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ABSTRACT Pseudomonas putida GM4FR is an endophytic bacterium isolated from
aerial plant tissues of Festuca rubra L. Functional annotation of the draft genome
(7.1 Mb) revealed 6,272 predicted protein-encoding genes. The genome provides in-
sights into the biocontrol and plant growth-promoting potential of P. putida GM4FR.

Beneficial plant-associated bacteria promote plant growth and health using a variety
of mechanisms, including the production of phytohormones (1, 2). These bacteria

can enhance the resistance of their host plant against biotic and abiotic stressors (2).
Several members of the genus Pseudomonas are known as plant growth-promoting
bacteria (2, 3). These include P. putida strains, which have been shown to act as efficient
biocontrol agents against phytopathogens and nematodes (3, 4).

Here, we report the draft genome sequence of the endophyte P. putida GM4FR. This
strain was isolated from surface-sterilized aerial tissues of healthy Festuca rubra L.
plants. Samples were collected from the GrassMan experimental field (5). Genomic DNA
of P. putida GM4FR was extracted using the MasterPure complete DNA purification kit
(Epicentre, Madison, WI, USA). Obtained DNA was used to generate Illumina paired-end
sequencing libraries. Sequencing was performed by employing a MiSeq system and the
MiSeq reagent kit version 3 (600 cycles) as recommended by the manufacturer (Illu-
mina, San Diego, CA, USA). Quality filtering using Trimmomatic version 0.32 (6) resulted
in 5,419,862 paired-end reads. De novo genome assembly was performed with the
SPAdes genome assembler version 3.8.0 (7). The assembly resulted in 79 contigs
(�500 bp) and an average coverage of 144-fold. The assembly was validated and the
read coverage determined with QualiMap version 2.1 (8).

The draft genome of P. putida strain GM4FR consists of 7,064,252 bp with an overall
G�C content of 63.45%. Gene prediction and annotation were performed using Rapid
Prokaryotic Genome Annotation (Prokka) (9). The draft genome harbored 10 rRNA
genes, 55 tRNA genes, 2,867 protein-encoding genes with functional prediction, and
3,405 genes coding for hypothetical proteins. For phylogenetic classification of
P. putida GM4FR, multilocus-sequence typing was performed according to Gomila et al.
(10). The closest relative of the P. putida strain GM4FR is P. putida KT2440, which is a
derivate of the soil isolate mt-2 (11) and able to colonize the rhizosphere of several
important crop plants (12).

BlastKOALA (13) analysis of the GM4FR genome revealed a gene encoding for a
putative nematicidal protein (AidA) (14). Additionally, putative genes encoding insec-
ticidal proteins such as fitD/mcf (K19615) and tccC (K11021) were identified. These
insecticidal toxins are known from plant-associated P. fluorescens and P. protegens
providing protective effects for their host plants (15–17). An antiSMASH 3.0.5 (18)
analysis predicted two bacteriocin gene clusters, an arylpolyene gene cluster, and a
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nonribosomal polyketide synthetase (NRPS) cluster with no or low (�35%) similarity to
known clusters. From the identified NRPS cluster, 9% of genes showed similarities to a
pyoverdine gene cluster of P. protegens and P. aeruginosa (19). Pyoverdines are impor-
tant virulence factors such as fluorescent siderophores and required in pathogenesis
(20).

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession MKZO00000000. The version described here is
version MKZO01000000.
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