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ABSTRACT Here, we report the draft genome sequence of Bacillus pumilus GM3FR,
an endophytic bacterium isolated from aerial plant tissues of Festuca rubra L. The
draft genome consists of 3.5 Mb and harbors 3,551 predicted protein-encoding
genes. The genome provides insights into the biocontrol potential of B. pumilus
GM3FR.

Plant-associated members of the genus Bacillus are well known for their plant
growth–promoting functions (1, 2). Several B. pumilus strains are used as biocontrol

agents against various phytopathogens (3–5). The genome of the endophytic B. pumi-
lus strain GM3FR was sequenced to determine its potential as a biocontrol agent.

Bacillus pumilus GM3FR was isolated from surface-sterilized aerial tissues of healthy
Festuca rubra L. plants. Genomic DNA of B. pumilus GM3FR was extracted using the
MasterPure complete DNA purification kit (Epicentre, Madison, WI, USA). The obtained
DNA was used to generate Illumina shotgun paired-end sequencing libraries. Sequenc-
ing was performed employing the MiSeq system and the MiSeq reagent kit version 3
(600 cycles) as recommended by the manufacturer (Illumina, San Diego, CA, USA).
Quality filtering using Trimmomatic version 0.32 (6) resulted in 2,676,164 paired-end
reads. De novo genome assembly was performed with the SPAdes genome assembler
version 3.8.0 (7). The assembly resulted in 36 contigs (�500 bp) and an average
coverage of 158-fold. The assembly was validated, and the read coverage was deter-
mined with QualiMap version 2.1 (8).

The draft genome of strain GM3FR consisted of 3,506,516 bp with an overall G�C
content of 40.92%. Gene prediction and annotation were performed using Rapid
Prokaryotic Genome Annotation (Prokka) (9). The draft genome harbored six rRNA
genes, 68 tRNA genes, 1,897 protein-encoding genes with functional predictions, and
1,654 genes coding for hypothetical proteins. Multilocus sequence typing based on
seven genes (gyrB, rpoB, aroE, muL, pycA, pyrE, and trpB) was performed according to Liu
et al. (10): the analysis revealed that strain GM3FR belongs to the B. pumilus species
group. The closest relative of GM3FR is B. pumilus SAFR-0.32, which has been isolated
from an ultraclean spacecraft assembly facility (11).

A secondary metabolite gene prediction was performed using antiSMASH version
3.0.5 (12) and revealed nine potential gene clusters for secondary metabolite produc-
tion. Six of these clusters showed no or weak (�40%) similarity to known clusters
including genes encoding microcin, bacteriocin, terpene, siderophore-terpene, type I
polyketide synthase (T1PKS), and a nonribosomal peptide synthetase (NRPS) T1PKS
cluster. Moreover, a gene cluster was identified with 85% of the genes sharing similarity
to a bacilysin gene cluster of B. amyloliquefaciens strain FZB42 (13). Bacilysin produced
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by strain FZB42 showed antimicrobial activities against the phytopathogens Xanthomo-
nas oryzae (13) and Erwinia amylovora (14). An NRPS gene cluster was identified with
71% of genes sharing similarity to a lichenysin biosynthetic gene cluster identified in
B. licheniformis DSM13, which encodes an antifungal substance (15). Finally, a head-to-
tail bacteriocin gene cluster with 85% of the genes exhibiting similarities to a skfA gene
cluster known from B. subtilis 168 (16) was detected. Thus, strain GM3FR contains
multiple gene clusters assigned to secondary metabolism. Gene clusters affiliated to
bacilysin and lichenysin have the potential to be biocontrol agents and to promote
plant health. Moreover, genes involved in bacteriocin production could be beneficial
for the control of other bacteria (17) and for plant growth (18).

Accession number(s). The whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number MKZN00000000. The version de-
scribed here is the first version, MKZN01000000.
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