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Key points

� A mathematical model of a small conductance Ca2+-activated potassium (SK) channel was
developed and incorporated into a physiologically detailed ventricular myocyte model.

� Ca2+-sensitive K+ currents promote negative intracellular Ca2+ to membrane voltage (CAi
2+→

Vm) coupling.
� Increase of Ca2+-sensitive K+ currents can be responsible for electromechanically discordant

alternans and quasiperiodic oscillations at the cellular level.
� At the tissue level, Turing-type instability can occur when Ca2+-sensitive K+ currents are

increased.

Abstract Cardiac alternans is a precursor to life-threatening arrhythmias. Alternans can be caused
by instability of the membrane voltage (Vm), instability of the intracellular Ca2+ (Ca2+

i ) cycling,
or both. Vm dynamics and Ca2+

i dynamics are coupled via Ca2+-sensitive currents. In cardiac
myocytes, there are several Ca2+-sensitive potassium (K+) currents such as the slowly activating
delayed rectifier current (IKs) and the small conductance Ca2+-activated potassium (SK) current
(ISK). However, the role of these currents in the development of arrhythmias is not well under-
stood. In this study, we investigated how these currents affect voltage and Ca2+ alternans using
a physiologically detailed computational model of the ventricular myocyte and mathematical
analysis. We define the coupling between Vm and Ca2+

i cycling dynamics (Ca2+
i →Vm coupling)

as positive (negative) when a larger Ca2+ transient at a given beat prolongs (shortens) the
action potential duration (APD) of that beat. While positive coupling predominates at baseline,
increasing IKs and ISK promote negative Ca2+

i →Vm coupling at the cellular level. Specifically,
when alternans is Ca2+-driven, electromechanically (APD–Ca2+) concordant alternans becomes
electromechanically discordant alternans as IKs or ISK increase. These cellular level dynamics lead
to different types of spatially discordant alternans in tissue. These findings help to shed light on
the underlying mechanisms of cardiac alternans especially when the relative strength of these
currents becomes larger under pathological conditions or drug administrations.
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Introduction

Ventricular arrhythmia is a major cause of sudden
cardiac death. It has been shown that a precursor to
life-threatening arrhythmia formation is the development
of cardiac alternans, a sequence of paired long and short
action potentials (APs) (Pastore et al. 1999; Garfinkel
et al. 2000; Fox et al. 2002b; Hayashi et al. 2007;
Groenendaal et al. 2014). However, physiological and
dynamical mechanisms are not fully understood (Weiss
et al. 2006, 2011; Wilson et al. 2006; Laurita & Rosenbaum,
2008; Merchant & Armoundas, 2012; Sato & Clancy,
2013; Kanaporis & Blatter, 2015; Valdivia, 2015). At the
cellular level, alternans can be caused by instability of
membrane voltage (Vm) due to steep action potential
duration (APD) restitution (Nolasco & Dahlen, 1968;
Hayashi et al. 2007), instability of intracellular calcium
(Ca2+

i ) cycling due to steep sarcoplasmic reticulum (SR)
Ca2+ release dependence on Ca2+ load/refractoriness, or
both (Chudin et al. 1999; Shiferaw et al. 2003, 2005;
Picht et al. 2006; Groenendaal et al. 2014; Wang et al.
2014). Dynamical systems of Vm and Ca2+

i are coupled
via Ca2+-sensitive currents. We previously investigated
the role of the major Ca2+-sensitive currents, the L-type
Ca2+ current (ICaL) and sodium(Na+)–Ca2+ exchanger
(NCX) (Shiferaw et al. 2005; Sato et al. 2006, 2007, 2013).
However, the slowly activating delayed rectifier current
(IKs) is a Ca2+-sensitive current, and recent experimental
studies showed that the small conductance Ca2+-activated
potassium (SK) channels exist in cardiac myocytes and
play an important role in regulating APs (Xu et al. 2002;
Tuteja et al. 2005; Zhang et al. 2008; Li et al. 2009; Hsueh
et al. 2013; Chang et al. 2013a; Chang & Chen, 2015;
Yu et al. 2015; Zhang et al. 2015). Yet, little is known
about the role of these Ca2+-sensitive K+ currents in
the formation of alternans. In this study, we investigate
dynamical effects of Ca2+-sensitive K+ currents on Vm

and Ca2+
i alternans and show how ion channel/current

level modifications lead to various phenomena at
cellular and tissue levels including electromechanically
(APD–Ca2+) discordant alternans and spatially discordant
alternans.

Methods

In order to investigate the dynamical and physiological
mechanisms of alternans, we used a physiologically
detailed mathematical model of AP and Ca2+

i cycling of the
ventricular myocyte developed by Shiferaw et al. (2005).
Figure 1A shows the schematic diagram of the currents
and fluxes that regulate Vm dynamics and Ca2+

i cycling.
The membrane potential is governed by

dVm

dt
= −

∑
I

Cm
,

where Vm is the membrane potential, Cm is the cell
capacitance and I represents the transmembrane currents.
The details of the model are described in the online
Supporting information, Data S1.

The formula of the Ca2+ dependence of IKs from
Mahajan et al. (2008) was incorporated into this model.
IKs is given by

IKs = g ksxs1xs2qKs (Vm − E Ks) ,

qKs = 1 + 0.8

1 +
(

K m

c s

)3 ,

where gks is the maximum conductance of IKs, qKs is the
Ca2+ dependence, xs1 and xs2 are the time-dependent
gating variables, EKs is the reversal potential of IKs, and
Km controls the affinity of Ca2+. We varied gKs and Km to
explore the effects of IKs on alternans.

The SK channel has been recently described in atrial
and ventricular myocytes (Xu et al. 2002; Tuteja et al. 2005;
Zhang et al. 2008; Li et al. 2009; Hsueh et al. 2013; Chang
et al. 2013a; Chang & Chen, 2015; Yu et al. 2015; Zhang
et al. 2015). In this study we develop a novel computational
model of the SK channel and integrate it with a physio-
logically detailed ionic model of a ventricular myocyte.
We used the Ca2+ dependence formulation by Hirschberg
et al. (1998). The governing equations for the SK channel
are

ISK = g sk xsk (Vm − E K)

xsk = xsk∞ − xsk

τsk

xsk∞ = 0.81
cn

s

cn
s − ECn

50

τsk = 1.0(
0.047c s + 1

76

)

where gsk is the maximum conductance, EK is the reversal
potential, and EC50 controls the affinity of Ca2+. Several
experimental studies have reported the EC50 of the SK
channel in cardiac cells. Hongyuan et al. have reported that
the EC50 of the SK channel in rat ventricles is 0.23–0.59 μM

(Hongyuan et al. 2016). Chang et al. have reported that the
EC50 of the SK channel in human ventricles is 0.35–0.6 μM

(Chang et al. 2013b). In this study, we varied the EC50 from
0.1 to 1.0 μM to cover the whole range of physiological and
pathophysiological conditions. In experimental studies,
the SK current (ISK) shows weak (or sometimes reverse)
rectification (Lu et al. 2007; Zhang et al. 2008; Hsieh et al.
2013). Thus, in this study we chose a linear current–voltage
relationship (Fig. 1B). Rectification properties can affect
our results quantitatively. However, they did not affect
our results qualitatively. Ca2+ dependence and its time
constant are plotted in Fig. 1C and D. Figure 1E shows
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Figure 1. Physiologically detailed mathematical model
A, schematic diagram of the currents and fluxes that regulate Vm dynamics and Ca2+

i cycling. B, model of the SK
channel: ISK vs. Vm when [Ca2+] is 0.1, 0.5 and 1.0 μM. C, channel open probability as a function of intracellular
Ca2+. D, inverse relationship between intracellular Ca2+ and the SK time constant (τSK2). E, open probability (Po)
vs. time when various test [Ca2+] pulses are applied. [Ca2+] was changed from 0 μM to test [Ca2+] for 400 ms,
and then changed to 0 μM. F, transmembrane voltage plotted against time demonstrating the decrease in APD
from baseline (red) to inclusion of the SK channel (black). When gsk = 0.8 μS μF−1 and EC50 = 0.7 μM are chosen,
the model shows 12% difference of APDs, which was shown by Hsieh et al. experimentally (Hsueh et al. 2013),
by copyright permission of the American Heart Association, Inc. G, positive and negative Ca2+

i →Vm coupling.
H, electromechanically concordant (large APD→large Ca2+ transient, small APD→small Ca2+ transient) alternans
and discordant (large APD→small Ca2+ transient, small APD→large Ca2+ transient) alternans.
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the open probability (Po) of the SK channel when various
test [Ca2+] pulses are applied. Some reported gsk values in
ventricular myocytes are as high as 10 μS μF−1 (Lu et al.
2007; Zhang et al. 2008; Chang et al. 2013b; Hongyuan
et al. 2016), which would profoundly shorten APD. We
have chosen a range of gsk more conservatively (from 0.4
to 4 μS μF−1), based on apamin effects on APD. Hsieh
et al. showed a 12% prolongation of APD when apamin
was applied (pacing cycle length, PCL = 300 ms, heart
failure rabbit ventricular myocyte) (Hsueh et al. 2013).
When gsk is 0.8 μS μF−1 and EC50 is 0.7 μM, the model
also showed 12% difference between AP with ISK (Fig. 1F
black) and AP without ISK (Fig. 1F red).

Tissue simulations were performed in a mono-domain
one-dimensional cable. The governing equation for the
membrane potential Vm of a cell in tissue is

Cm
dVm

dt
= −I ion + Icoupling,

where Cm is the membrane capacitance, Iion is the total
ionic current through the membrane, and Icoupling is the
current that comes from the neighbouring cells through
the gap junctions. This equation was solved by an operator
splitting method (Qu & Garfinkel, 1999; Xie et al. 2004).

At the cellular level, alternans can be caused by
instability of Vm due to steep APD restitution. We call
this Vm-driven alternans. To alter the steepness of the
restitution slope, we varied the time constant of the
voltage-dependent inactivation of the L-type Ca2+ channel
(τf) (Shiferaw et al. 2005). Alternans can also be caused by
instability of Ca2+

i cycling due to a steep SR Ca2+ release vs.
SR Ca2+ load relationship and Ca2+ restitution properties.
We call this Ca2+

i -driven alternans (Chudin et al. 1999;
Shiferaw et al. 2003, 2005). To alter the instability of Ca2+

i
cycling, we varied the gain of the SR Ca2+ release function
(u) (Shiferaw et al. 2005).

Coupling of Ca2+ on the APD (Ca2+
i →Vm coupling)

is defined as positive (negative) if a large Ca2+ trans-
ient prolongs (shortens) the APD of the same beat
(Shiferaw et al. 2005; Weiss et al. 2006) (Fig. 1G). In
our previous study (Shiferaw et al. 2005), we controlled
Ca2+

i →Vm coupling with a varying relative contribution
of ICaL and NCX by changing the Ca2+-induced
inactivation strength (γ). As γ is increased, ICaL dominates
and Ca2+

i →Vm coupling becomes more negative. The
Ca2+

i →Vm coupling is positive when γ is 0.7. By fixing
γ = 0.7 and varying Ca2+-sensitive K+ currents, we
demonstrate that Ca2+-sensitive K+ currents can change
the Ca2+

i →Vm coupling.
Vm and Ca2+

i alternans can be electromechanically
concordant (a Long–Short–Long–Short APD sequence
corresponding to a Large–Small–Large–Small
Ca2+ transient sequence) or discordant (a
Long–Short–Long–Short APD sequence corresponding
to a Small–Large–Small–Large Ca2+ transient sequence)

(Fig. 1H). These phenomena depend on the underlying
instability mechanisms (Vm-driven or Ca2+

i -driven) and
the coupling between Vm and Ca2+

i cycling.

Results

ISK is an outward current during the AP. Introduction
of the SK channel, while keeping all other parameters
constant as in Shiferaw et al. (2005) was shown to
shorten the APD (Fig. 1F) similar to other outward
currents.

Introduction of ISK increases the area of stable APs
with three distinct modes of oscillations at the
stability boundary

By varying the instability factors of Vm (τf) and Ca2+
i

cycling (u), we plotted the stability diagram (Fig. 2A and
B) for the pacing cycle length (PCL) of 300 ms. Without ISK

(Fig. 2A), the Ca2+
i →Vm coupling is positive and alternans

was always electromechanically concordant regardless of
the instability mechanism. When ISK was introduced
(gsk = 4 μS μF−1, EC50 = 0.7 μM), the area of the stable
APs (i.e. periodic APs) was increased, evident from Fig. 2A
and B. In addition, three distinct modes of oscillations,
electromechanically concordant alternans, quasiperiodic
oscillations and electromechanically discordant alternans,
occurred at the stability boundary, as labelled in Fig. 2B
(as C, D, E). The relation between peak [Ca2+]i and
APD was plotted, with (C) corresponding to electro-
mechanically concordant alternans, (D) representing
electromechanically discordant alternans as seen by the
negative relation between peak [Ca2+]i and APD, while (E)
shows the quasiperiodic oscillation with corresponding
orbit in peak [Ca2+]i–APD plane (Fig. 2E right panel).
From our previous study (Shiferaw et al. 2005) three
modes of oscillations implies that the Ca2+

i →Vm coupling
is negative.

Affinity of [Ca2+] also affects Vm–Ca2+
i dynamics

Figure 3A shows how the stability boundary curves (at
PCL = 300 ms) shift with increasing ISK conductance (gsk).
Figure 3B shows how these curves shift as the ISK [Ca2+]i

dependence (EC50) is altered from 0.1 to 1.0 μM. When
Ca2+ affinity is high (lower EC50), ISK shortens both short
AP and long AP regardless of the amplitude of the Ca2+
transient. However, when Ca2+ affinity becomes lower
(higher EC50), ISK shortens only when the amplitude of
the Ca2+ transient is large. This means that the change
in the APD becomes larger even when the change in the
amplitude of the Ca2+ transient is the same. This promotes
negative Ca2+

i →Vm coupling (�APD vs. �peak [Ca2+]i

will become steeper).

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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To test this idea of coupling change, we plotted �APD
vs. peak [Ca2+]i (Fig. 3C) for small changes in [Ca2+]i.
Peak [Ca2+]i was varied by changing initial (diastolic) SR
Ca2+ load. Without ISK the positive slope indicates positive
Ca2+

i →Vm coupling, but as gsk increases the slope flattens
and by gsk = 4 μS μF−1, the Ca2+

i →Vm coupling becomes
substantially negative (Fig. 3C). The sign was changed
around gsk = 1 μS μF−1 (Fig. 3D). Higher Ca2+ affinity

also makes the Ca2+
i →Vm coupling more negative (Fig. 3E

and F).
IKs is also Ca2+ sensitive. As expected, qualitatively

similar results are seen with increasing IKs as were
seen with ISK. When the maximum conductance of
IKs (gks) is reduced by half, we observed electro-
mechanically concordant alternans at the stability
boundaries (Fig. 4A). On the other hand, when gks is
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Figure 2. Effects of ISK at the cellular level
Stability boundaries were numerically determined for both the baseline system and the baseline plus SK, as seen in
A and B, respectively. A demonstrates one mode of instability, namely concordant alternans, while B shows three
distinct modes of instability; concordant alternans (C), discordant alternans (D), and quasiperiodic oscillation (E).
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Figure 3. Effects of the maximum conductance and Ca2+ affinity of ISK
A, stability boundaries plotted for three gsk, with values of 0, 2.0 and 4.0 μS μF−1. B, stability boundaries plotted
for three EC50 values of 1.0, 0.5 and 0.1 μM corresponding to the black, red and green curves, respectively. C,
the slope of �APD vs. �[Ca2+]peak indicates the Ca2+

i →Vm coupling. When gsk = 0 μS μF−1, the Ca2+
i →Vm

coupling is positive, while when gsk = 4.0 μS μF−1, the Ca2+
i →Vm coupling is negative. EC50 is 0.7 μM. D,

slope (�APD/�[Ca2+]peak) vs. gsk. E, �APD vs. �[Ca2+]peak when EC50 is varied. gsk is 4.0 μS μF−1. F, slope
(�APD/�[Ca2+]peak) vs. EC50.
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Figure 4. Effects of IKs at the cellular level
A, stability diagram when gks is small (50% of the original value, the original gks is 0.0245 mS μF−1). Alternans is
always electromechanically concordant. B, stability diagram when gks is large (300% of the original value). In this
case, there are three distinct modes of instability; electromechanically concordant alternans (C), electromechanically
discordant alternans (D), and quasiperiodic oscillation (E).
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increased to 300%, we observed three modes of oscillations
(Fig. 4B). These modes are plotted in Fig. 4C (electro-
mechanically concordant alternans), Fig. 4D (electro-
mechanically discordant alternans), and Fig. 4E (quasi-
periodic oscillations).

Both the maximum conductance (gks) and Ca2+

sensitivity affect the stability boundaries and the
modes of oscillations

When gks was increased from 50 to 300%, it not only
increased the stable area but also induced three modes
(Fig. 5A). On the other hand, when Ca2+ sensitivity was
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A, stability boundaries plotted for multiple gks, with values of 50, 100, 200, 250 and 300% of the original
value (0.0245 mS μF−1). B, stability boundaries plotted for three Km, with values of 1.0, 0.5 and 2.0 μM
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D, slope (�APD/�[Ca2+]peak) vs. gks. E, �APD vs. �[Ca2+]peak when Km is varied. F, slope (�APD/�[Ca2+]peak)
vs. Km.
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decreased, it suppressed electromechanically concordant
and discordant alternans but promoted quasiperiodic
oscillations (Fig. 5B). This indicates that Ca2+ sensitivity
changed only the coupling without changing Vm and Ca2+

i
instabilities. Figure 5C and D shows positive Ca2+

i →Vm

coupling when IKs is small (gks × 0.5) and negative
Ca2+

i →Vm coupling when IKs is large (gks × 3).
From these single cell simulations, we summarize as

follows. If alternans is Ca2+
i -driven (small τf and large u,

along the abscissa in Figs 2–4), increasing the maximum
conductance of ISK or IKs promotes electromechanically
discordant alternans (Fig. 6A). On the other hand, if
alternans is Vm-driven (large τf and small u, along ordinate
in Figs 2–4), electromechanically concordant alternans
remains electromechanically concordant even when the
maximum conductance of ISK or IKs is increased (Fig. 6B).

At the tissue level, increasing ISK or IKs leads to
different types of spatially discordant alternans

In tissue, cellular level instability mechanisms lead to
different alternans. We paced the left-most five cells of
the 6 cm (400 cell) homogeneous cable. First, we paced
the cable at a PCL of 600 ms until it reached the steady
state. At this PCL, there is no alternans. Then, the PCL
was decreased to 300 ms. Alternans gradually developed.

When all cells in the cable reached the steady state, we
plotted APD and peak [Ca2+]i along the cable (Fig. 7).

When alternans are Ca2+
i -driven (small τf and large

u), if these currents are small, the Ca2+
i →Vm coupling

is positive and the mechanism of spatially discordant
alternans is due to competition between synchronization
due to diffusive electrical coupling and desynchronization
due to Ca2+-related stochasticity (Sato et al. 2013).
The mechanism of spatially discordant alternans does
not depend on the details of the ionic currents. This
occurs whenever the cellular level instability mechanism
is Ca2+

i -driven and the Ca2+
i →Vm coupling is positive.

In this case, the spatial scale of phase reversal of Ca2+
i

alternans is short (Sato et al. 2007) (Fig. 7A and D), where
spatially discordant alternans is shown. However, when
ISK or IKs becomes large, the Ca2+

i →Vm coupling becomes
negative and the mechanism of spatially discordant
alternans is due to Turing-type instability (instability
due to electrotonic coupling) (Sato et al. 2006) (Fig. 7B
and E). The mechanism of this spatially discordant
alternans is also model independent and requires only
Ca2+

i -driven instability and negative Ca2+
i →Vm coupling.

If alternans is Vm-driven, the mechanism of spatially
discordant alternans is due to interaction between APD
and conduction velocity restitution (Echebarria & Karma,
2002, 2007)(Fig. 7C and F). In this case, the spatial scales
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of phase reversal of Ca2+
i alternans is large (e.g. vs. that in

Fig. 7A and D) (Sato et al. 2007).

Discussion

In this study, we have shown that Ca2+-sensitive
K+ currents IKs and ISK promote negative Ca2+

i →Vm

coupling, which creates three modes of instability at the
cellular level and Turing-type instability at the tissue level.

In 1968, Nolasco and Dahlen used APD restitution,
which is the relationship between APD and the pre-
vious diastolic interval (DI), APD(n + 1) = Function (F)
(DI(n)), to demonstrate that the formation of alternans
occurs when the slope of the APD restitution curve
exceeds unity (Nolasco & Dahlen, 1968). This inter-
pretation provides a model for the relationship of Vm and
APD stability. However, this one-dimensional map cannot
explain the existence of three distinct modes (electro-
mechanically concordant/discordant alternans and quasi-
periodicity) of instability (Shiferaw et al. 2005), which have
been shown experimentally (Rubenstein & Lipsius, 1995;
Gilmour et al. 1997; Walker & Rosenbaum, 2003).

One possible mechanism for these multiple modes is the
interactions between Vm and Ca2+

i cycling. Ca2+
i cycling

can be unstable when the myocyte is Ca2+ overloaded
or RyRs are sensitized. Ca2+

i cycling can also be unstable
when the cell is rapidly paced. In fact, Chudin et al. have
demonstrated that Ca2+

i transients exhibit alternans even
with AP clamp waveform (i.e. APs are periodic) (Chudin
et al. 1999). This implies that Ca2+

i cycling has its own
non-linear dynamics (Dilly & Lab, 1988; Hall et al. 1999;
Hall & Gauthier, 2002; Fox et al. 2002a; Pruvot et al. 2004;
Picht et al. 2006; Wang et al. 2014).

In the present study, we used a computational model
which shows both non-linearities of Vm and Ca2+

i
cycling. These two non-linear systems are coupled via
Ca2+-sensitive currents. As the myocyte experiences a large
Ca2+ transient, the open probability of the Ca2+-sensitive
K+ channel will increase, increasing outward K+ current.
This larger Ca2+ transient also promotes Ca2+-dependent
inactivation of L-type Ca2+ channels, limiting inward
Ca2+ current, so both K+ and Ca2+ current effects
tend to promote negative Ca2+

i →Vm coupling. However,
Ca2+-dependence increases in inward current via NCX
(due to changes in electrochemical driving force)
promoting positive Ca2+

i →Vm coupling. Net changes
in the competition between these Ca2+-dependent
currents produces the transition from positive to negative
Ca2+

i →Vm coupling. Any increase in Ca2+-dependent K+
current (IKs or ISK) would tend to shift the coupling
negative. Moreover, increasing either IKs or ISK reveals
three modes of instability. As the Ca2+

i →Vm coupling
becomes more negative (with rising IKs or ISK), the slope of
�APD vs. �Ca2+ is negative, and three distinct modes of

alternans are induced: (1) Vm-driven electromechanically
concordant alternans (large τf, small u), (2) Ca2+

i -driven
electromechanically discordant alternans (small τf, large
u), and (3) quasiperiodic oscillation (large τf, large u)). All
three of these modes of instability have been observed in
both voltage and Ca2+ recordings (Dilly & Lab, 1988; Hall
et al. 1999; Hall & Gauthier, 2002; Fox et al. 2002a; Pruvot
et al. 2004).

Another important point of this study is that we
introduced a novel model of the SK channel. Using
this model, we demonstrate that its Ca2+ dependence
(Hirschberg et al. 1998) is responsible for the observed
existence of three distinct modes of instability.

Typical healthy myocytes show electromechanically
concordant alternans during fast pacing. We found that
as the maximum conductance of ISK was increased,
electromechanically concordant alternans became electro-
mechanically discordant when alternans is Ca2+

i -driven.
These findings shed light on the underlying mechanisms
of cardiac alternans, especially for failing hearts since ISK

was shown to be up-regulated in ventricular myocytes in
heart failure (Yu et al. 2015). In this study, we used a
ventricular AP model. Alternans have also been observed
in atrial cells (Kanaporis & Blatter, 2015). We expect ISK

to have the same dynamical effects on alternans in atrial
cells, and may be even more impactful there because of
higher basal density of ISK in atrial vs. ventricular myocytes
(Xu et al. 2003). Finally, our study also provides insights
into the non-linearities of cardiac tissue behaviour and a
potential link between molecular processes within the cell
to the development of disorders of the organ itself.
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Translational perspective

Recent experimental studies showed that ISK becomes extremely large in failing hearts. Thus, under-
standing the role of the SK channel in alternans dynamics is potentially important to develop new
drugs and therapies for heart failure. In this study, we investigated the role of Ca2+-sensitive K+
channels (ISK and IKs) on Vm and Ca2+ dynamics. An increase of Ca2+-sensitive K+ currents can be
responsible for electromechanically discordant alternans and quasiperiodic oscillations at the cellular
level and Turing-type spatially discordant alternans in tissue. These results provide theoretical bases
to understand and interpret experimental and clinical results.
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