of methylation at a specific CpG site. The methylation 

percentages all underwent a reverse logistic transform such that they span the whole range of 

[−∞, +∞] Loci with missing values are removed from further analysis. Finally, the non-

differentially expressed genes were eliminated with a two-sample t-test [33] (fold change<2, 

p-value<0.05). The non-differentially methylated locus were also removed by Mann-

Whitney U-test [34] (fold change<1.23, p-value< 0.05). In the end, a panel of dataset 

including the 751 differential methylated locus and 900 differential expressed-genes were 

obtained for further study. Please note that some genes are both differentially expressed and 

differentially methylated.

In breast cancer study, 599 breast tumor samples were obtained with gene expression profile 

(Agilent G4502A). The censored samples that have shorter survival time than the median of 

uncensored samples were also removed. As a result, there were only 163 samples remained, 

including 82 alive and 81 deceased patients with survival time ranging from 157 to 7125 

days. The gene expression matrix went through the same filtering processes as in ovarian 

cancer study. In the end, a panel of dataset including 2135 differentially expressed genes was 

obtained for further study.

Meanwhile, a gene-gene interaction network was constructed by combining the protein-

DNA interaction data downloaded from TRANSFAC 7.0[35] and Bossi and Lehner’s human 

protein-protein interaction database [36] directly obtained from [37]. Different data types are 

integrated based on the mapping of HUGO Gene Nomenclature Committee gene symbols, 

and the gene-gene interactions that are not fully represent in the preprocessed data, i.e., both 

interacting genes are considered differential between cancerous and normal control 

conditions, are excluded from the analysis, the interaction matrix can then be generated 

based on the remained gene-gene interaction network and the remained features. This 

procedure-resulted in a network with 1651 gene interactions for ovarian cancer study and a 

network with 2135 gene interactions for breast cancer study. In addition, clinical information 

such as patient overall survival (OS) and progression free survival (PFS) of each sample was 

also obtained. OS is defined as the time between the initial surgical resection to the date of 

last follow-up or death and PFS is defined as the interval from the date of initial surgical 

resection to the date of progression, date of recurrence, or date of last known contact, if the 

patient was alive and had no cancer recurrence [5]. As is known, clinical decisions are 

usually binary, e.g., good vs. bad survival, or low-risk vs. high-risk patients. As such, we 

separated the samples into two classes, i.e., the low risk group (whose OS is longer than 

median OS) and the high risk group (whose OS is shorter than median OS).

As shown in Fig. 2, the goal is to predict risk group attribute given the bio-molecular profile 

of a patient and the general gene interaction information.
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3.1 Test on Ovarian Cancer Dataset

The proposed GIREN was firstly applied to the ovarian cancer dataset, including DNA 

methylation and gene expression profiles, to select feature genes that contribute most to the 

clinical outcome prediction by integrating multiple data sources. To optimize the parameters 

γ and λ under the constraint γ/λ<0.5, as well as the mixing parameter α, we implemented a 

3D-grid search under the nested cross validation scheme. Specifically, we set γ/λ within the 

range [0.01, 0.5] with step-wise increment 0.01, and set λ within the range [0.1, 0.9] with 

step-wise increment 0.1, while α was set within the range [0.1, 0.9] with step-wise 

increment 0.1. That means in total, 4050 points are searched within the 3D mesh for 

optimization purpose under the specified constraint.

GIREN reported 132 feature genes from gene expression profile and 68 from DNA 

methylation profiles as signature genes for clinical outcome prediction. From the Venn 

Diagram shown in Fig.3, only “NOX4” [38] is selected in both DNA methylation and gene 

expression profiles. Note that, gene expression and DNA methylation may be correlated. 

Therefore, it is intuitive to expect that the gene expression and DNA methylation data of the 

same gene should carry similar predictive merit and are therefore likely to be redundant for 

prediction. This result clearly demonstrated the effectiveness of GIREN to remove this 

dependency. A close examination of “NOX4” also revealed that the correlation between its 

expression and methylation level is actually positive (Pearson correlation 0.21) rather than 

expected a negative value.

The interactions between the selected genes were further investigated in this article. Firstly, 

we calculated the degrees of each selected gene in the resulted gene list (shown in Fig.4). 

The “degree” indicates the number of interactions between this gene and the genes selected 

as markers. Most genes show degree of zero, i.e., these genes do not show interaction with 

others in the selected gene list. The goal of GIREN is to minimize feature correlation 

through: Firstly, observed correlation in gene measurement data. Secondly, (possibly 

unobserved) correlation indicated in gene interaction data. The small number of interactions 

among selected gene marks indicates the “within profile dependency” is successfully 

minimized to reduce dependency in the interaction layer. Please note that, this is different 

from topological analysis, which often favors highly connected hub genes.

Secondly, the number of first neighbor genes for the selected genes were further studied. The 

top five genes are shown in Table 1. Some of the genes are actively involved in the 

interaction with other genes. “MAGEA11” (Melanoma-associated antigen 11) has the most 

number of first neighbor genes. They have been found to be involved in the androgen and 

progesterone receptor signaling pathways, to be linked to several cancers, such as prostate 

and breast cancers [39]. “MCM10” (Minichromosome maintenance complex component 10) 

has been suggested to participate in the initiation of eukaryotic genome replication [40]. 

“LMO3” (LIM Domain Only 3) has been found to interact with famous tumor suppressor 

gene “TP53” and regulate its function [41]. “BLNK” (B-cell linker) has been reported to 

temporally and spatially coordinate and regulate signaling effectors downstream of B cell 

receptor [42].

Zhang et al. Page 9

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The “grouping effect” of GIREN was investigated by calculating the correlation coefficients 

between selected features. Grouping effect indicates that correlated features are more likely 

to be simultaneously selected or not selected. For ovarian cancer dataset, GIREN reported 

200 genes as feature genes for prognosis, so we conducted a permutation that randomly 

selected 200 genes from all the genes in original dataset for 1000 times, then calculate the 

percentage of highly correlated genes. As shown in Fig.5, comparing with the randomly 

selected feature pairs, among which only average 22.3% are significantly correlated (with 

Pearson correlation p-value smaller than 0.05), and the percentage is much higher among 

GIREN selected features (36.7%). The increased percentage of significantly correlated 

features indicates potential grouping effect of features selected by GIREN.

To explore the functions of the selected marker genes, gene ontology (GO) enrichment 

analysis [43] is used. As is shown in Table 2, many of the enriched functions are highly 

related to ovarian cancer mechanism, such as, defense response (p-value 4.59×10−6), 

immune response (p-value 2.77×10−5), cell motion, etc., which is consistent with previous 

studies. The gene ontology enrichment analysis was conducted at DAVID website [44] with 

default settings. Among the 199 genes, four of them are involved in “Basal-cell carcinoma 

pathway”, including TP53, BMP, Wnt and Frizzled. These genes are crucial in maintaining 

cell cycle, proliferation and cancer protection. Among the four genes, “TP53” is well known 

as a tumor suppressor that is involved in preventing cancer [45]. It plays an important role in 

apoptosis, genomic stability, and inhibition of angiogenesis. There are also some other genes 

involved in “innate immune response” and “regulation of cell proliferation process”, both of 

which are crucial for cancer development.

As comparison, we also applied LASSO, Elastic Net, and Supervised PCA (SuperPC) to 

original gene measurements or average pathway expression (APE). APE was used to further 

integrate the pathway information into other standalone approaches as the gene-interaction 

module for a fair comparison with GIREN. With 100 times of 3 fold-cross validation, the 

outcome prediction performances of selected genes are summarized in Fig. 6. In terms of 

median AUC and Interquartile range (IQR), GIREN achieved higher and more robust 

performance than the other competing approaches in predicting the risk group of the ovarian 

cancer patients. It is worth mentioning that, compared with the original approaches, using 

average pathway expression not necessarily always improves classification performance.

3.2 Test on Breast Cancer Dataset

We in the next test GIREN on the breast cancer dataset. Similar to the ovarian cancer case 

study, we also applied LASSO, Elastic Net, and Supervised PCA to original gene 

measurements or average pathway expression (APE) as comparison.

GIREN reported 111 feature genes from gene expression profile as signature genes for 

clinical outcome prediction. The interactions of the selected genes were then investigated. 

As shown in Fig. 7, most genes in the list has degree of zero, indicating again the “within 

profile dependency” is successfully minimized with proposed algorithm to reduce 

dependency.
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The “grouping effect” of GIREN was also investigated by calculating the correlation 

coefficients between selected features. For breast cancer dataset, GIREN reported 111 genes 

as feature genes for prognosis, so we conducted a permutation that randomly selected 111 

genes from all the genes in original dataset for 1000 times, then calculate the percentage of 

highly correlated genes. As shown in Fig. 8, comparing with the randomly selected feature 

pairs, among which only average 30.2% are significantly correlated (with Pearson 

correlation p-value smaller than 0.05), and the percentage is much higher among GIREN 

selected features (59.7%). The increased percentage of significantly correlated features also 

indicates potential grouping effect of features selected by GIREN algorithm, which is 

consistent with previous conclusions.

The functions of the selected marker genes were also explored by GO analysis. Important 

functions related with tumor genesis and cancer pathologies are enriched in the selected 

gene markers, such as “defense response” (p-value 4.59×10−6) and “immune response” (p-

value 2.77×10−5), etc.

After 100 times of 3 fold cross validation, consistent with the breast cancer case study, 

GIREN achieves the best performance in predicting breast cancer progression among the 7 

approaches in terms of median AUC and IQR, as shown in Fig. 9. Interestingly, on both the 

ovarian and breast cancer studies, integration of pathway information with average pathway 

expression method improves the performance of LASSO and Elastic Net but not on 

SuperPC.

In both cancer case studies, the sample size is relatively large, and it should be of interest to 

see how the proposed method performs on a relative small dataset. We would like to further 

test the performance of the proposed algorithm when the sample size is not as large. For this 

purpose, a total of 42 samples are randomly chosen from high and low risk groups 

respectively, and 100 times of 3 fold cross validation was applied to evaluate the 

performance of all the 7 algorithms. As shown in Fig. 10, GIREN still gets better AUC and 

IQR than competing algorithms on relatively small dataset, which is consistent with previous 

results.

4 DISCUSSION AND CONCLUSION

Integrative clinical outcome prediction with multi-omic data is a critical emerging research 

topic accelerated by large scale cancer genome efforts (such as TCGA) and the rise of 

personalized medicine. The main contribution of this work is to expand the elastic net 

penalty for the integration of gene-gene interaction network information for better 

classification purpose. While the original version of elastic net cannot take into account of 

the information in network form, the proposed GIREN formation represents a more general 

formulation. Using an elastic net based model penalized with gene interactions together with 

an iterative gradient descent algorithm, the proposed algorithm conveniently integrate gene 

measurement (including gene expression profile, DNA methylation profile, etc.) and gene-

gene interaction information (including transcription factor targets and protein-protein 

interactions) to identify key feature genes of different risk groups with minimal predictive 

redundancy. Results on 2 real datasets consistently suggest that, the proposed methods 
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significantly outperforms LASSO, the original elastic net and SuperPC in classifying the 

ovarian cancer patients into different risking groups, indicating a promising direction for 

multi-omic data integration.

The proposed GIREN model has the following 2 distinct features. Firstly, built upon Elastic 

Net formulation, GIREN model exhibits sparsity in its solution and selects a relative small 

number of feature genes based on the regression coefficients, which are considered to play 

key role in the process and may potentially be used as drug targets. Secondly, with the power 

to incorporate gene-gene interaction data to reduce “within profile dependency” and improve 

performance, GIREN is applicable to a wide variety of data types, including but not limited 

to DNA methylation, gene expression, protein-protein interaction, RNA-protein interaction, 

etc., making it a flexible tool and general framework for the integration of various gene 

measurements and gene-gene interaction information. Please note that, although we used the 

protein-protein interaction database as prior knowledge for matrix A, it can be also in other 

type of interaction, such as, RNA-protein interaction [46], competing endogenous RNA [47] 

or a combination of several types of interactions with possibly different weights. e.g., if the 

i-th gene interacts with the j-th gene at protein level, we set aij=1; if the two are competing 

endogenous RNA pair, we set aij=0.5. It is also possible to incorporate other related types of 

network information, such as pathway or gene ontology functions, e.g., If the i-th gene and 

the j-th gene are involved within the same pathway or function, we set aij=1, and otherwise 

set aij=0.

The limitation of the proposed methods is mainly the computation load. The algorithm 

adopts an improved “elastic net penalty” regularized by gene-gene interactions, which 

cannot be solved by the classic fast algorithm of elastic net. The newly developed iterative 

gradient descent algorithm suffers from a relative heavy computation load (almost 40 times 

of that of elastic net), and cannot directly apply to large genome-scale dataset, thus a feature 

selection step is required. With more and more -omics data at different levels and higher 

resolution accumulated in the biological and biomedical community, faster algorithm is 

necessary for fully taking advantage of the proposed algorithm and the vast amount of 

heterogeneous data available. Besides, the constraint matrix A could be further optimized 

with the degree of interaction or for incorporating more than one types of interaction 

information. Conceivable, a strong protein-protein binding interaction should probably be 

assigned with a larger weight than a relatively weak or temporal interaction, and different 

weights may be assigned for protein-protein interaction and competing endogenous RNA. 

Secondly, GIREN selects a number of features with grouping effect for classification 

purpose; however, the true meaning of the clustering effect and the inter-relationship 

between the correlated features are not clearly revealed by GIREN and remain to be further 

investigated by other approaches.
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Fig. 1. 
Two-dimensional contour plots for regressioncoefficients. The contour shows the shapes of 

GIREN penalties withdifferent weights. Different values of α do not change the strictly 

convex property of the contour, so we simply set α=0.5.
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Fig. 2. 
Overview of GIREN. The proposed method GIREN selects feature genes to predict clinical 

outcome based on integrated gene expression, DNA methylation and transcription factor 

targets and protein-protein interactions. The goal isto select feature genes that contribute to 

the risk grouping, and predict the survival (clinical outcome)of patients based bio-molecular 

profiling. It takes advantage not only gene measurements but also the gene interaction 

information (e.g., from protein-protein interaction).
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Fig. 3. 
Venn diagram is shown for the feature genes from gene profile and methylation profile. In 

total, 199 genes were selected as feature genes that contribute most to the risk grouping in 

ovarian cancer. Only “NOX4” overlapped between gene expression and methylation profiles. 

Interestingly, the Pearson correlation between gene expression and DNA methylation level 

of “NOX4” is a positive value 0.21, whereas this relationship is usually assumed to be 

negative. To some degree, although not considered currently, the DNA methylation profile 

and RNA expression profile of the same gene are inevitably correlated due to biological 

mechanism, the fact that only one gene’s DNA methylation and RNA expression profile are 

both selected indicates also the relatively small “between profile redundancy” in the selected 

gene marks, which should facilitate the classification performance.
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Fig. 4. 
Degree of connectivity of the selected gene markers in ovarian cancer dataset. Most genes 

show degree of zero, which means these genes are not highly connected with the other genes 

in the selected list. Most genes show degree of zero, i.e., these genes do not show interaction 

with others in the selected gene list, indicating the “within-profile dependency” is 

successfully minimized to reduce dependency at interaction level.
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Fig. 5. 
Comparison of percent of high correlation feature pairs in 1000 sets of randomly selected 

200 features vs. GIREN selected features. The histogram in blue is the percent of highly 

correlated features based on 1000 sets of randomly selected 200 features. The star in red 

(36.7%) indicates the percent of highly correlated feature pairs in GIREN selected 200 

features.
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Fig. 6. 
Progression prediction performance based on the gene list selected by GIREN, LASSO, 

Elastic Net and SuperPC with original gene measurement or average pathway expression in 

ovarian cancer GIREN achieved the best performance among the 7 tested methods in term of 

the “area under curve” (AUC), indicating an improved accuracy of the proposed method in 

predicting the risk group of the ovarian cancer patients. 79 patients were involved in this test, 

and ten times of 3-fold cross validation was conducted to evaluate the performance. For 

LASSO method, the weight coefficient α is set to be 0.31 by cross-validation. For Elastic 

Net method, the weight coefficient α and λ were set to be 0.4 and 0.6 respectively by cross-

validation. For GIREN, the weight coefficients α, λ, and γ were set to be 0.4, 0.4 and 0.08, 

respectively according to cross-validation.
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Fig. 7. 
Degree of connectivity of the selected gene markers in breast cancer dataset. Most genes 

show degree of zero, i.e., these genes do not show interaction with others in the selected 

gene list, indicating the “within profile dependency” is successfully minimized to reduce 

dependency.
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Fig. 8. 
Comparison of percent of high correlation feature pairs in 1000 sets of randomly selected 

111 features vs. GIREN selected features. The histogram in blue is the percent of highly 

correlated features based on 1000 sets of randomly selected 111 features. The star in red 

(59.7%) indicates the percent of highly correlated feature pairs in GIREN selected 111 

features.
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Fig. 9. 
Breast cancer progression prediction based on the gene list selected by GIREN, LASSO, 

Elastic Net and SuperPC with original gene measurement or average pathway expression. 

GIREN achieved the best performance among the 7 tested methods in term of the “area 

under curve” (AUC), indicating an improved accuracy of the proposed method in predicting 

the risk group of the breast cancer patients. The relative performance of tested method is 

highly consistent with ovarian cancer cast study. 163 patients in total were involved in this 

test, and 100 times of 3-fold cross-validation were conducted to evaluate the performance. 

For LASSO method, the weight coefficient α is set to be 0.37 by cross-validation. For 

Elastic Net method, the weight coefficient α and λ were set to be 0.4 and 0.5 respectively by 

cross-validation. For GIREN, the weight coefficients α, λ, and γ were set to be 0.3, 0.4 and 

0.08, respectively according to cross-validation.
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Fig. 10. 
Performance of GIREN on small dataset. To test the performance of GIREN on a relatively 

small dataset, we randomly selected 42 samples from the low and high risk groups, 

respectively in the breast cancer datasets. And in general, GIREN still outperforms 

competing methods rather significantly.
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Table 1

Genes With Highest Degree of Connectivity

Ranking Gene Gene Name Number of Neighbors

1 MAGEA 11 Melanoma antigen family A,11 64

2 TP53 Tumor protein p53 63

3 MCM10 Minichromosome maintenance complex component 10 23

4 LMO3 LIM domain only 3(rhombotin-like 2) 16

5 BLNK B-cell linker 10

The top five genes that have the most number of first neighbors are shown in this table. “MAGEA11” has 64first neighbor genes. “MCM10” has 
been found to be involved in the initiation ofeukaryotic genome replication. “LMO3” has been found to interact with famous tumorsuppressor gene 
“TP53” and regulates its function. “BLNK” has been reported totemporally and spatially coordinate and regulate signaling effectors downstream of 
the B cell receptor.
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Table 2

Gene Ontology Enrichment Analysis of Selected Marker Genes for Ovarian Cancer

Term Function p-value Genes Fold Enrichment

GO:0006952 Defense response 4.59×10−6 NOX4, GNLY, CXCL9, SOCS6, NLRX1, CXCL6, GAL, 
TLR7, CCL18, INHBB, CXCL13, HIST2H2BE, IL1RAP, 
AOX1, PLA2G7, MNDA, MGLL, VNN1, PTX3, DEFB1, 

CLEC5A, AOC3, BLNK

3.085

GO:0006955 immune response 2.77×10−5 POU2AF1, AQP9, VTCN1, CXCL9, TP53, NLRX1, 
GEM, CXCL6, PF4V1, TLR7, CCL18, AZGP1, 

CXCL14, CXCL13, IL1RAP, IRF8, VNN1, CCBP2, 
IGKC, PTX3, DEFB1, CLEC5A, BLNK

2.750

GO:0006954 Inflammatoryresponse 3.88×10−5 NOX4, CXCL9, CXCL6, GAL, TLR7, CCL18, CXCL13, 
IL1RAP, AOX1, PLA2G7, VNN1, MGLL, PTX3, AOC3, 

BLNK

3.807

GO:0007267 cell-cell signaling 9.20×10−4 BMP4, NRP1, TRHDE, KCND2, EFNB2, CXCL9, 
GRIN2A, ATP1A2, CXCL6, GAL, PCDHB10, CCL18, 

LHX1, CXCL14, SEMA3B, HTR3A

2.475

GO:0003013 circulatory systemprocess 1.86×10−3 ACSM3, HOXB2, NPY, NTS, GUCY1A3, GUCY1B3, 
ATP1A2, HTR2B, ADIPOQ

3.991

GO:0042493 response to drug 1.57×10−2 ACSL1, CA9, HMGCS2, EMX2, GRIN2A, TP53, GAL, 
ADIPOQ

3.055

GO:0010721 negative regulation of cell 
development

2.0×10−2 BMP4, NRP1, TP53, ID4 6.874

A number of gene functions are significantly enriched in the identified marker genes. Many of the enriched functions are highly related to ovarian 

cancer mechanism, such as, defense response (p-value 4.59×10−6), immune response (p-value 2.77×10−5), cell motion, etc., which is consistent 
with previous studies. The gene ontology enrichment analysis was conducted at DAVID website[43]with default settings.
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