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currents in regulation of ventricular action potential
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Key points

� Arrhythmias result from disruptions to cardiac electrical activity, although the factors that
control cellular action potentials are incompletely understood.

� We combined mathematical modelling with experiments in heart cells from guinea pigs to
determine how cellular electrical activity is regulated.

� A mismatch between modelling predictions and the experimental results allowed us to construct
an improved, more predictive mathematical model.

� The balance between two particular potassium currents dictates how heart cells respond to
perturbations and their susceptibility to arrhythmias.

Abstract Imbalances of ionic currents can destabilize the cardiac action potential and potentially
trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling
with information-rich dynamic clamp experiments to determine the regulation of action potential
morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict
how changes in ionic currents alter action potential duration, and these were tested experimentally
using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell.
Surprisingly, we found that a leading mathematical model, developed with traditional approaches,
systematically underestimated experimental responses to dynamic clamp perturbations. We then
re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current
levels in each of the cells studied. This unbiased model adjustment consistently predicted an
increase in the rapid delayed rectifier K+ current and a drastic decrease in the slow delayed
rectifier K+ current, and this prediction was validated experimentally. Subsequent simulations
with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier
is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid
delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel
insight into how the balance between cardiac K+ currents influences ventricular arrhythmia
susceptibility.
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Introduction

The action potential (AP) of ventricular cardiomyocytes
plays a fundamental role in both normal cardiac physio-
logy and the development of potentially fatal ventricular
arrhythmias (Qu et al. 2013; Dutta et al. 2016). AP
duration (APD) is central to this because both excessively
short and excessively long action potentials can pre-
dispose the heart to arrhythmias (Weiss et al. 2015) via
mechanisms such as early-afterdepolarizations (EADs)
(January & Moscucci, 1992; Sato et al. 2009; Weiss et al.
2010) and facilitation of re-entry (Karma, 1994; Qu et al.
2000; ten Tusscher & Panfilov, 2006). Although many
studies over decades have allowed for a good qualitative
understanding of the AP and detailed electrophysiological
characterizations of the key currents involved, our
quantitative understanding of emergent AP dynamics
is much weaker. Quantitatively untangling the web of
non-linear interactions between the membrane potential,
ionic concentrations and the many distinct ionic currents
remains a challenging goal.

The complexity and importance of the cardiac AP make
mathematical modelling a crucial tool for understanding
the system. However, as models become increasingly
detailed aiming to better represent our ever-deepening
physiological knowledge, the resulting complexity makes
it more difficult to comprehensively understand the
determinants of emergent model behaviours (such as
APD). Parameter sensitivity analysis allows for global
and readily interpretable quantification of how these
behaviours are influenced by many different model
parameters, such as the levels of all ion channels, trans-
porters and pumps. These techniques have been used to
quantify the determinants of a variety of crucial aspects of
cardiomyocyte physiology, such as Ca2+ handling (Lee
et al. 2013; Devenyi & Sobie, 2016), AP morphology
(Tondel et al. 2011; Mann et al. 2012; Britton et al. 2013;
Heijman et al. 2013), arrhythmogenic dynamics (Sarkar
& Sobie, 2011; Sadrieh et al. 2013; Chang et al. 2014;
Cummins et al. 2014; Sadrieh et al. 2014; Zhou et al. 2016)
and pacemaking in the sinoatrial node (Cummins et al.
2013; Maltsev & Lakatta, 2013).

As essential as mathematical modelling studies are,
it is necessary to keep model analysis physiologically
grounded. Although a number of population-based
modelling studies have constrained their analysis based
on experimental data (Britton et al. 2013; Muszkiewicz

et al. 2016; Zhou et al. 2016), only a few studies in
cardiomyocytes have directly experimentally tested the
key predictions of parameter sensitivity analysis (Lee et al.
2013; Devenyi & Sobie, 2016). Experimentally testing a
large number of predictions using traditional methods,
such as pharmacological inhibition, is difficult and labour
intensive. In the present study, we leverage dynamic
clamp (Berecki et al. 2005; Berecki et al. 2006; Wilders,
2006; Ahrens-Nicklas & Christini, 2009; Bot et al. 2012;
Nguyen et al. 2012; Bett et al. 2013; Nguyen et al. 2015), a
technology used to inject currents calculated in real-time
to mimic specific endogenous cellular currents. This
allows the application of many perturbations in a single
cell, making it ideally suited for testing comprehensive
sets of predictions.

In the present study, we combined parameter sensitivity
analysis with dynamic clamp experiments to systematically
analyse the determinants of APD in guinea pig left
ventricular cardiomyocytes. After quantifying the impact
of acute changes in all ionic currents in a cardio-
myocyte mathematical model (Livshitz & Rudy, 2009),
dynamic clamp was used to systematically test these
predictions. When we observed a striking discrepancy
between model predictions and experimental results, we
used a global optimization technique to adjust ionic
currents in the model for better agreement with the
experimental results. This adjustment process predicted
much lower levels (relative to the original model) of
the slow delayed rectifier K+ current (IKs), a prediction
that we then confirmed experimentally. Importantly,
further simulations with the adjusted model allowed us to
demonstrate that the balance between IKs and the rapid
delayed rectifier K+ current (IKr) controls the stability
of APD and susceptibility to arrhythmogenic membrane
dynamics (early after depolarizations, EADs). Overall,
the present study demonstrates how closing the loop
between simulations and experiments can enable both
improved mathematical models and novel insight into
pathophysiological cellular dynamics.

Methods

Ethical approval

This investigation conforms with the Guide for the Care
and Use of Laboratory Animals by the US National
Institutes of Health (NIH Publication No. 85-23, revised
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1996). All experimental protocols were approved by the
Institutional Animal Care and Use Committees of Weill
Cornell Medical College (protocol number 0701-571A)
and the Icahn School of Medicine at Mount Sinai (protocol
number LA12-00295).

Isolation of ventricular myocytes

In total, seven guinea pigs were used for the present study.
To isolate cells, guinea pigs were anaesthetized using a
lethal I.P. injection of Euthasol (Virbac Corporation, Fort
Worth, TX, USA), 550 mg kg–1. Hearts were removed
from the animals, retrograde perfused with a Langendorff
apparatus and myocytes were isolated from the base (top
third) of the left ventricle by enzymatic digestion. Myo-
cytes were stored in Dulbecco’s modified Eagle’s medium
with 5% fetal bovine serum.

Parameter sensitivity analysis

We performed population-based parameter sensitivity
analysis (Sobie, 2009) of the Livshitz-Rudy (LivR)
model of the guinea pig left ventricular cardiomyocyte
(Livshitz & Rudy, 2009). The analysis was performed
both with the model as originally published (the
‘original model’) and with model parameters adjusted
by an optimization procedure (the ‘adjusted model’). In
each case, model variants were generated by randomly
scaling 13 parameters representing the activity levels of
ion channels, pumps and transporters (Table 1). Each
parameter was simultaneously and independently varied
about its baseline value with a log normal distribution to
create a population of 500 model variants. The standard
deviation (σ) of the log-transformed scale factors was
equal to 0.4. Each model variant was stimulated 20 times
at 2 Hz to assess the effect of acute parameter changes on
model behaviour. The initial state variables for each model
variant were those obtained after pacing the corresponding
baseline model (either the original or adjusted model) to
a steady-state (1000 stimuli at 2 Hz).

AP duration at 90% repolarization (APD) was
measured for each model variant, and multivariate
regression (non-iterative partial least squares method)
was used to relate model APD to the 13 model
parameters (after log-transformation of each). This yields
regression-based sensitivity coefficients that together
represent comprehensive, quantitative predictions about
how acute changes in these 13 parameters affect APD.

Dynamic clamp experiments

After isolation, cells were plated on coverslips previously
coated with 0.1% poly-L-lysine solution for 15 min
and perfused at 35°C with a solution containing (in
mM) 137 NaCl, 5.4 KCl, 2 CaCl2, 1 MgSO4, 10 HEPES

and 10 glucose, with pH 7.35 (NaOH), and osmolality
310 ± 3 mmol kg–1. The cells were patch clamped, with
whole-cell access gained by 480 μg/mL amphotericin B
in the pipette solution, which also contained (in mM)
136 KCl, 10 NaCl, 0.01 CaCl2, 5.5 glucose, 0.5 MgCl2,
11 KOH, 10 HEPES, with pH 7.1 (HCl) and osmolality
295 ± 3 mmol kg–1. Adequate access was defined by access
resistance below 15 M�, and total membrane capacitance
(204.6 ± 68.3 pF; n = 12) was measured by integrating the
area under the capacitance current transients during the
average of 50 voltage pulses (20 mV/20 ms) at –80 mV.

Dynamic clamp experiments were carried out using
RTXI software (Christini et al. 1999; Dorval et al. 2001;
Ortega et al. 2014). Cells were stimulated to a steady
state (500–1000 stimulations) with 1 ms suprathreshold
inward current pulses at 2 Hz. The LivR model was
simulated in real-time using Euler’s method (0.01 ms
time step) with the experimentally-recorded (at 10 kHz)
voltage used as a voltage-clamp input. During the dynamic
clamp protocol, 20 action potentials with dynamic clamp
current injection were alternated with 20 unperturbed
action potentials. For each dynamic clamp perturbation,
a specific current calculated from the LivR model was
scaled by total membrane capacitance, multiplied by +0.4
(+40% scaling) or –0.4 (–40% scaling), and injected at
10 KHz, in the following order: –40% IKr, +40% IKs,
–40% IK1, +40% ICaL, –40% ICaT, +40% INaK and –40%
INCX. One cell was excluded from analysis as a result of its
inability to tolerate the +40% ICaL perturbation.

Simulating dynamic clamp in silico

To simulate dynamic clamp experiments, two cells were
simulated in parallel: the ‘target’ cell, which represents the
experimental cell, and the ‘source’ cell, which represents
the model simulated by the computer during the dynamic
clamp experiments. The source cell voltage is clamped
to that of the target cell, and a scaled current based on
calculations in the source cell is injected into the target
cell. This injected dynamic clamp current lacks the ionic
selectivity of the endogenous current, and instead passes
a generic K+ current (as does the 1 ms, –40 A/F current
that stimulates each AP). In keeping with the experiments,
which use the original LivR model to calculate all currents
injected via dynamic clamp, the ‘source’ cell always used
the parameters from the original LivR model, even when
the ‘target’ cell used adjusted parameters. With this
configuration, the voltage from the source cell will be
clamped to that of the target cell, although other state
variables required to calculate currents (such as ionic
concentrations) will be simulated independently between
the two cells. This is a way to account for the fact that,
in the experiments, variables such as intracellular [Ca2+]
will be unknown.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Table 1. Model parameters and corresponding cell currents in the model of the guinea pig left ventricular cardiomyocyte, as well as
the perturbation factors used in the dynamic clamp experiments

Parameter Current Dynamic clamp scaling

GKr Rapid delayed rectifier K+ current (IKr) –40%
GKs Slow delayed rectifier K+ current (IKs) +40%
GK1 Inward rectifier K+ current (IK1) –40%
GCaL L-type Ca2+ current (ICaL) +40%
GCaT T-type Ca2+ current (ICaT) –40%
GNaK Na+/K+ ATPase current (INaK) +40%
GNCX Na+/Ca2+ exchanger current (INCX) –40%
GNa Fast Na+ current (INa)
GNab Background Na+ current (INab)
GCab Background Ca2+ current (ICab)
GKp Plateau K+ current (IKp)
GpCa Plasma Ca2+ ATPase current (IpCa)
vSERCA Sarco/endoplasmic reticulum Ca2+ ATPase

Global optimization procedure to re-parameterize
the models

A genetic algorithm (GA) was used to adjust the values of
the same 13 parameters that were varied in the sensitivity
analysis (Table 1) to match experimental data from each
of 12 cells, with the GA being run separately for each
cell to create a cell-specific fit. The algorithm of Sastry
(2007) was utilized, as implemented in Groenendaal et al.
(2015).

For each cell-specific GA run, an initial population of
500 models was generated by randomly scaling the 13
parameters (Table 1) from 0.1% to 300% of their original
value with a uniform distribution. Each was run to steady
state (1000 stimuli) at 2 Hz followed by application of
the dynamic clamp protocol used experimentally. It is
important to note that the experimental dynamic clamp
protocol scaled ionic currents by +40% or –40% based on
the conductances in the original LivR model. During the
GA adjustment process, we injected into each simulated
cell exactly the same current waveforms that were applied
experimentally. In this way, we account for the fact that
the actual percentage scaling will be different in each
cell.

The final APs from steady-state baseline pacing and
each dynamic clamp perturbation were extracted from
each simulation in the population, and the total absolute
value difference in the membrane voltage (Vm) time course
was calculated (between simulated and experimental
APs). The GA objective function was to minimize this
difference between model and experiment, with each of the
eight conditions (baseline and the seven dynamic clamp
perturbations) weighted equally.

In each generation, the 500 individuals were randomly
paired, and the individual from each pair with the
better fit was kept (tournament selection). This process

was performed twice each generation to create a new
population of 500 individuals that contained 0, 1, or 2
copies of each individual from the previous generation.
This new set of 500 individuals was again randomly
paired, and each pair had a 90% probability of undergoing
‘cross-over’, where the two parameter sets were randomly
intermixed, whereas the other 10% remained unchanged.
Each parameter value in the population then had a 10%
chance of undergoing ‘mutation’, where it was multiplied
by a random scale factor selected from a bounded,
asymmetric multinomial distribution (Deb & Deb, 2014).
Finally, an ‘elitism’ strategy was used, with the top 10% of
individuals from the previous generation directly
replacing the bottom 10% of individuals.

The GA was performed in two stages (Hobbs & Hooper,
2008; Groenendaal et al. 2015). An initial run sampling
the full parameter space (0.1% to 300%) was run for
100 generations, and the best five individuals from the
final generation were extracted. The range of each of the
13 parameters from these five individuals was used as
new bounds for each parameter in a subsequent round
of the GA, which also contained 500 individuals and
was run for 100 generations. The parameters from the
best individual fit from the final generation of each
cell-specific fit are reported in Fig. 3C and utilized
subsequently.

Chromanol 293B experiments

Cells were stimulated in current-clamp mode to a steady
state at 2 Hz (500–1000 beats), followed by the application
of the ‘stochastic pacing’ protocol used in Groenendaal
et al. (2015), wherein the cell was stimulated 11 times over
5 s with a predefined aperiodic stimulation pattern. APD
was measured from only the first beat of this protocol,
which occurred 716.48 ms after the final steady-state

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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beat. This protocol was repeated for each cell (n = 4)
under control conditions and in the presence of 10 μM

chromanol 293B, an inhibitor of the slow delayed rectifier
current (IKs). In the model, this was simulated by
comparing the APD during a comparable pacing protocol
(for both the original and adjusted models) with and
without an 80% reduction in GKs, the degree of IKs block
that 10 μM chromanol 293B is estimated to provide based
on previously published data (Bosch et al. 1998; Fujisawa
et al. 2000; Lu et al. 2001).

Simulation implementation

Parameter sensitivity analysis simulations were run in
MATLAB (MathWorks, Natick, MA, USA) using the
ode15s solver, with absolute tolerance of 10−3 and relative
tolerance of 10−6 for each state variable. Experimental
dynamic clamp simulations were run in C++using Euler’s
method and a 0.01 ms time step. Genetic algorithm
simulations were run in C++ using Euler’s method
with an adaptive time step between 0.001 and 0.1 ms,
determined by the change in membrane voltage of the
previous time step.

Results

Simulated APD is most sensitive to L-type Ca2+

and delayed rectifier K+ currents

We performed a population-based sensitivity analysis
(Sobie, 2009) to quantify the influence of the levels of ion
channels and transporters on APD in the guinea pig model
(Livshitz & Rudy, 2009) (Fig. 1A). A population of models
was generated by randomly scaling the maximal activities
of 13 ion channels, pumps and transporters (Table 1),
and the effect of acute changes in these currents was
assessed by quantifying APD after pacing 20 times at 2 Hz.
Multivariate regression was applied to derive parameter
sensitivities that represent quantitative predictions of how
APD responds to changes in each parameter (Fig. 1A).
We also validated these results by performing the
simpler test of acutely perturbing each of seven currents
individually and quantifying the effects on APD (Fig. 1B
and C).

Together, these results demonstrate that changes
in ICaL and IKs have the largest impact on APD,
followed by IKr (Fig. 1). Acute changes in IK1 and
INaK produce smaller (but clear) changes in APD, while
INCX and ICaT have minimal impact. Importantly, these
simulations yield testable predictions of how APD will
be affected by acute changes in the levels of each
of these currents, such as by partial pharmacological
inhibition.

Dynamic clamp experiments find larger effects of
current perturbations than predicted by the original
model

We subsequently tested these quantitative predictions
using dynamic clamp, a closed-loop system in which
Vm is recorded from cells while synthetic currents
are simultaneously calculated and injected in real-time
(Fig. 2A). This allowed us to quickly test the effect of acute
changes in the levels of seven currents in a single cell,
yielding in-depth data from each. Currents were scaled by
±40% and injected into the cell via the perforated patch
to mimic a change in the level of that particular current.

We tested the following dynamic clamp perturbations in
each of 12 cells: –40% IKr, +40% IKs, –40% IK1, +40% ICaL,
–40% ICaT, +40% INaK and –40% INCX, scaled according to
the maximal conductance in the published model. Traces
from a typical cell are shown in Fig. 2B (top). ICaL scaling
had the largest impact on APD, followed by IKs scaling and
then INaK and IKr scaling.

We simulated the dynamic clamp experiments by
adapting the model to the limitations of dynamic clamp.
An important limitation is that the synthetic current lacks
the ionic selectivity of endogenous cellular currents. In
Fig. 2C, we show how accounting for this limitation
affects model predictions. In general, the sensitivity of
APD to dynamic clamp currents was similar to the
sensitivity to real currents, with the exception that APD is
more sensitive to changes in ICaL and INaK without ionic
selectivity. An additional limitation is that intracellular
ionic concentrations such as Ca2+ are not measured
directly in this experiment, and current calculations
must rely on concentration estimates from the model.
We accounted for this limitation by simulating current
injection from a ‘source’ cell to a ‘target’ cell, as described
in the Methods.

When we simulated the dynamic clamp protocol
in the model (Fig. 2B, bottom), we found that, as
in the experiments, changes in the magnitude of ICaL

had the largest effect on APD, followed by IKs, IKr

and INaK. However, despite this qualitative agreement
in the relative effect sizes of each perturbation, there
was a drastic quantitative difference between simulations
and experiments. Compared to simulations, experimental
results showed significantly larger percentage changes in
APD in response to all dynamic clamp scalings, except ICaT

(�APD, one-way t test, P = 0.072 for effect of –40% ICaT,
P < 0.001 for all others) (Fig. 2E), as well as significantly
longer baseline APD (P < 0.001) (Fig. 2D).

A GA tunes current levels to improve consistency
with experimental data

Given this mismatch between simulation results and
experimental data, we turned to a GA to re-parameterize

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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the model to better match the experimental results. We
initially varied 13 parameters (Table 1) from 0.01% to
300% of the values in the previously published model, and
selected for individuals over two rounds of 100 generations
based on agreement with experimental voltage traces.
The results from each of the 12 experimental cells were
used to generate cell-specific fits. In each simulation, the
model was run to a steady state at baseline (1000 stimuli
at 2 Hz), followed by injection of the experimentally
applied dynamic clamp current for that particular cell. The
objective function for the GA was to minimize the total
absolute value discrepancy in the AP time course at base-
line, as well as with each of the seven current perturbations.

The large error seen in the initial population was
greatly reduced as a result of the GA (Fig. 3A), ultimately
producing excellent agreement between experiments and
simulations. As shown for a typical cell (Fig. 3B),
the behaviour of the model run with the cell-specific
GA-adjusted parameter set shows vastly superior
agreement, compared to the original model, with the
experimental traces obtained in that cell. Quantifying the
effects of dynamic clamp perturbations (Fig. 3D) showed
similarly improved agreement across all 12 cells.

The relative ionic current magnitudes resulting from
the GA process are shown in Fig. 3C. Although some
parameters, such as GNa and GK1, show tight spread and
agreement with the original model, the GA strongly selects

for many parameter values that are different from the
original model. For example, the algorithm selects for
greatly decreased GKp (the plateau K+ current), somewhat
decreased GCaL and increased GNaK. Most notably, the
algorithm selects for an apparent ‘trade-off’ in the two
delayed rectifier currents, with IKr levels being increased
and IKs greatly decreased. These currents are partially
redundant in that they both repolarize the membrane and
shorten APD, although clearly other functional differences
between these currents cause the GA to select one instead
of the other.

We used these parameter sets to develop a consensus
‘adjusted model’ (Table 2) by taking the mean value
for each scaled parameter from 10 of the cell-specific
parameter sets (the parameter sets from two cells were
excluded from this average because they showed excessive
[Na+]i and [Ca2+]i overload).

Model adjustments lead to altered current dynamics
and sensitivity of APD to perturbations

Simulations with the original and adjusted models
after pacing at 2 Hz are compared in Fig. 4A and
B, demonstrating the different time course of the
membrane voltage and several important currents during
a steady-state action potential (2 Hz). The adjusted
model shows a significantly longer APD, increased IKr,
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Table 2. Parameter scaling in the adjusted model

Parameter Adjusted value (% of baseline)

GKr 178.2%
GKs 4.2%
GK1 107.3%
GCaL 52.5%
GCaT 32.2%
GNaK 164.5%
GNCX 109.6%
GNa 96.7%
GNab 199.1%
GCab 155.9%
GKp 5.9%
GpCa 27.0%
vSERCA 214.0%

decreased ICaL and greatly decreased IKs, in keeping with
the parameter adjustments. Although the decrease in ICaL

and increase in IKr favour a shorter APD, the dramatic
decrease in IKs overwhelms these effects, leading to a longer
APD in the end.

We repeated our population-based parameter sensi-
tivity analysis on the adjusted model to quantify how
the same 13 model parameters influence APD (Fig. 4C).
The adjusted model has an APD that is much more
sensitive to changes in IKr but less sensitive to changes
in IKs, which follows intuitively from the changes in the
abundance in these two currents between the original and
adjusted model. However, the adjusted model also shows
greater sensitivity to changes in many other currents, such
as INaK and ICaL, despite the fact that ICaL abundance
is decreased in the GA-adjusted model. This reflects an
overall increase in APD heterogeneity across the adjusted
model population despite identical levels of parameter
variability (Fig. 4D).

Predicted changes in IKs levels are experimentally
validated

Once we had obtained an adjusted model based on
GA analysis of the dynamic clamp data, we aimed to
address two additional questions. First, does the adjusted
model generate more accurate predictions? Second, can a
comparison of the original and adjusted models provide
new insight into AP stability and arrhythmia dynamics?

Because the GA parameter adjustments predicted much
smaller IKs current in these cells, APD in the adjusted
model is much less sensitive than the original model to
perturbations in IKs (Fig. 4C). This is demonstrated in
Fig. 5, where 80% IKs block (i.e. an 80% reduction in
GKs) leads to a 40.5% prolongation of APD in the original
model (Fig. 5A and D) but only a 10.0% prolongation in
the adjusted model (Fig. 5B and D).

We then experimentally tested which model was better
able to predict the effect of IKs block. We measured the
effect on APD of 10 μM chromanol 293B, a selective IKs

blocker that should reduce the current by �80% at this
concentration (Bosch et al. 1998; Fujisawa et al. 2000; Lu
et al. 2001). The results of treatment of four cells with 293B
(Fig. 5C and D) showed only a small prolongation of APD
(mean 5.5%), which is consistent with the behaviour of
our adjusted model (Fig. 5D) and confirms the prediction
of greatly reduced GKs.

IKs stabilizes APD and prevents EADs more effectively
than IKr does

Compared to the original model, the adjusted model
shows greater changes in APD in response to the
same dynamic clamp perturbations, in agreement with
experimental results (Fig. 3B and D). We hypothesized that
this reduced stability may predispose cells to potentially
arrhythmogenic dynamics. To investigate this possibility,
we stressed the two models by applying additional
L-type Ca2+current. This stressor will prolong the APD
in both models (Fig. 4C) and can lead to potentially
arrhythmogenic EADs, defined as secondary upstrokes
that occur prior to repolarization. To allow for a direct
comparison, we applied the same absolute magnitude of
ICaL to both models and expressed this relative to ICaL in
the original model, which we call the ‘ICaL perturbation
factor’. For example, applying an additional ICaL that is
10% of the value in the original model corresponds to an
ICaL perturbation factor of 0.1.

The GA consensus model was less stable in the face
of this perturbation, in terms of both APD stability and
EAD susceptibility. Although an ICaL perturbation factor
of 0.84 only moderately prolonged APD in the original
model (Fig. 6A, orange traces), this same perturbation
caused arrhythmogenic EADs and failure of repolarization
in the adjusted model (Fig. 6A, blue traces). As shown in
Fig. 6C, increasing levels of ICaL perturbation led to greatly
prolonged APD in the GA consensus model (blue) and
ultimately caused EADs with ICaL perturbation factors
above 0.8. By contrast, the original model (orange) was
able to sustain ICaL perturbation factors as large as 2
without displaying EADs.

Many parameters differed between these two models,
and so it was not immediately clear which changes
accounted for the dramatic difference in AP stability.
Given that a decrease in IKs was accompanied by an
increase in IKr in the model adjustments, we hypothesized
that the balance between these two repolarizing currents
determines how cells respond to perturbations. To test
this, we began with the adjusted model and increased
the GKs/GKr ratio while maintaining the same baseline
APD. This alteration (termed the ‘altered ratio’ model)
led to a smaller change in APD in response to a given
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ICaL perturbation and allowed the cell to withstand much
higher ICaL perturbation factors without displaying EADs
(Fig. 6A and C, magenta).

To confirm that the observed difference in stability was
not specific to the ICaL stressor applied, we also sub-
jected cells to a constant current injection, as in pre-
vious studies (Banyasz et al. 2009; Zaza, 2010). This
stressor (0.9 A/F; injected only when Vm � –60 mV) also
prolonged APD much more in the adjusted model than

in either the original model or the altered ratio model
(Fig. 6B). Furthermore, simulation of a heterogeneous cell
population (Fig. 4C) led to the greatest APD variability
in the adjusted model (coefficient of variation = 0.33)
compared to either the altered ratio model (coefficient
of variation = 0.22) or the original model (coefficient of
variation = 0.15). These results further confirm that the
GKs/GKr ratio, and not solely the baseline APD, determines
how ventricular myocytes respond to perturbations.
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When a wide variety of GKs/GKr ratios were tested (while
maintaining a constant baseline APD), a clear relationship
was seen between the balance of these two currents and
the amount of applied ICaL needed to produce an EAD
(Fig. 6D). An increase in GKs/GKr meant that the same ICaL

perturbations led to smaller changes in APD, and the AP
was able to withstand greater ICaL perturbation without
EADs. Therefore, IKs is much better than IKr at resisting
perturbations and preventing EADs.
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A, in the original model, 80% reduction in GKs dramatically prolongs
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in APD with 80% reduction in GKs. C, in experimental measurements
(n = 4), 10 µM chromanol 293B (which should block IKs by
approximately 80%) caused minimal APD prolongation. D,
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Discussion

Closing the simulation-experiment loop facilitates
insight into APD and EADs

Interplay between mathematical models and experiments
has been an integral component of quantitative cardio-
myocyte physiology for decades. In the present study, we
cycled repeatedly between mathematical modelling and
experimental tests, refining and extending insights in each
iteration, which ultimately allowed us to both improve the
model and gain new insight into the determinants of APD
and mechanisms of pro-arrhythmic cellular behaviour
(EADs).

After an initial test of experimental predictions using
dynamic clamp (Figs. 1 and 2), we returned to the model,
using a GA to improve model agreement with our new
experimental data (Fig. 3). This led to the secondary
prediction about the reduced level of IKs compared to
the original model, which was experimentally validated
(Fig. 5), demonstrating the greater predictive power of
the new model. This allowed us to confidently make a new
round of predictions (Figs. 4 and 6), which led to the novel
insight into how interplay between different K+ currents
controls AP stability and the propensity of cells to develop
pro-arrhythmic behaviours. This insight would have been
more difficult to obtain with either a purely experimental
or a purely computational study.

Comprehensive quantification of how APD
is influenced by different currents

In the present study, we took a comprehensive approach
to both modelling and experimental work, aiming to gain
a more holistic understanding of AP dynamics. Our initial
sensitivity analysis (Fig. 1) quantified the contributions
of 13 ion channels, pumps and transporters to APD in
the guinea pig cardiomyocyte model. Experimental tests
(Fig. 2) then used dynamic clamp to study the effects of
changes in seven currents on APD within a single cell. This
gave us sufficient depth of cell-specific information to use
the GA to tune many parameters in the model at once to
better match our experimental results (Fig. 3). Therefore,
we were able to perform a closed-loop of model analysis,
testing and adjustment thoroughly at each step.

This comprehensive strategy also allowed us to compare
the impact on APD of 13 ionic currents between the
original and adjusted models. This comparison (Fig. 4C)
indicated that GCaL and GKs have the greatest impact on
APD in the original model, whereas GCaL and GKr have
the greatest impact in the adjusted model. The shift in
importance from IKs to IKr is not surprising giving the
corresponding alterations in current density (Fig. 3C). A
more interesting observation, however, was the greater
sensitivity of the adjusted model APD to a variety of
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perturbations, including changes in GCaL, a current that
decreased in magnitude during the adjustment process.
This is also reflected in a more heterogeneous APD in
populations derived from the adjusted model compared
to the original model (Fig. 4D). Although longer APs
intrinsically show greater changes in APD in response
to perturbations (Banyasz et al. 2009; Zaza, 2010), the
IKs/IKr ratio independently influences the response to
perturbations even when the two are adjusted so that the
baseline APD is held equal (Fig. 6). These observations,
enabled by our comprehensive approach, allowed us
to develop the novel hypothesis that the IKs/IKs ratio
determines AP stability.

High-content experiments allow for unbiased model
adjustment with a GA

A GA is a powerful tool for adjusting models
in an unbiased manner. However, when a large
number of parameters need to be constrained, a
sufficiently large set of independent information is
required. Because many parameter combinations can
produce virtually indistinguishable electrophysiological
behaviours (Golowasch et al. 2002; Dokos & Lovell,
2004; Prinz et al. 2004; Achard & De Schutter, 2006;
Sarkar & Sobie, 2010; Zaniboni et al. 2010; Marder,
2011; Weiss et al. 2012), whole-cell model parameters
cannot be adequately re-parameterized using only a base-
line experimental AP trace. Therefore, ‘high content’
experimental studies that yield a greater amount of
independent information are needed to properly constrain
parameter values (Krogh-Madsen et al. 2016). Recordings
from multiple pacing rates or other electrophysiological
data can provide additional information to allow for
improved GA-driven fits (Syed et al. 2005; Kaur et al. 2014;
Groenendaal et al. 2015).

In the present study, we used dynamic clamp to measure
the AP not only under baseline conditions, but also in
response to seven different perturbations, each of which
was designed to resemble a change in an endogenous
current, giving us a data set with high information content.
These experiments were designed to extract maximal
information from each cell, and are similar in strategy
to other recent approaches such as combining stochastic
pacing with voltage clamp recordings (Groenendaal et al.
2015) and measuring sequential current dissection using
AP clamp (Banyasz et al. 2011; Chen-Izu et al. 2012).

Although it is well appreciated that cells with different
ionic currents can exhibit the same baseline APD, we have
a weaker understanding of why cells with the same base-
line APD can show different responses to perturbations
(Fig. 6). In our particular case, this occurs because IKr and
IKs are somewhat redundant with regard to APD but differ
in how they affect the response to perturbation. Therefore,
the perturbation data were essential to adjusting the

GKs/GKr ratio, and the high-content experiments were able
to set the stage for robust model adjustments later on.

Careful simulation of dynamic clamp limitations
allows for apt comparisons between model
and experiment

As we have illustrated, dynamic clamp is a powerful
technique that allows the user to test the effect of many
current changes within a single cell, without any need for
drug washout or the risk of off-target drug effects (Wilders,
2006; Madhvani et al. 2011; Madhvani et al. 2015).
However, the limitations of this technique must be taken
into account to properly interpret experimental results and
compare them with simulations. Most prominent among
these limitations is a lack of ionic selectivity, such that
dynamic clamp currents influence membrane potential
but do not alter intracellular concentrations the way that
endogenous currents would.

For most currents, the acute effects of changing the
level of a current are virtually identical with and without
ionic selectivity (Fig. 2C) because it is the direct effect on
voltage that alters the APD. The most notable exception
is the effect of changing ICaL. Because ICaL is inactivated
by Ca2+ itself, a physiological increase in ICaL will lead
to greater current inactivation, thereby attenuating the
AP-prolonging effects. By contrast, this feedback will not
be present when increased ICaL is injected via dynamic
clamp. However, although we cannot overcome this
limitation experimentally, if we appropriately simulate this
lack of ionic selectivity when comparing experimental
results to simulations, we can ensure that we correctly
interpret the data we do have.

Comparison of these new IKs results with those from
previous experiments and simulations

Perhaps the most notable parameter adjustment made by
the GA was a significant reduction in the IKs maximal
conductance (GKs) to an average of only 4.2% of the value
in the original model, with GKs being universally reduced
in all of our cell-specific fits. Because this adjustment was
dramatic and surprising, we performed the independent
experimental test of blocking IKs with chromanol 293B.
The consistency with the adjusted model predictions
(Fig. 5) suggests that this adjustment was correct. What
can account for this discrepancy in IKs levels?

The literature contains substantial discrepancies about
the levels IKs in guinea pig. For example, Lu et al. (2001)
recorded robust IKs currents in guinea pig ventricular
cardiomyocytes and showed dramatic APD prolongation
across a range of pacing rates after blocking IKs with
10 μM chromanol 293B, in contrast to the slight (5%)
APD prolongation that we observed (Fig. 5). However,
Banyasz et al. (2014) and Rocchetti et al. (2001; 2006)
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observed only minimal IKs during AP clamp in guinea pig
ventricular cardiomyocytes under baseline conditions, in
agreement with our results.

A prosaic explanation is that the differences are a result
of experimental artefact in the studies suggesting minimal
IKs. IKs is prone to current ‘rundown’ during traditional
whole-cell patch clamp protocols because of dialysis of
the cytosol (Harvey & Hume, 1989). However, the use of
perforated patch in the present study will largely preserve
the intracellular milieu and should minimize this effect.
Furthermore, one would expect dramatic IKs rundown
to lead to APD prolongation over time, and this was
not seen over our 10 min pacing protocol. However, we
cannot exclude a decrease in IKs as an artefact of cardio-
myocyte isolation or another aspect of the experimental
protocol.

A more interesting possibility is suggested by the results
of Banyasz et al. (2014), who found that, although IKs

was minimal at baseline (0.152 A/F, comparable to our
adjusted model), it was rapidly and dramatically enhanced
over 13-fold by β-adrenergic stimulation (to 2.067 A/F).
When run under the same conditions, IKs in our adjusted
model shows good agreement with their baseline data
(0.108 A/F), whereas IKs in the original model (1.883 A/F).
approximates data with β-adrenergic stimulation. This
strongly suggests that the low IKs that they (and we)
measure is not a result of current rundown or digestion
artefact.

Perhaps, then, this difference in IKs between reports
occurs because the cells experimented on by Lu et al.
(2001) (and others finding similarly high IKs) were in
a different regulatory state compared to our cells and
those examined by Banyasz et al. (2014). More specifically,
we hypothesize that cells in some studies may exhibit
significant basal PKA-dependent phosphorylation of the
IKs channel, increasing the importance of IKs in those cells.
Therefore, although IKs has minimal impact on APD in
our cells at baseline, the importance of IKs in influencing
APD is almost certainly highly dependent on cell state.

Coupling simulations and experiments reveals IKr

and IKs have different roles in influencing APD

Initially, the two delayed rectifier currents IKr and
IKs may appear redundant, with each one able to
compensate perfectly for the other. Indeed, many different
combinations of IKr and IKs can produce almost identical
APD, as our simulations show and as previous modelling
studies (Grandi et al. 2010; Sarkar & Sobie, 2010) have
suggested. Our analysis, however, uncovered the more sub-
tle result that IKs is much better than IKr at stabilizing APD
in the face of perturbations. How can two similar currents
play such different roles?

The slow activation and de-activation kinetics of IKs

(Tohse, 1990; Lu et al. 2001) mean that there is greater

IKs activation with a longer AP plateau (allowing more
time for current activation) and a shorter diastolic inter-
val (allowing less time for current de-activation). It follows
from this that a depolarizing, AP-prolonging perturbation
will lead to increased IKs activation, and this stronger
repolarizing drive will counteract the initial depolarizing
perturbation. No such feedback exists for IKr, which
activates sufficiently quickly that it is not limited by AP
duration but, instead, is dependent on AP shape as a result
of its rapid inactivation at highly positive potentials.

This conclusion is in agreement with the results of
Rochetti et al. (2001), who found that the amplitude of
IKs was increased at faster pacing rates as a result of a
greater fraction of time spent in the AP plateau, allowing
for accumulation of channels in a partially activated
state. They postulated that, following partial IKs block,
the initial APD prolongation and resultant increased IKs

activation could provide negative feedback that partially
compensates for the effects of block. Our results suggest
that this stabilizing role of IKs feedback appears to extend
to a variety of perturbations that alter the APD.

IKs may help suppress pro-arrhythmic EADs under
β-adrenergic stimulation

We confirmed these differential roles of IKr and IKs by
measuring APD stability in the face of an increasing ICaL

perturbation at the same time as varying the GKs/GKr ratio
but holding baseline APD constant. This revealed that
not only is IKs better able to resist perturbation-induced
changes in APD, but also it is better able to suppress
potentially pro-arrhythmic EADs. We hypothesize that
upregulation of IKs, such as that which results from
β-adrenergic stimulation, therefore probably not only
shortens the AP, but also directly helps prevent EADs.

Although the evidence suggests that the guinea pig
left ventricular cardiomyocytes used in the present study
display minimal IKs, this is clearly not true in all situations
because this current is upregulated by a variety of cell
signalling processes. Indeed, Banyasz et al. (2014) show
that the ratio of IKs/IKr increased from 0.074 at baseline
to 1.707 with β-adrenergic stimulation with 30 nM iso-
proterenol (when both currents are recorded at –20 mV).
This is comparable to the difference between our adjusted
model (0.045) and the original model (1.416) when run
under the same conditions. Our data suggest that such
an upregulation of IKs will not only shorten the action
potential, but also stabilize it in the face of perturbations,
thus having a potentially strong anti-arrhythmic effect.
We speculate that part of the function of β-adrenergic IKs

activation may be to maintain a short, stable AP under
the physiologically stressful conditions of sympathetic
stimulation.

Mutations in the genes encoding the pore-forming sub-
units for IKs (KCNQ1) and IKr (KCNH2, also known
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as hERG) are the most common causes of congenital
long-QT syndrome (LQTS) (Napolitano et al. 2005),
which is characterized by excessively long APD and
elevated arrhythmic risk (Modell & Lehmann, 2006).
Given the larger magnitude of IKr compared to IKs in our
adjusted model, which is consistent with data obtained in
human ventricular myocytes (Jost et al. 2005), it has long
seemed paradoxical that mutations in the gene encoding
IKs cause congenital LQTS with a greater frequency than
mutations in the gene encoding IKr (Napolitano et al.
2005). The results that we have obtained, if they extend
to human myocytes, may offer novel insight into this
question. Despite its smaller magnitude, IKs may have an
outsize role in preventing arrhythmias in LQTS patients
because IKs has a superior ability to suppress EADs
compared to IKr. A mutation-induced reduction in IKs will
lead to loss of its stabilizing effect on APD and therefore
increase the potential for long APDs and arrhythmias.

Conclusions

The present study represents a novel approach to
combining systematic model analysis with high-content
experiments that measure both baseline behaviour and
the response to many perturbations, a rich data set
that allowed us to systematically constrain parameters to
improve the model. We repeatedly ‘closed the loop’ by
experimentally testing model predictions, systematically
improving the model, experimentally testing a key change
(a decrease in IKs), and using the adjusted model
to gain new insight into important biology. This not
only produces better agreement with the data used to
constrain the model, but also better agreement with new
experiments. The adjusted model yields an improved
understanding of the quantitative effects of each current
on action potential duration. A key insight resulting from
this approach is that two superficially similar currents (IKr

and IKs) may play very different roles in the genesis of
pro-arrhythmic early afterdepolarizations. This may have
important clinical implications for the understanding of
long QT syndromes, as well as the dynamics of ventricular
arrhythmias in general.
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