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SUMMARY

Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the 

therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. 

Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, 

while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells. In vivo, 

AD80 rescued 50% of mice transplanted with PTEN-deficient leukemia cells. Cells surviving 

LY-2779964 treatment exhibited inhibitor-induced S6K1 phosphorylation due to increased mTOR-

S6K1 co-association, which primed rapid recovery of S6K1 signaling. In contrast, AD80 avoided 

S6K1 phosphorylation and mTOR co-association, resulting in durable suppression of S6K1-

induced signaling and protein synthesis. Kinome analysis revealed that AD80 coordinately inhibits 

S6K1 together with the TAM family tyrosine kinase AXL. TAM suppression by BMS-777607 or 

genetic knockdown potentiated cytotoxic responses to LY-2779964 in PTEN-deficient 

glioblastoma cells. These results reveal that combination targeting of S6K1 and TAMs is a 

potential strategy for treatment of PTEN-deficient malignancy.
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INTRODUCTION

Inactivation of the phosphatidylinositol 3′-phosphatase PTEN as a result of genomic 

mutation, epigenetic silencing, and/or non-coding RNA regulation is a frequent event in 

glioblastoma and T acute lymphoblastic leukemia (Cerami et al., 2012; Gao et al., 2013; 

Gutierrez et al., 2009; Song et al., 2012, Cancer Genome Atlas Research, 2008 #1422). 

Through Akt-mTORC1 signaling, PTEN loss triggers the hyperactivation of ribosomal 

protein S6 kinase 1 (S6K1). Activated S6K1 promotes protein synthesis through a variety of 

mechanisms, including increased translation initiation through the phosphorylation of eIF4B 

and PDCD4 (Dorrello et al., 2006; Raught et al., 2004; Shahbazian et al., 2010). S6K1 also 

regulates translation in a non-catalytic manner through its phosphorylation-dependent 

association with the eIF3 complex (Holz et al., 2005). Thus S6K1 is a hub for translation 

control downstream of mTORC1.

We previously showed that genetic inactivation of S6K1 in PTEN-deficient hematopoietic 

cells reduced glucose-dependent cell survival and significantly delayed the incidence of 

leukemia in vivo (Tandon et al., 2011). In a parallel study, the absence of S6K1 reduced the 

incidence of adrenal tumors in PTEN+/− mice (Nardella et al., 2011). These results 

indicated that development of S6K1 targeted therapeutics would be beneficial for treatment 

of PTEN-deficient malignancy.

Recently a number of S6K1 inhibitor compounds have become available. The polykinase 

inhibitor DG2 has been used to inhibit S6K1 in several studies of translation control (Hsieh 

et al., 2010; Okuzumi et al., 2009; Wang et al., 2011). PF-4708671 has been used to 

investigate S6K1 function in glioblastoma survival signaling (Gruber Filbin et al., 2013) and 

the regulation of pyrimidine biosynthesis (Ben-Sahra et al., 2013; Robitaille et al., 2013). 

The compound LY-2779964 (LY-2584702 tosylate) was recently described in a single agent 

Phase I trial in patients with advanced cancers (Tolcher et al., 2014). In parallel, the 

polykinase inhibitors AD57 and AD80 were shown to inhibit S6K1 and suppress oncogenic 

function downstream of a transforming mutant of the receptor tyrosine kinase Ret (Dar et al., 

2012). Here we analyze the efficacy of these inhibitors in PTEN-deficient malignant cells, 

revealing S6K1 as a key component of a multikinase targeting strategy that is selectively 

cytotoxic in PTEN-deficiency.

RESULTS

We investigated the cytotoxic effects of recently described S6K1 inhibitors AD80 and 

LY-2779964. LY-2779964 is the tosylate salt of LY-2584702, which has been previously 

described in a Phase I trial for patients with advanced solid tumors (Tolcher et al., 2014). In 

LN229 and GAMG glioblastoma cells treated with either non-targeting or PTEN-targeting 

siRNA (siNT and siPTEN, respectively), both AD80 and LY-2779964 (LY64) were effective 
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in reducing the S6K1-dependent phosphorylation of the ribosomal protein S6 (rpS6) at 3 

hours (Figures 1a, S1a). However, only AD80, and not LY-2779964, reduced the viability of 

PTEN-knockdown cells. In U87 PTEN-deficient glioblastoma cells, inducible PTEN 

reexpression rendered cells relatively resistant to the effects of AD80 (Figure 1b). Again, 

LY-2779964 was ineffective in inducing cytotoxic responses. In PTEN-deficient 

glioblastoma (A172) and T cell leukemia cells (CCRF-CEM and MOLT3), AD80 treatment 

induced cytotoxic responses while LY-2779964 had little effect (Figure 1c). To genetically 

analyze determinants of AD80 efficacy, we used gene-targeted murine embryonic fibroblast 

(MEF) cells. MEFs treated with TNFα in combination with inhibitors of protein synthesis 

such as cycloheximide (Figure S1b) or AD80 (see below) undergo apoptosis (Lee et al., 

2000). Activation of mTORC1-S6K1 via inactivation of PTEN, TSC1, or TSC2 sensitized 

cells to programmed cell death upon treatment with TNFα in combination with AD80 

(Figure S1c,d). In contrast, S6K1−/− MEFs which reexpressed activated S6K1 T389E were 

resistant to TNFα + AD80, compared to cells reexpressing S6K1 WT (Figure 1d,e). Thus, 

PTEN-selective cytotoxic targeting of S6K1 is a property of the S6K1 inhibitor AD80 and 

not LY-2779964.

We investigated the efficacy of AD80 for reducing leukemia in mice that were transplanted 

with PTEN-deficient bone marrow cells. First we established that AD80 i.p. injection at 20 

mg/kg reduced phosphorylated rpS6 in mouse spleen and bone marrow (Figure S2a,b). Next, 

CD45.2+ donor bone marrow cells were harvested from leukemic Mx1-Cre+; PTENfl/fl mice 

that had been treated with pIpC to induce PTEN deletion (Yilmaz et al., 2006; Zhang et al., 

2006). CD45.1+ recipient mice transplanted with PTEN-deficient leukemic cells were 

divided into groups for injection of AD80 or vehicle control daily for 10 days. AD80 

treatment was tolerated as assessed by tracking of body weight during treatment (Figure 

S2c). All mice from the vehicle-control group developed leukemia, but only 50% of AD80-

treated mice developed leukemia (Figure 1f). AD80-treated mice that did develop leukemia 

did so with delayed incidence. Thus in vitro cytotoxic effects of AD80 are consistent with in 
vivo efficacy for PTEN-deficient cancers.

To investigate the mechanistic differences between AD80 and LY-2779964 in targeting 

S6K1 in PTEN-deficient cells, we determined inhibitor effects in growth factor-dependent 

FL5.12 hematopoietic progenitor cells. As shown previously (Tandon et al., 2011), PTEN-

knockdown is sufficient to mediate growth factor-independent survival that requires active 

mTORC1-S6K1 signaling (Figures 2a, S3a). Similar to S6K1 knockdown and rapamycin 

treatment, AD80 and LY-2779964 reduced the phosphorylation of rpS6 (Figure 2b). 

However, LY-2779964 was only modestly cytotoxic, while AD80 and rapamycin restored 

apoptosis in PTEN-deficient cells (Figure 2c). We hypothesized that differential biochemical 

effects contribute to functional differences in S6K1 inhibitors. Indeed, LY-2779964 induced 

a dramatic increase in the phosphorylation of S6K1 at the hydrophobic motif T389 even 

while the phosphorylation of downstream rpS6 was inhibited (Figure 2b). In contrast, 

phosphorylation of S6K1 at T389 was not increased in AD80 treated cells.

Increased phosphorylation of S6K1 has been described in cells treated with the S6K 

inhibitor PF-4708671 (Pearce et al., 2010). We therefore compared phosphorylation of S6K1 

in cells treated with a panel of S6K1 inhibitors: PF-4708671, LY-2779964, AD80, and DG2 
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(described in (Okuzumi et al., 2009)). LY-2779964, DG2, and PF-4708671 reduced substrate 

rpS6 phosphorylation while inducing substantial phosphorylation of S6K1 at T389 (Figure 

2d). In contrast, AD80 suppressed rpS6 phosphorylation and avoided the induction of S6K1 

T389 phosphorylation. LY-2779964 mainly affected S6K1 T389, as there were only modest 

effects on the phosphorylation of S6K1 turn motif S371 and activation loop T229 sites 

(Figure S3b).

Increased S6K1 T389 phosphorylation upon treatment with LY-2779964, could be related to 

a general increase in mTORC1 activity. However, increased S6K1 T389 phosphorylation 

was not accompanied by a general increase in the phosphorylation of the parallel mTORC1 

substrates 4EBP1 and ULK1 (Figure 2e). The mTOR-dependence of these phosphorylation 

sites is confirmed by treatment with the mTOR catalytic site inhibitor WYE-354. 

Combination of WYE-354 with LY-2779964 substantially reduced S6K1 phosphorylation at 

pT389 (Figure 2e, see also Figure S3b). Similarly, knockdown of the mTORC1 specific 

subunit raptor reduced phosphorylation of S6K1 at T389 (Figure S3c). Further analysis by 

co-immunoprecipitation indicated that LY-2779964 induced the association of S6K1 with 

mTOR (Figure 2f). Altogether the results favor a model in which LY-2779946 induces the 

association of S6K1 with mTOR, mediating mTORC1-dependent T389 phosphorylation. 

Additional mechanisms including effects on inhibitor-induced dimerization may also 

contribute to increased S6K1 pT389.

To determine the effects of inhibitor-induced kinase phosphorylation in signal transduction, 

we examined the kinetics of substrate and kinase phosphorylation after drug washout. After 

preincubation, S6K1 T389 phosphorylation was substantially increased by LY-2779964 

treatment while rpS6 phosphorylation was reduced (Figure 2g). rpS6 phosphorylation 

rebounded within 60 minutes after removal of LY-2779964, while there was an extended 

delay rpS6 phosphorylation in AD80-treated cells. Together these results reveal substantial 

differences in kinase phosphorylation and signaling kinetics between LY-2779964 and 

AD80, which correspond to differential cytotoxic efficacy.

The anti-neoplastic activity of S6K1 knockout/knockdown has been linked to the regulation 

of new protein synthesis in APC-deficient colorectal cancer cells (Faller et al., 2015). In 

PTEN-deficient cells, AD80 treatment dramatically reduced the fraction of polysome-

associated mRNA (Figure 3a), suppressing the incorporation of 3H-leucine into newly 

synthesized proteins (Figure 3b). To determine the effects of AD80 on S6K1 control of 

protein synthesis, we measured the phosphorylation of the S6K1 substrates rpS6 and eIF4B 

in S6K1−/− MEFs that reexpressed WT S6K1 or the S6K1 T389E activated mutant. S6K1 

T389E substantially protected the phosphorylation of rpS6 in cells treated with rapamycin, 

which corresponded with an increase in new protein synthesis (Figure 3c,d). AD80 mediated 

a striking reduction in protein synthesis in cells expressing S6K1 WT, which corresponded 

in reduced phosphorylation of rpS6 and eIF4b. Protein synthesis and substrate 

phosphorylation was substantially protected from AD80 by the expression of S6K1 T389E 

(Figure 3c,d).

Beyond its direct effects on S6K1 signaling, we considered that the multikinase targeting 

portfolio of AD80 could contribute to its cytotoxic effects in PTEN-deficient cells. We 

Liu et al. Page 4

Cell Rep. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



surveyed the kinome-wide effects of AD80 in PTEN-knockdown LN229 cells using 

differential mass spectrometry analysis of kinase binding to biotin-acylated ATP analogs 

(KiNativ analysis, Table S1) (Patricelli et al., 2007). Comparison of KiNativ data with 

previously published in vitro recombinant kinase inhibition revealed three clusters of kinase 

responses to AD80 (Figure 4a) (Dar et al., 2012). Kinases that were inhibited ≥ 50% both in 
vitro and in cells appear to be direct targets, while kinases that avoided substantial inhibition 

in vitro may reflect context-dependent or indirect effects. Additionally, some kinases 

increased ATP-analog binding activity (negative inhibition), which may be indicative of 

adaptive signaling in response to AD80. Ingenuity Regulator Analysis of AD80 direct and 

indirect targets nominated the tyrosine kinase AXL for further analysis (Table S2). AXL is a 

member of the TYRO3, AXL, MER (TAM) family of tyrosine kinases, which are emerging 

as key mediators of resistance to kinase-targeted therapeutics (Elkabets et al., 2015; Scaltriti 

et al., 2016). Combining the S6K1 inhibitor LY-2779964 with the AXL/TAM kinase 

inhibitor BMS-777607 elicited substantial cytotoxicity that was selective for PTEN-deficient 

cells similar to AD80 (Figure 4b, S4a) (Schroeder et al., 2009). We tested the cytotoxic 

effects of TAM kinase knockdown in cells treated with LY-2779964. Knockdown of TAM 

kinases alone or in combination was not cytotoxic (Figure 4c). Nevertheless, knockdown of 

TAM kinases in combination with PTEN revealed a specific vulnerability to single agent 

LY-2779964 (Figure 4c, S4b). Expression of activated S6K1 T389E or exogenous AXL 

prevented cytotoxicity of combination LY-2779964 with BMS-777607, indicating the 

requirement for combined inactivation of S6K1 with Axl for PTEN-selective cytotoxicity 

(Figures 4d–e, S4c–e). Altogether the results reveal a PTEN-selective targeting strategy 

featuring inhibitors of S6K1 and TAM family kinases.

DISCUSSION

The identification of AD80 as a multikinase inhibitor with selective cytotoxicity for PTEN-

deficient cells established S6K1 as part of a kinase targeting portfolio for in vitro and in vivo 
cytotoxic therapy of PTEN-deficient cancers (Figure 1). Biochemical properties that 

distinguish AD80 from other S6K1 inhibitors are the avoidance of inhibitor-induced S6K1 

phosphorylation (Figure 2d), the durable inhibition of pathway signaling (Figure 2g), and 

suppression of protein synthesis (Figure 3). Using AD80 as a template, we identified that the 

combination of S6K1-targeting LY-2779964 with TAM kinase-targeting BMS-777607 is a 

PTEN-selective cytotoxic therapy (Figure 4b). Importantly, the TAM kinase AXL has been 

shown in breast cancer to mediate resistance to rapamycin, and AXL overexpression in 

glioblastoma correlates with poor outcome (Elkabets et al., 2015; Hutterer et al., 2008). 

Single agent clinical trials with LY-2779964 have reported good pharmacokinetic properties 

(Hollebecque et al., 2014; Tolcher et al., 2014). BMS-777607 (also designated Aslan002) is 

currently in phase I clinical trial for advanced and metastatic solid tumors (NCT01721148). 

Altogether these results provide a rationale for the investigation and translation of these and 

similar agents for chemotherapeutic inhibition of S6K1 in combination with TAM kinases.
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EXPERIMENTAL PROCEDURES

Cell culture

LN229, A172, U87MG, CCRF-CEM, and MOLT3 cells were purchased from ATCC; 

GAMG was purchased from DKMZ. S6K1−/− MEFs were the kind gift of Drs. George 

Thomas and Sara Kozma. TSC1−/− and TSC2−/− MEFs were the kind gift of Dr. David 

Kwiatkowski. 293T cells were provided by Dr. Yoon. WT-MEFs and FL5.12 cells were 

derived from laboratory stocks. Cells were periodically tested for mycoplasma and human 

lines were authenticated using fingerprint analyses from Genetica, Inc.

AD80 therapy for Pten-deficient leukemia

Donor bone marrow from PIPC-injected Mx1-Cre+;PTENfl/fl CD45.2+ B6 mice was 

transplanted into CD45.1 BoyJ recipient mice. Four days post-transplant, mice were 

randomly selected for groups treated daily for 10 days i.p. with vehicle control or 20 mg per 

kg of body weight AD80. Mice were monitored and euthanized upon appearance of 

leukemic symptoms.

Inhibitors

LY-2779964 was provided by Eli Lilly Co, or purchased from Selleck Chem (LY-2584702 

tosylate, #S7704). AD80 was provided by Dr. Kevan Shokat or obtained from Cayman 

Chemical. DG2 was from Sigma Chemical, PF-4708671 was from Cayman Chemical, 

rapamycin was from LC Laboratories. Unless otherwise indicated, concentrations of 

inhibitors used are: 5 μM LY-2779964, 10 μM AD80, 10 μM BMS-777607.

Viability measurements

Viability of adherent cell lines was measured in triplicate wells using the CytoTox Glo assay 

(Promega). Viability in suspension lines was measured in technical replicates by propidium 

iodide exclusion in a flow cytometer.

KiNativ analysis

siPTEN LN229 cells were treated with 10 μM AD80 for 3 hours. Cells were pelleted and 

flash frozen before submission for KiNativ analysis (ActivX). Statistically significant results 

from unambiguous kinases were plotted against data from an analysis of AD80 activity 

using recombinant kinases (Dar et al., 2012). Kinases were assigned into four groups: ≥50 

inhibition in both assays; ≥50% inhibition (KiNativ) and ≤50% (recombinant); ≤−10% 

inhibition (KiNativ) and ≤50% (recombinant); all others.

Translation analysis

For polysome profiles, cell extracts were loaded onto 0.5 M–1.5 M sucrose density gradients 

and centrifuged at 36,000 rpm for 2 hour at 4°C. Gradients were fractionated and optical 

density at 254 nm was continuously recorded. For 3H-leucine incorporation, cells were 

labeled with 10 μCi [4,5]-3H-leucine for 2 hours. Proteins precipitated from 10% 

trichloroacetic acid lysates were washed then solubilized in NaOH for scintillation counting.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Pharmacologic targeting of S6K1 in PTEN-deficient cells. (a) PTEN-expressing LN229 

glioblastoma cells were transfected with Non-Targeting siRNA (siNT) or siPTEN duplexes, 

then cultured in 5 μM LY-2779964 (LY64), 10 μM AD80, or vehicle control (Veh). Mean 

cell viability was determined after 72 hours of culture in indicated conditions (top). 

Immunoblot of cell lysates from parallel wells after 3 hours demonstrated knockdown of 

PTEN and inhibition of ribosomal protein S6 (rpS6) phosphorylation (bottom) n=4. (b) 
PTEN-deficient U87 glioblastoma cells were transduced with vector or doxycycline-

regulated PTEN expression constructs. After 48 hours of doxycycline, cells were treated 
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with vehicle, 5 μM LY-2779964, or 10 μM AD80. n=3 viability; n=2 immunoblots. (c) 
Viability and immunoblot analysis of PTEN-deficient and T-ALL cells treated as in (a). n=4 

viability analyses; n=2 immunoblot analyses. (d) Expression of S6K1-WT or S6K1 T389E 

in S6K1−/− MEFs after viral transduction and selection by sorting. (e) S6K1−/− MEFs 

reconstituted with WT S6K1 or S6K1 T389E were treated with 30ng/ml TNFα, 10 μM 

AD80 or combined agents as indicated. S6K1 T389E mediated resistance to TNFα + AD80. 

n=4. See also Figure S1. (f) CD45.2+ PTEN-deficient bone marrow cells were transplanted 

into CD45.1+ congenic recipient mice. Groups of 10 mice were injected i.p. with 20 mg/kg 

AD80 or vehicle control for 10 consecutive days starting at day 5 post transplant, then 

monitored for signs of leukemia. * p=0.01 Log-Rank test. See also Figure S2. **p<0.01 by 

two-tailed t-test (a–e).
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FIGURE 2. 
S6K1 inhibitor pathway dynamics. (a) IL-3-dependent FL5.12 cells that had been stably 

transduced with shPTEN were cultured in full medium lacking only IL-3. Transfection of 

siS6K1 siRNA, or treatment with 20 nM rapamycin induced apoptosis in PTEN-deficient 

cells. n=3. (b) PTEN-deficient FL5.12 cells cultured –IL-3 for 1 hour in the presence of 4 

μM AD80, 1 μM LY-2779964 (LY64) or 20 nM rapamycin (Rapa) revealed reduced rpS6 

phosphorylation yet substantial differences in S6K1 T389 phosphorylation. n=2. (c) 
Viability of cells treated as in (b) for 72 hours. (d) 1 μM LY-2779964, 10 μM DG2, and 10 

μM PF-4708671 share an ability to increase pT389 when added to PTEN-deficient FL5.12 

cell cultures for 2 hours. 4 μM AD80 avoids the induction of pT389. n=2. (e) shNT FL5.12 

cells or serum-starved 293T cells were incubated with 1 μM LY-2779964 or the mTOR ATP-

competitive inhibitor WYE354 (1 μM) for 30 minutes. n=4, FL5.12-shNT; n=2, 293T. (f) 
PTEN-deficient FL5.12 cells transduced with either vector or FLAG-S6K1 were cultured in 

the indicated inhibitors for 3 hours, prior to lysis and FLAG-IP. n=3. (g) PTEN-deficient 

FL5.12 cells were preincubated with vehicle control or 1 μM LY-2779964 or 10 μM AD80 

for 2 hours. Cells were then washed and phosphorylation kinetics determined by 

immunoblot. n=3. See also Figure S3.
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FIGURE 3. 
Targeting translation through S6K1. (a) rRNA polysome assembly in PTEN-deficient 

FL5.12 cells cultured –growth factor for 3 hours ± 4 μM AD80, n=4. (b) 3H-leucine 

incorporation into the TCA-precipitated protein fraction from PTEN-deficient FL5.12 cells 

treated ±4 μM AD80. Measurements are mean±SD cpm from triplicate wells cultured in 

parallel and standardized to Vehicle control. n=5. (c) S6K1−/− MEFs reconstituted with WT-

S6K1 or S6K1 T389E were incubated with vehicle control, 20 nM rapamycin or 4 μM 

AD80. Measurements are as in (b), n=4. (d) Immunoblot analysis of cells cultured as in (c) 

for 2 hours reveals that S6K1 T389E sustained phosphorylation of the S6K1 substrates rpS6 

and eIF4b, indicating a mechanism for AD80 regulation of S6K1-dependent translation 

control; n=3.
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FIGURE 4. 
S6K1/TAM kinase combination targeting. (a) siPTEN LN229 cells were cultured for 3 hours 

in vehicle control or 10 μM AD80, then submitted for ATP-binding site occupancy analysis 

(KiNativ analysis, ActivX). The % inhibition by AD80 was matched and plotted with 

previously published activity using recombinant enzyme assays (Dar et al., 2012). Kinase 

responses to AD80 were classified as indicated. (b) PTEN-selective cytotoxic effects of 5 

μM LY-2779964 +/− 10 μM BMS-777607, n=3 (c) Knockdown of TAM kinases sensitizes 

PTEN-deficient cells to 5 μM LY-2779964, n=3. (d) Activated S6K1 T389E but not S6K1 

WT mediates resistance to 5 μM LY-2779964 + 10 μM BMS-777607, n=3. (e) AXL 

expression mediates resistance of PTEN-deficient cells to 5 μM LY-2779964 + 10 μM 

BMS-777607, n=3. Mean ±SD viability was measured after 72 hours of culture; ** indicates 

p<0.01 by two tailed t-test (b–e). See also Figure S4.
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