Table 6. Testing performance of dataset II.
Type | SI | AA | Decision fusion | Feature fusion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Classifier | SVM | NN | SVM | NN | SVM | NN | SVM | NN | |||
SVM | NN | SVM | NN | ||||||||
Alpha | 0.73 | 0.69 | 0.80 | 0.76 | |||||||
Hamming-loss | 0.103 | 0.119 | 0.064 | 0.063 | 0.045 | 0.054 | 0.054 | 0.063 | 0.083 | 0.098 | |
Accuracy | 0.790 | 0.800 | 0.883 | 0.885 | 0.906 | 0.898 | 0.879 | 0.889 | 0.823 | 0.831 | |
Precision | 0.857 | 0.829 | 0.901 | 0.906 | 0.942 | 0.918 | 0.947 | 0.907 | 0.889 | 0.856 | |
Recall | 0.825 | 0.831 | 0.908 | 0.908 | 0.924 | 0.920 | 0.885 | 0.911 | 0.847 | 0.856 | |
F1 score | 0.835 | 0.829 | 0.904 | 0.906 | 0.928 | 0.919 | 0.893 | 0.908 | 0.859 | 0.855 | |
Subset accuracy | 0.688 | 0.739 | 0.834 | 0.841 | 0.847 | 0.854 | 0.841 | 0.847 | 0.726 | 0.783 | |
Macro | Precision | 0.921 | 0.744 | 0.940 | 0.941 | 0.962 | 0.945 | 0.967 | 0.903 | 0.927 | 0.806 |
Recall | 0.741 | 0.777 | 0.881 | 0.871 | 0.887 | 0.879 | 0.854 | 0.881 | 0.791 | 0.787 | |
F1 | 0.801 | 0.758 | 0.902 | 0.897 | 0.921 | 0.905 | 0.905 | 0.889 | 0.844 | 0.794 | |
Micro | Precision | 0.864 | 0.822 | 0.904 | 0.907 | 0.943 | 0.919 | 0.953 | 0.904 | 0.901 | 0.857 |
Recall | 0.829 | 0.832 | 0.910 | 0.910 | 0.925 | 0.922 | 0.885 | 0.913 | 0.850 | 0.857 | |
F1 | 0.846 | 0.827 | 0.907 | 0.908 | 0.934 | 0.921 | 0.918 | 0.909 | 0.875 | 0.857 |
Note:
The best classification performance (based on different criteria) is indicated in bold for each technique.