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Abstract
Objectives To study disease mechanisms in multifocal motor
neuropathy (MMN) with magnetic resonance imaging (MRI)
and diffusion tensor imaging (DTI) of the median and ulnar
nerves.
Methods We enrolled ten MMN patients, ten patients with
amyotrophic lateral sclerosis (ALS) and ten healthy controls
(HCs). Patients underwent MRI (in a prone position) and
nerve conduction studies. DTI and fat-suppressed T2-weight-
ed scans of the forearms were performed on a 3.0TMRI scan-
ner. Fibre tractography of the median and ulnar nerves was
performed to extract diffusion parameters: fractional anisotro-
py (FA), mean (MD), axial (AD) and radial (RD) diffusivity.
Cross-sectional areas (CSA) were measured on T2-weighted
scans.
Results Forty-five out of 60 arms were included in the
analysis. AD was significantly lower in MMN patients
(2.20 ± 0.12 × 10-3 mm2/s) compared to ALS patients

(2.31 ± 0.17 × 10-3 mm2/s; p < 0.05) and HCs (2.31
± 0.17 × 10-3 mm2/s; p < 0.05). Segmental analysis showed
significant restriction of AD, RD and MD (p < 0.005) in
the proximal third of the nerves. CSA was significantly
larger in MMN patients compared to ALS patients and
HCs (p < 0.01).
Conclusions Thickening of nerves is compatible with chang-
es in the myelin sheath structure, whereas lowered AD values
suggest axonal dysfunction. These findings suggest that my-
elin and axons are diffusely involved in MMN pathogenesis.
Key Points
•Diffusion magnetic resonance imaging provides quantitative
information about multifocal motor neuropathy (MMN).

• Diffusion tensor imaging allows non-invasive evaluation of
the forearm nerves in MMN.

• Nerve thickening and lowered diffusion parameters suggests
myelin and axonal changes.

• This study can help to provide insight into pathological
mechanisms of MMN.

Keywords Magnetic resonance imaging . Diffusion tensor
imaging .Multifocal motor neuropathy . Amyotrophic lateral
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Introduction

Multifocal motor neuropathy (MMN) is a rare disorder char-
acterized by progressive, asymmetric and predominantly dis-
tal limb weakness without any sensory involvement [1]. The
diagnosis of MMN is mainly based on the combination of
clinical characteristics and specific nerve conduction abnor-
malities, i.e. conduction block. MMN is a mimic of the early
phases of amyotrophic lateral sclerosis (ALS) and progressive
muscular atrophy from which it needs to be distinguished,
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since the prognosis of MMN is much better than that of motor
neuron disorders. Although patients with MMN respond to
treatment with intravenous or subcutaneous immunoglobulins
[2–4], progressive weakness of arms and hands due to accu-
mulating axonal damage causes severe disability in a sub-
group of patients [1, 5].

The pathogenic mechanisms that underlie MMN are in-
completely understood. The presence of anti-GM1 IgM anti-
bodies in more than half of the patients may suggest that
MMN is caused by anti-GM1 antibody-mediated damage at
or in the proximity of the nodes of Ranvier. This likely plays a
role in the phenomenon of conduction block and in the demy-
elination or disruption of the compact myelin structure [2, 6].
Demyelination or disruption of the compact myelin structure
represents an alternative pathogenic mechanism that causes
MMN [6]. There are few pathological studies of affected mo-
tor nerves [7, 8], and there are no animal models for MMN.
There is a need for new methodology to elucidate MMN path-
ogenesis and to eventually improve treatment strategies.

Magnetic resonance imaging (MRI) can be used to study
the brachial plexus and peripheral nerves [9, 10].MRI T1- and
T2-weighted images can provide anatomical detail and diffu-
sion tensor imaging (DTI) technique information on the mi-
crostructural organization of nervous tissue [11–13] and pe-
ripheral nerves [14–17]. This unique combination may help to
identify relevant disease mechanisms in patients with MMN.
In this study we therefore used MRI and DTI to visualize the
median and ulnar nerves in the forearm of patients with MMN
and ALS and in healthy controls.

Materials and methods

Patient characteristics

We enrolled ten patients with MMN, ten patients with ALS
and ten healthy controls at the neuromuscular outpatient clinic
of the University Medical Centre Utrecht, a tertiary referral
centre for neuromuscular disorders. Patients with MMN and
ALS fulfilled diagnostic consensus criteria for definite or
probable MMN and the El Escorial criteria for ALS, respec-
tively [4, 18]. All patients with ALS had clinical signs of
lower motor neuron involvement (i.e. weakness, atrophy
and/or fasciculations) in the forearm or hand. Patients and
healthy controls were matched for age and gender. All patients
with MMN were on immunoglobulin maintenance treatment
and all patients with ALS used riluzole. All patients and
healthy controls underwent a standardized clinical examina-
tion including muscle strength testing of the wrist, thumb and
finger flexion, opponens pollicis, abductor pollicis brevis, fin-
ger spreading and adductor pollicis, together with sensory
testing. Clinical examinations, electromyogram and MRI
studies were performed on the same day. The local

institutional review board approved this study and we obtain-
ed written informed consent from each subject prior to
inclusion.

Nerve conduction study protocol

Nerve conduction studies were performed using a Nicolet
VIKING IV electromyogram machine (CareFusion, Tokyo,
Japan) after the limbs were warmed in water at 37 °C for
30 min. One of us (SG) was unaware of the clinical diagnosis
and performed nerve conduction studies using a shortened
version of a previously published protocol [4], consisting of
motor nerve stimulation of the median nerve (recording m.
abductor pollicis brevis) and ulnar nerve (recording m. abduc-
tor digiti V) on both sides up to the axilla. We used the defi-
nition of conduction block as described in the diagnostic con-
sensus criteria for MMN [18]. Axonal loss was defined as a
decrease of distal compound muscle action potential (CMAP)
below to 2 standard deviations of the lower limit of normal,
i.e. a CMAP <3.5 mV for the median nerve and a distal
CMAP of <2.8 mV for the ulnar nerve.

MRI protocol and data acquisition

All subjects underwent MRI of both forearms. Scans were
acquired on a 3 Tesla MR system (Achieva, Philips
Healthcare, Best, The Netherlands) with a 32-channel
phased-array surface coil. Patients were positioned in a prone
position with one arm placed above the head as described
previously [19]. Patients were repositioned when the other
arm was scanned. DTI was performed based on diffusion-
weighted spin echo single-shot echo planar imaging in the
axial plane with the following parameters: TE = 66 ms,
TR = 6,340 ms, SENSE factor 2, FOV 240 × 120 mm2, matrix
size 160 × 80, 60 slices with thickness = 4.0 mm, resulting in a
voxel size of 1.5 × 1.5 × 4.0 mm3, half scan 0.69, SPIR fat
suppression, b-values 0, and 800 s/mm2, NSA = 1, and 15
gradient directions. The total acquisition time was 9:32 min.
As an anatomical reference, axial fat-suppressed T2-weighted
scans were acquired with the following parameters:
TE = 90 ms, TR = 7139 ms, SENSE factor 1.5, FOV
120 × 120 mm2, matrix size 240 × 234, slices with thickness
of 4.0 mm, and spectral attenuated inversion-recovery fat sup-
pression. One stack was used with 60 slices for both the DTI
and the T2-weighted scan. Scans with low quality, evaluated
by visual inspection, for example due to movement, were
excluded from analysis.

DTI processing

The DTI data were processed using ExploreDTI (www.
ExploreDTI.com) [20]. Images were corrected for subject
motion, eddy current-induced distortions and susceptibility
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artefacts [21, 22]. Diffusion tensors were calculated using the
REKINDLE method [23] and diffusion parameters were sub-
sequently obtained, which consisted of (1) the fractional an-
isotropy (FA), (2) the mean diffusivity (MD), (3) the axial
diffusivity (AD), and (4) the radial diffusivity (RD) [14]. A
standardized deterministic streamline approach was used to
reconstruct the fibre tract [24].

Fibre tractography and diffusion parameters

To visualize the nerves and extract diffusion parameters,
tractography was used. FA range was set to 0.1–0.9, step size
of 1 mm, minimum fibre length was set to 100 mm, and the
fibre angle was set to 30° per integration step. Fibre tracts,
generated by whole volume seeding (1.5 × 1.5 × 1.5 mm3), be-
longing to the forearm nerves were selected by placing ‘AND’
region of interests (ROIs) in four locations in the arm: at the
level of the pronator quadratus, one-third of the ulna, two-
thirds of the ulna, and the junction of the supinator with the
radius [16], as shown in Fig. 1. These locations were chosen as
they are relatively easy to locate and therefore provide a re-
producible way of selecting the ROIs in each patient in the
same way across subjects. ‘AND’ ROIs only select those
tracts that run through all the ‘AND’ ROIs. This means that
from all the fibre tracts generated from whole volume seeding,
only those are selected that span all four predefined locations
in the arm. Resulting tracts were used to calculate the diffusion
parameters.

To investigate if DTI parameters were biased by the num-
ber of tracts and tract length [25], and to investigate to what
extent diffusion metrics are distributed homogeneously along
the nerve, additional analyses of shorter nerve segments were
performed. For this purpose the forearm was subdivided into
three segments defined by the ROI positions as described
above and shown in Fig. 1. Tracts were selected for each of
these individual subsections defined by only two of the four
‘AND’ ROIs and diffusion parameters were calculated for
each of the three segments individually.

Cross-sectional areas

Nerve cross-sectional area (CSA) was assessed on T2-
weighted scans, at the predefined four locations in the arm:
at the level of the pronator quadratus, one-third of the ulna,
two-thirds of the ulna, and the junction of the supinator with
the radius as shown in Fig. 1. The mean CSA of each nerve
was then calculated based on the average CSA of these four
locations.

Statistical analysis

We used SPSS version 20.0 (SPSS Inc., Chicago, IL, USA)
for statistical analysis. A general linear model was used to

compare the DTI parameters and the CSA measurements be-
tween the three groups. We used Bonferroni correction to
correct for multiple testing. The analysis was performed for
the whole nerve segment as well as for the individual seg-
ments and was based on both median and ulnar nerves.
Correction for clustering of the data of scanning two arms in
one patient was included into the model, and sex and age were
taken into account [13]. Pearson correlation was used to check
for correlation between the CSA and the diffusion parameters,
and between duration of symptoms and diffusion parameters,
where p < 0.05 was considered to be significant.

Results

Patient characteristics and nerve conduction studies

Patient characteristics are summarized in Table 1. There
was a significant difference in duration of symptoms
(p < 0.001) between patients with MMN and ALS.
Distribution and severity of weakness was similar in both
patient groups. Nerve conduction studies showed conduc-
tion block in seven out of 40 (18 %) nerves, all in patients
with MMN. Distal CMAP amplitudes were consistent
with axonal loss.

MRI protocol and data acquisition

Data quality in patients was lower than in healthy con-
trols. Based on visual inspection, DTI images of 15 out of
60 arms (seven arms of MMN patients, six arms of ALS
patients and two arms of healthy controls) had to be ex-
cluded due to motion distortion or other MR-related prob-
lems resulting in a total of 45 scans of arms that were
available for analysis. T2-weighted scans of nine out of
60 arms (three arms of MMN patients, four arms of ALS
patients and two arms of healthy controls) had to be ex-
cluded, resulting in a total of 51 arms that were used for
analysis.

Fibre tractography

Themedian and ulnar nerves could be reconstructed with fibre
tractography in 40 of the 45 datasets. Figure 2 shows the tracts
derived from the median and ulnar nerves in patients with
MMN and ALS as well as in a healthy control. In five datasets
tracts could not be reconstructed in seven nerves (six nerves of
four MMN patients, and one nerve in a healthy control).

In total four nerves with conduction blocks and three
nerves with axonal damage remained for analyses in the
MMN group, and five nerves with axonal damage in the
ALS group.
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Supplementary Table 1 shows the number of tracts per
nerve and nerve segment. It was not possible to find tracts in
three nerves of segments 1 and 3 and in two nerves of segment
2 in patients with MMN, and in one nerve in segment 1 in a
healthy control.

Diffusion parameters

There were no significant differences between the two arms.
Therefore, left and right arms were combined in the data anal-
ysis. The calculated average diffusion parameters of all tracts
belonging to the median and ulnar nerves are summarized in
Table 2. There was a significant difference in AD of nerves of
patients with MMN (2.20 ± 0.12 × 10-3 mm2/s) compared to
patients with ALS (2.31 ± 0.17 × 10-3 mm2/s; p < 0.05) and to

healthy controls (2.31 ± 0.17 × 10-3 mm2/s; p < 0.05). There
were no significant differences in FA, MD and RD between
the groups.

Results of diffusion parameters of nerves with and without
reduced distal CMAP are shown in Table 3. Nerves with re-
duced distal CMAP (both MMN and ALS patients) showed
lower MD and RD values (p < 0.05). The AD in these nerves
showed a tendency (not significant p = 0.083) towards lower
values.

Segmental analysis of diffusion parameters also showed a
significantly lower AD value in segment 3 for MMN patients
compared to ALS patients (p < 0.005) and healthy controls
(p < 0.05), and additionally significantly lower MD and RD
(p < 0.005) values in patients with MMN compared to those
with ALS, as shown in Table 2.

Table 1 Characteristics of
patients with multifocal motor
neuropathy (MMN), amyotrophic
lateral sclerosis (ALS) and
healthy controls

MMN (n = 10) ALS (n = 10) Healthy controls
(n = 10)

Mean age, years (range) 54 (29–67) 53 (40–60) 54 (29–67)

Male (%) 8 (80 %) 8 (80 %) 8 (80 %)

Median duration of symptoms
in months (range)

52 (11–124)* 11 (6–34)* –

Median duration of treatment
in months (range)

12 (1–39) 4 (1–24) –

Weakness lower arm (%) 15/20 (75 %) 15/20 (75 %) –

Number of conduction blocks (%) 7 (18 %) 0 (0 %) 0 (0 %)

Number of nerves with distal
compound muscle action
potential < lower limit of
normal (%)

6 (15 %) 8 (20 %) 0 (0 %)

*P < 0.001

Fig. 1 Overview of the region of interest (ROI) positioning along the
nerves in the arm (upper image) and the colour-encoded DTI (lower
image), where green indicates anterior-posterior, red indicates left-right
and blue indicates inferior-superior. The first ROI was placed at the
pronator quadratus (P), and the second and third ROIs at one-third and

two-thirds of the ulna, respectively, and the fourth ROI was placed at the
location of the junction of the supinator (S) with the radius. The tracts
were analysed along the entire segment, and segments 1, 2, and 3
individually
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Cross-sectional areas

Figure 3 shows representative examples of CSA of the median
nerve of a patient with MMN, a patient with ALS and a
healthy control on T2-weighted scans. The mean CSA of the
median and ulnar nerves on T2-weighted scans were signifi-
cantly larger in patients with MMN (median = 9.40
± 2.87 mm2, and ulnar = 7.06 ± 1.84 mm2) compared to those
with ALS (median = 7.23 ± 1.47 mm2, and ulnar = 5.68
± 0.93 mm2) and to healthy controls (median = 6.88
± 1.41 mm2, and ulnar = 5.36 ± 0.89 mm2) (Fig. 4). There
was no correlation between CSA and any of the diffusion
parameters (FA, MD, AD and RD) (max r = 0.262), or be-
tween duration of symptoms and diffusion parameters (max
r = 0.391). Nerves with reduced CMAP amplitudes did not
show a significant difference in CSA compared to nerves with
normal CMAP amplitudes (see Table 3). There was no corre-
lation between the CSA and any of the diffusion parameters
(max r= 0.160) in the nerves with reduced CMAP amplitudes.

Discussion

ThisMRI study shows anatomical and diffusion abnormalities
in peripheral nerves from patients with MMN. We found sig-
nificant nerve enlargement in combination with a significant
reduction of axial diffusion. These in vivo results suggest that
pathogenic mechanisms in MMN might affect both the axon
and myelin sheath, as was earlier suggested by pathological
abnormalities near the site of conduction block [8].

The median and ulnar nerves of MMN patients were 25–
30 % larger than those in the healthy controls and ALS

patients. The diffuse rather than focal nerve enlargements are
in line with high resolution ultrasound studies of peripheral
nerves [26, 27] and the brachial plexus [9, 28]. Pathogenic
mechanisms underlyingMMN therefore seem to affect signif-
icant lengths of motor nerves rather than patchy and focal
involvement, as suggested by the observed patterns of weak-
ness and conduction block [1, 5].

There are clear indications that nerve thickening on MRI
reflects involvement of the myelin sheath. It is a consistent
feature of both genetic and acquired demyelinating
polyneuropathies, i.e. Charcot-Marie-Tooth type 1 and chron-
ic inflammatory demyelinating polyneuropathy [28, 29]. This
is further supported by the occasional pathological observa-
tion of onion bulb formation in nerve biopsy studies in MMN
[7, 30, 31].

Demyelination is probably not the only pathological mech-
anism that underlies MMN, since it does not explain all disease
characteristics, such as the phenomenon of cold paresis [32].
Findings in the rabbit model for acute motor axonal neuropathy
and human motor neuron model for MMN [33, 34] and clinical
observations of significant axonal damage in patients with
MMN [5, 35] suggest additional pathological mechanisms that
directly affect the axon [36]. The DTI findings in this study, in
particular the reduced AD values, support this concept.
Reduced AD values reflect pathological changes that impair
diffusion in the length of the axon and are associated with
Wallerian degeneration in animal studies [11, 12, 37]. In a
recently developed in vitro model of anti-GM1 IgM antibody-
mediated damage to human motor nerves, we observed focal
widening of the axon that preceded Wallerian degeneration
[34]. MRI studies in an ischaemia-model of rat sciatic nerve
showed that this process of axonal ‘beading’ was associated

Fig. 2 Fibre tractography of the
median and ulnar nerve in a
multifocal motor neuropathy
(MMN) patient, amyotrophic
lateral sclerosis (ALS) patient and
healthy control (HC). The colour-
encoding is according to the axial
diffusivity (in units mm2/s)
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with significantly restricted AD and virtually unchanged RD
and FA values [38]. The reduced AD values may therefore
reflect pathological changes in motor axons of patients with
MMN. The subanalysis performed on nerves with reduced
CMAP amplitudes shows lower FA, MD and RD values and
a tendency toward lower AD in the median and ulnar nerves.
This tendency toward lower AD could be associated with a
reduction of axon integrity [13]. Reduced MD might be due
to disruption of the cytoskeleton, increasing the viscosity [39].
Detailed analysis of the association of conduction block and
MRI and DTI abnormalities would be of added value to further
explore the pathophysiological mechanisms behind MMN.
However, this was not possible due to the low number of con-
duction blocks in this patient sample, which would make a
statistical analysis severely underpowered. This is a topic for
future larger scale studies.

Patients appeared more uncomfortable in the prone
scanning position, and as a result motion artefacts were
more common in patients than in healthy controls. This
scanning position was a methodological limitation of this
study and resulted in the exclusion of a significant number
of scans due to the relatively low quality of this data.
During development of the protocol we aimed to obtain a
protocol with a sufficiently high resolution to distinguish
the nerves and to have sufficient signal-to-noise ratio
(SNR), as the SNR, amongst other things, will influence
the precision of the DTI metrics [25, 40]. Future develop-
ment of DTI protocols in the forearm should focus on the
right trade-off in SNR, resolution (preferable <1 × 1 mm in
plane), and scan time, as SNR and resolution will always
come at the cost of increased scan time and thus patient
discomfort [25]. Repositioning patients in the supine posi-
tion and using dedicated arm coils could improve patient
comfort and therefore reduce motion artefacts in future
studies. This will improve data quality resulting in less data
that need to be rejected due to artefacts.

We used a tract-based analysis approach with a minimum
length of fibre tracts of 100 mm to exclude aberrant inclusion
of muscle fibres. As a consequence, the number of tracts avail-
able for final analysis was small, since only a limited number
of fibres can be traced over this range. Moreover, the error
accumulation over a long tract range can become substantial
and may introduce bias [25]. To overcome this problem, we
additionally performed segmental analysis, in which smaller
segments of the nerves were analysed resulting in more fibre
tracts being included. The higher number of tracts allows for
better sampling of the data. Segmental analysis showed sim-
ilar AD changes and additional significant differences in
RD values in the proximal segment (segment 3), but not in
the distal segments (segments 1 and 2), of the median and
ulnar nerves. Decreased RD values further support patho-
logical processes that directly affect the axon, rather than
demyelination [11, 41].

Table 3 Mean diffusion parameters and cross-sectional areas (CSA) of
the median and ulnar nerves with reduced compound muscle action
potential (CMAP) amplitudes, i.e. smaller than the lower limit of normal
(LLN) reflecting axonal loss, versus nerves with normal CMAP
amplitudes

CMAP < LLN (N = 8) CMAP > LLN (N = 76)

FA 0.47 ± 0.05* 0.44 ± 0.04*

MD (×10-3 mm2/s) 1.40 ± 0.12* 1.51 ± 0.14*

AD (×10-3 mm2/s) 2.19 ± 0.14 2.30 ± 0.16

RD (×10-3 mm2/s) 1.00 ± 0.13* 1.12 ± 0.14*

CSA 7.09 ± 1.29 6.48 ± 1.37

* p < 0.05

FA fractional anisotropy, MD mean diffusivity, AD axial diffusivity, RD
radial diffusivity

Table 2 Mean diffusion parameters (fractional anisotropy (FA), mean
(MD), axial (AD) and radial (RD) diffusivity) with standard deviation
(SD) based on both median and ulnar nerves in patients with multifocal
motor neuropathy (MMN), amyotrophic lateral sclerosis (ALS) and
healthy controls (HC)

MMN ALS HC

FA

Entire nervea 0.44 ± 0.04 0.43 ± 0.05 0.44 ± 0.04

Segment 1b 0.43 ± 0.05 0.43 ± 0.05 0.43 ± 0.04

Segment 2c 0.44 ± 0.05 0.43 ± 0.05 0.44 ± 0.05

Segment 3d 0.46 ± 0.06 0.44 ± 0.03 0.45 ± 0.04

MD (×10-3 mm2/s)

Entire nerve 1.44 ± 0.10 1.52 ± 0.15 1.51 ± 0.14

Segment 1 1.50 ± 0.18 1.46 ± 0.17 1.51 ± 0.16

Segment 2 1.43 ± 0.16 1.49 ± 0.18 1.49 ± 0.14

Segment 3 1.38 ± 0.14** 1.50 ± 0.10** 1.45 ± 0.11

AD (×10-3 mm2/s)

Entire nerve 2.20 ± 0.12* 2.31 ± 0.17* 2.31 ± 0.17*

Segment 1 2.26 ± 0.22 2.22 ± 0.20 2.29 ± 0.20

Segment 2 2.19 ± 0.18 2.27 ± 0.22 2.27 ± 0.15

Segment 3 2.16 ± 0.18* 2.30 ± 0.13* 2.25 ± 0.14*

RD (×10-3 mm2/s)

Entire nerve 1.06 ± 0.10 1.13 ± 0.15 1.11 ± 0.14

Segment 1 1.12 ± 0.18 1.08 ± 0.16 1.11 ± 0.15

Segment 2 1.05 ± 0.16 1.11 ± 0.18 1.09 ± 0.14

Segment 3 0.99 ± 0.14** 1.11 ± 0.09** 1.05 ± 0.11

aWhole segment: n = 20, n = 28 and n = 36 for, respectively, MMN, ALS
and HC
b Segment 1: n= 23, n= 28 and n= 35 for, respectively, MMN,ALS andHC
c Segment 2: n= 24, n= 28 and n= 36 for, respectively, MMN, ALS andHC
d Segment 3: n= 23, n= 28 and n= 36 for, respectively, MMN,ALS andHC
* Significant difference in MMN vs. ALS and controls (p < 0.05)
** Significant difference in MMN vs. ALS (p < 0.005)
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An obvious limitation of our study is the number of
included patients, which limits its power. Furthermore,
the age range of ALS patients did not fully match those
of the MMN patients and healthy controls. As ALS and
MMN are rare diseases, matching of these two groups is
challenging. This was further complicated by the fact that
we could only include a selection of ALS patients who
were able to lie still in a prone position for a relatively
long time. However, mean age, standard deviations and
95 % confidence intervals of ALS patients were similar
to those of patients with MMN and healthy controls.

In line with previous studies we found no differences
in diffusion parameters between the left and right arms
[42]. DTI has not been used extensively to investigate
forearm nerves and there are few comparable studies of
peripheral nerves of the arm in healthy controls [16] or
patients with polyneuropathy [43, 44]. Comparison of
previous results with our findings is further complicated
by differences in MRI settings (e.g. smaller voxel size and
higher b-value), the difference in threshold settings used
for tractography (higher FA threshold results in higher FA
values [25]) and patient characteristics [43].

Partial volume effects have to be considered when
interpreting DTI results in small nerves [45]. Partial vol-
ume effects are caused by the voxels located on the edges
of the nerves and thus partially contain muscle tissue sig-
nal, which has a lower AD, and a higher RD than the
nerve. As a consequence, partial volume effects would
lower the AD and increase the RD values [19].
However, partial volume effects cannot explain the cur-
rent findings of lower AD values as nerves of MMN pa-
tients had a larger CSA and consequently lower partial
volume effects [45]. Partial volume effects could influ-
ence the RD values and provide an alternative explanation
for the differences found in RD between patients with
MMN and controls.

In conclusion, this study shows that MRI and DTI can
detect lowered AD and enlarged CSA in patients with
MMN compared to ALS and to healthy controls. These
results can help to provide insight into pathological mech-
anisms of MMN. Future studies would be facilitated by
improving patient comfort, for example through the use of
dedicated arm coils and placing patients in a supine posi-
tion, which could reduce motion artefacts and thus im-
prove data quality. As a result less data need to be
rejected due to artefacts. Comparative DTI studies of pa-
tients with MMN and other demyelinating peripheral
nerve disorders, such as chronic inflammatory demyelin-
ating polyneuropathy and Charcot-Marie-Tooth type 1A,
could help to further clarify the aetiology of MMN.
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