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Abstract

Coupled biological/physical models of marine systems serve many purposes including the 

synthesis of information, hypothesis generation, and as a tool for numerical experimentation. 

However, marine system models are increasingly used for prediction to support high-stakes 

decision-making. In such applications it is imperative that a rigorous model skill assessment is 

conducted so that the model’s capabilities are tested and understood. Herein, we review several 

metrics and approaches useful to evaluate model skill. The definition of skill and the determination 

of the skill level necessary for a given application is context specific and no single metric is likely 

to reveal all aspects of model skill. Thus, we recommend the use of several metrics, in concert, to 

provide a more thorough appraisal. The routine application and presentation of rigorous skill 

assessment metrics will also serve the broader interests of the modeling community, ultimately 

resulting in improved forecasting abilities as well as helping us recognize our limitations.

Keywords

Goodness-of-fit; skill metric; skill assessment; model uncertainty

Correspondence to: Craig A. Stow.

HHS Public Access
Author manuscript
J Mar Syst. Author manuscript; available in PMC 2017 March 31.

Published in final edited form as:
J Mar Syst. 2009 February 20; 76(1-2): 4–15. doi:10.1016/j.jmarsys.2008.03.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Quantitative models are widely used in the ocean sciences. Many applications are primarily 

heuristic; the models serve as “toys to tune our intuition” (Kaufman 1995) allowing users to 

conduct numerical experiments where real experimentation is infeasible. In these 

applications model predictions are regarded as testable hypotheses rather than explicit 

forecasts of future behavior. Thus, when model predictions are inaccurate, the cost of being 

wrong is low. In fact, erroneous predictions can be informative, affording opportunities for 

increased understanding of system behavior. But, increasingly models are used as tools to 

support decision-making, where the stakes can be high and the application of models with 

limited forecasting accuracy becomes a liability (Pilkey and Pilkey-Jarvis 2007). 

Particularly, in these high-stakes decision-support applications, information regarding model 

accuracy or “skill” is essential for decision-makers to consider when weighing forecasts and 

the possible outcomes of alternative actions.

Given a choice of models to evaluate future management scenarios, a decision-maker is 

likely to pick the most accurate model. If a model were available that was 100% accurate, 

this model would be preferable to one that was 75% accurate. With 100% accuracy 

management actions could be chosen based only on the societal value of the consequences 

of those actions. Though a model with only 75% accuracy is still informative, applying such 

a model requires hedging decisions by the relative probabilities of a range of possible 

outcomes and the societal value of those outcomes (Reckhow 1994). Hence, quantifying 

model skill provides information useful in both model selection and application.

The definition of model skill is dependent on context-specific factors such as the goals of the 

modeling exercise and the spatiotemporal scales of importance. Generally when we assess 

skill we are asking: How well does the model represent truth over a specified range of 

conditions? However, because truth cannot be measured, we use observations as a surrogate 

and ask instead: How well does the model fit the data? Both our model predictions and the 

observations reside in a halo of uncertainty and the true state of the system is assumed to be 

unknown, but lie within the observational uncertainty (Figure 1a). A model starts to have 

skill when the observational and predictive uncertainty halos overlap, in the ideal case the 

halos overlap completely (Figure 1b). Thus, skill assessment requires a set of quantitative 

metrics and procedures for comparing model output with observational data in a manner 

appropriate to the particular application. The residual (or misfit) is defined as the difference 

between the observation and the prediction, and most of the metrics described in this paper 

are some function of this quantity.

The routine application of rigorous skill assessment techniques is not broadly reflected in the 

refereed literature. Arhonditsis and Brett (2004) compiled a comprehensive review of 153 

aquatic biogeochemical models published from 1990–2002 and found that ~ 30% of the 

studies reported goodness of fit measures, often a time-series plot of observations vs. model 

predictions, while ~47% reported some form of model validation. A possible reason for the 

relatively low skill assessment rate is that consumers of this information (mostly fellow 

research scientists) seem little affected by the presence or absence of skill information; a 

follow-up analysis (Arhonditsis et al. 2006) reported no relationship between the level of 
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skill assessment presented or the accuracy of the model, and the subsequent citation rate of 

the published paper.

Similarly, we reviewed 142 papers published in five oceanographic journals (Journal of 

Geophysical Research – Oceans, Deep Sea Research I and II, Journal of Marine Systems, 

Journal of Oceanography, and Ocean Modeling) between January 1, 2000 and March 31, 

2007. We selected only articles presenting ecological or biogeochemical models coupled to a 

model describing a physical process—in most cases a one or three-dimensional 

hydrodynamic model. Papers wherein the physical coupling was not explicit (i.e., the 0-

dimensional model studies) and papers wherein any direct comparison between model 

results and observations was absent were excluded. These entries were further sorted by the 

type of model to observation comparisons made, and emphasis was placed on validation 

metrics used for the ecological/biogeochemical variables.

Most papers (68.3 %) provided only a basic comparison of model results and observations, 

usually a visual comparison and occasionally a comparison of ranges, means, and variances. 

Some of these papers used language such as “reasonable” or “strong similarity” and “does a 
good job in reproducing patterns observed…” While these statements are consistent with the 

evidence presented by the authors making them, Allen et al. (2007a) demonstrated that there 

is no scientific and objective consensus as to what constitutes a “good fit” when model 

results and observations are visually compared.

Thirteen papers (9.2 %) quantified model and observation misfits (residuals) using linear 

correlation and difference statistics. An additional 11.3 % of papers reviewed involved data 

assimilation techniques and summarized model and data misfits using a cost function. Cost 

functions generally sum the weighted, squared differences between modeled and observed 

fields over all variables for which data are available. The remaining papers employed various 

comparison schemes and metrics that ranged from multivariate correlations and scaling 

techniques (Allen et al., 2002; Allen et al., 2007b) to a comparison of fast Fourier 

transformations (Powell et al., 2006).

Hence the only model to data comparison metric that is demonstrably the community 

standard is the basic visual comparison. However, when model predictions bisect a cloud of 

observations, but fail to mimic the scatter of the data, does this constitute a good fit? 

Modelers with differing applications and perspectives will offer divergent opinions. Clearly, 

more specific and quantitative techniques are appropriate, though they may be difficult to 

prescribe, generally, due to differences in the types of data to which the models are 

compared, and differences in temporal and spatial scales of comparison. Nevertheless, as the 

biological-physical modeling community moves to embrace data assimilation techniques 

(reviewed by Gregg et al. [2007, this issue]) and the stakes contingent on model predictions 

increase, the presentation of standardized skill metrics, as the OSPAR Commission has 

recommended (Villars et al. 1998), will become increasingly important.

Herein, we highlight multiple misfit metrics and skill assessment methods, useful for a range 

of biological-physical modeling applications. First, we examine the simple case of 

comparing model results for a single prognostic variable with corresponding observations of 
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same, i.e., univariate comparisons. Second, we present cost functions as a compact method 

to summarize model performance when multiple types of prognostic variables are compared 

with corresponding types of observations. Cost functions are also distinct from a collection 

or summation of univariate metrics in the sense that estimates of the observational error are 

included in their formulation. We then highlight some additional methods that may be of 

service to marine ecosystem modelers. Specifically, we discuss ways to quantify patterns 

between multiple sets of variables (multivariate pattern evaluation), some additional methods 

to quantify the comparison of modeled and observed spatial maps, and a potentially useful 

way to quantify the predictive capacity of a model–the Binary Discriminator Test.

This is not an exhaustive list, and many important, closely related topics such as uncertainty 

analysis (Beck 1987), model selection (Kass and Raftery 1995), model averaging (Hoeting 

et al. 1999), and scores for probabilistic forecasts (Brier 1950, Katz and Ehrendorfer 2006) 

are not addressed. Rather, this is an attempt to call attention to some useful skill assessment 

methods and point out a few that can be misleading. We have chosen not to be overly 

prescriptive, in the belief that some experimentation and vetting must occur for the most 

informative metrics to “rise to the surface” and become widely employed. We offer these 

metrics as a challenge to the community to include their use and presentation as a routine 

part of model development, publication, and application.

2. Univariate Comparison of Predictions and Observations

Graphically comparing model point predictions with observations can be a useful way to 

assess model performance. While time-series plots of observations and model predictions 

seem to be the community standard, bivariate plots of observations vs. predictions are 

usually more revealing. Additionally, bivariate observed vs. predicted plots can be 

complemented with supporting quantitative measures such as simple linear regression 

statistics (Reckhow et al. 1990, Smith and Rose 1995).

Another useful graphical approach is to evaluate the set of differences between 

corresponding observations and predictions, variously referred to as “misfits” (Evans 2003) 

or “residuals”. In statistical texts, residual examination is typically the first step to 

corroborate underlying probabilistic assumptions such as normality and independence of the 

model error term. However, even if the model is not explicitly contingent on such 

assumptions, graphical examination of residuals along a logical gradient, such as time, 

space, or vs. model predictions can reveal systematic biases or a differing ability of the 

model to capture variability in some regions of space or time (Friedrichs et al., 2007; this 

issue).

In addition to graphical techniques, there are many simple, quantitative metrics that are 

useful to assess model skill. Stow et al. (2003) used the six following indices in a side-by-

side comparison of three estuarine water quality models of differing complexity:

1. r – the correlation coefficient of the model predictions and observations:
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2. RMSE - the root mean squared error (also referred to as root mean squared 

difference):

3. RI – the reliability index

4. AE – the average error (bias)

5. AAE – the average absolute error

6. MEF – the modeling efficiency

where n = the number of observations, Oi = the ith of n observations, Pi = the ith of n 

predictions, and Ō and  are the observation and prediction averages, respectively.

The correlation coefficient, r, measures the tendency of the predicted and observed values to 

vary together. It can range from −1 to 1, with negative values indicating that the observed 

and predicted values vary inversely. Ideally, this value will be close to one. However, even if 

the correlation is near one, the predicted and observed values may not match each other; 
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they could differ by a consistent factor. Additionally, this measure can be dominated by a 

small proportion of extreme values that may not reflect the behavior of the bulk of the data.

The root mean squared error, average error, and average absolute error are all measures of 

the size of the discrepancies between predicted and observed values. Values near zero 

indicate a close match. The average error is a measure of aggregate model bias, though 

values near zero can be misleading because negative and positive discrepancies can cancel 

each other.

The average absolute error and the root mean squared error both accommodate the 

shortcoming of the average error by considering the magnitude rather than the direction of 

each discrepancy. Together these three statistics provide an indication of model prediction 

accuracy.

The reliability index (Leggett and Williams 1981) quantifies the average factor by which 

model predictions differ from observations. For example, an RI of 2.0 indicates that a model 

predicts the observations within a multiplicative factor of two, on average. Ideally, the RI 

should be close to one. When the root mean squared error has been calculated for log 

transformed values of the predictions and observations, then the RI is the exponentiated 

RMSE.

The modeling efficiency measures how well a model predicts relative to the average of the 

observations (Nash and Sutcliffe 1970, Loague and Green 1991). It is related to the RMSE 

according to: MEF = 1-RMSE2/s2 where s2 is the variance of the observations. A value near 

one indicates a close match between observations and model predictions. A value of zero 

indicates that the model predicts individual observations no better than the average of the 

observations. Values less than zero indicate that the observation average would be a better 

predictor than the model results.

All of these univariate statistics are sensitive to phase errors, in either time or space, in the 

model predictions relative to the observations. For one-dimensional data sets, one can 

compute the lagged model-data correlations (or RMSE, RI, etc.). For two-dimensional data 

sets, some groups have used empirical orthogonal function (EOFs). Graphical comparisons 

and lagged correlation analysis can be made for observed and predicted EOF spatial maps 

and their associated principal component time series (Doney et al., in press).

Because they capture different aspects of model performance, it is often useful to use several 

metrics simultaneously for a thorough skill evaluation. Sometimes it is appropriate to log-

transform the observations and predictions before calculating goodness-of-fit statistics so 

that differences between predicted and observed values will not be highly skewed and 

dominated by a small proportion of high values.

To illustrate these metrics we compared model derived sea surface temperature (SST) and 

mixed layer depth (MLD) from a one-dimensional upper ocean model simulation (Doney, 

1996) with ship-based CTD data collected at the Bermuda Atlantic Time-Series Site (BATS) 

in the Sargasso Sea. The BATS station was occupied on a biweekly to monthly time 

resolution, and within each cruise anywhere from one to more than a dozen CTD casts were 
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conducted. The data thus include considerable high frequency data (diurnal cycle, internal 

tides, small-scale spatial heterogeneity) not captured by the model.

Based on the time-series plots (Figures 2 and 3, top left), both sets of model predictions and 

observations show a strong similarity, but the accompanying plots and metrics offer a more 

comprehensive evaluation. Though the model does a good job in reproducing observed SST 
patterns (Figure 2, top left), it tends to underestimate SST after the middle of 1996 (Figure 2, 

top right) and for SSTs above about 28 deg. C (Figure 2, bottom left). The diagonal clusters 

in the model misfit versus observed values (Figure 2, bottom right) reflect data from 

individual cruises when there is a large spread among different observations but little 

variation in the model over the short duration of the cruise. Summary statistics (Table 1) 

show a high correlation between the observed and predicted values, the RMSE, AE, and 

AAE are all relatively small in comparison to the variability of the data, the RI is close to 

one and the MEF is fairly close to one. However, the intercept and slope of the predicted vs. 

observed plot (Figure 2, bottom left) would be judged to be “significantly different from 

zero and one, respectively, in a classical statistical analysis. The model-data agreement for 

MLD is reasonable (Figure 3, top left) during the summer when MLD is shallow, however 

tends to be poor during the winter (Figure 3, top right), when small phase shifts in the 

simulated MLD lead to large misfit values. The predicted vs. observed plot (Figure 3, 

bottom left) reveals discrepancies more clearly than the time-series plot (Figure 3, top left), 

showing considerable variability. The patterns apparent in the misfit vs. observation plot 

(Figure 3, bottom right) are also indicative of individual cruise data. Summary statistics 

(Table 1) are generally less favorable for MLD than for SST with a lower correlation while 

the RMSE, AE, and AAE are each relatively large. The MEF is near zero, indicating 

minimal predictive ability, and the intercept and slope estimates differ from the desired 

values of zero and one, respectively. Thus, while “reasonable”, “strong similarity”, and 

“does a good job…” would probably go unchallenged, additional probing helps reveal the 

veracity of these assessments.

There are also compact techniques to display potentially large sets of univariate statistics on 

summary diagrams. For example, Taylor (2001) described a method to exploit relationships 

between variance, correlation, and RMSD statistics in order to display these quantities on a 

single summary diagram, i.e., the Taylor diagram. These diagrams have begun to appear in 

the coupled model literature as a convenient way to quantify and communicate model 

performance to both modelers and non-modelers as the model is modified or aspects of 

model output are delineated by variable type or geographic region (e.g., Gruber et al. 2006; 

Raick et al., 2007). More detailed presentations of the Taylor diagram and other compact 

methods useful to graphically convey information are also found in other papers in this 

special volume (Jolliff et al., 2007; Friedrichs et al., 2007b).

3. Multivariate Comparison of Predictions and Observations

For models with multiple response variables, independent, univariate comparisons of each 

response with its corresponding observations may still be informative, but it is often 

appropriate to compare responses and observations across all of the response variables 

simultaneously (Friedrichs et al., 2006). A cost function, J, is a single metric of overall 
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model performance defined for applications such as objective analysis and data assimilation, 

where attempts are made to minimize model-data misfit against some set of observations 

(e.g., Wunsch, 1996; Kasibhatla et al., 2000; Kalnay, 2003). Cost functions combine the 

model-data misfit across incommensurate variables with differing units and uncertainties, 

and thus are also useful for characterizing the overall misfit across a suite of model 

simulations.

The most straightforward cost function is the weighted sum of squares of individual, point to 

point model data misfits:

(1)

xO and xP are vectors of length n of the observations and corresponding model prediction 

values for all variables at all available points in time and space, the superscript T refers to 

the transpose of a vector, and R−1 is the inverse of the n×n error covariance matrix. The form 

of the cost function in Equation 1 is equivalent to a weighted sum of squares of model-data 

misfits and thus is a generalization of the RMSE. This form can be derived from both 

maximum likelihood and Bayesian approaches, for the case where the model-data misfits in 

R are normally distributed.

Much of the art in the construction of the cost function involves developing the covariance 

matrix R that weights the contributions of individual data points to the total cost function. If 

the misfits are independent, as is commonly assumed, the off-diagonal terms in R are zero, 

the diagonal elements of R can be estimated using the misfits, denoted εi, as Rii = σ2
ii = εi

T 

εi, and the elements of the inverse are R−1
ii = 1/σ2

ii. The εi may represent observation error, 

model error or both. In some cases “errors of representativeness” may be included to account 

for the presence in the observations of subgrid-scale variability that is not captured at the 

grid-scale of the model (Kalnay, 2003). Off-diagonal elements can arise when the 

observational data contain regional or temporal biases that are correlated across 

observations. Note that we are discussing here correlations among the observation errors, not 

correlations in the observations themselves.

The form of the cost function, is identical (barring the conventional factor of 2 in J) with the 

chi-squared statistic (Press et al., 1986; Bevington and Robinson, 2002):

(2)

and the related quantity the reduced chi-squared:

(3)

where υ is the number of degrees of freedom in the observations. The reduced chi-squared 

metric would have a value of about 1 if the model fit the observations within about the 
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observational error and if all of the data were independent. Values of χ2
υ significantly 

greater than 1 indicate that the model is a poor fit to the observations, and there are statistical 

tests to assess the model goodness of fit (Press et al. 1986). Spatial, temporal, and variable-

variable correlations in the observations and model results lower the number of degrees of 

freedom υ, which can be quantified using autocorrelation and cross-correlation estimates 

(Emery and Thomson 1998).

In some situations, the model does not directly predict the quantity that is observed, and the 

model variables need to be transformed using an observation operator H(xmod). The cost 

function J would then be written:

(4)

where the observations are denoted as yO as a reminder that they are different quantities than 

in the model. In some formulations, H is used to denote the fact that the model points 

compared with the observations are a sub-sample of the model state space. More 

interestingly, the need for an observation operator can arise, for example, when comparing 

model and observed spatially or temporally integrated quantities (e.g., vertically integrated 

primary production) or for quantities that are not directly predicted by the model but which 

can be diagnosed from model variables (e.g., acoustic backscatter, biooptical properties). 

There may be additional error terms that need to be added to R associated with the 

observation operator H.

The cost function J is not limited strictly to point to point comparisons, and additional terms 

can be added to equation 1 to reflect model skill with aggregate model behavior and model 

patterns with respect to observations:

(5)

For example, the vector z could include terms related to the model-data misfit in the total 

flow of a current through a section, the integrated biological production for a basin, or a 

biological diversity index for an ecosystem, irrespective of the exact agreement of the model 

and observed patterns. Regularization terms can also be added to the cost function to express 

prior knowledge about the nature of the solution, such as imposing smoothness constraints 

by penalizing gradients in predicted fields.

4. Multivariate Pattern Evaluation

Univariate and multivariate metrics are useful measures to summarize model skill. However, 

considerable information can be lost when complex multivariate information is reduced to a 

single numerical index. Multivariate approaches that allow the simultaneous examination of 

the ways in which numerous variables vary in relation to each other spatially and temporally 

are also helpful to evaluate model skill. Marine ecologists commonly use these approaches 

to interpret complex data sets and marine ecosystem modelers are beginning to use them to 
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investigate patterns and modes of variability in model outputs (Allen et al., 2002; Blackford 

et al., 2004, Schrum et al., 2006, Allen et al., 2007a, Allen and Clark, 2007).

If we have a set of multivariate observations available for model validation we can subject 

them to multivariate analysis. If we then reconstruct a data set from the model by taking the 

nearest equivalents in space and time, we can subject them to the same analysis and compare 

the results. By definition, if the observations are the truth then the perfect model should 

exactly reproduce the observed multivariate patterns. Multivariate analysis allows us to 

explore complex relationships by reducing the dimensionality of the problem. Allen and 

Somerfield. (this volume) have demonstrated the applicability of a range of techniques 

(Principal Component Analysis (PCA, e.g. Chatfield and Collins 1980), Multi Dimensional 

Scaling (MDS e.g. Clark 1993) and cluster analysis e.g., Clark and Gorley 2006) and shown 

that the dimensions of the problem can be reduced and multivariate and univariate goodness 

of fit measures, in terms of both magnitude and trend determined.

5. Binary Discriminator Tests

This is a class of tests which assess the predictive power of a binary classification system to 

evaluate how useful a model is in a decision-making process. These tests can reveal the 

following about a model: a) whether or not the fit between model and observations is better 

or worse than we would obtain if the model was replaced with a random number generator, 

and b) how well it quantifies skill as a function of threshold using a binary discriminator, i.e. 

if an algal bloom is defined as being above a certain concentration of chlorophyll, what is 

the probability that our model predicts a bloom?

The best known example is the Receiver Operator Characteristic (ROC) devised during the 

Second World War for radar operators to correctly differentiate hostile and friendly aircraft. 

These techniques are now widely used in a number of fields, particularly medical research. 

Brown and Davis (2006) provide a detailed and accessible tutorial of the use of ROC curves 

and related metrics. We outline the methods below, following the nomenclature of Brown 

and Davis (2006).

At the heart of the test is a simple yes/no decision, based on the comparison of two 

independent information sets (in our case observations and model) with respect to a 

threshold value. Each trial has four possible outcomes, either correctly positive (CP), 

correctly negative (CN), incorrectly positive (IP) and incorrectly negative (IN), these are also 

known as Type 1 and Type 2 errors (Figure 4a). We can use this approach to make an 

analysis of similarity of how well the model the fits the data. The perfect model is one where 

all the points in a scatter diagram of model vs. data lie on the x = y line (Figure 4a). If we set 

a threshold criterion (TD) dividing the data into two sets and then compare it with the model 

using the same threshold (TM, Figure 4a) we can assess model data similarity at that 

threshold, effectively assessing the model ability to discriminate that threshold. The perfect 

model will only give CP and CN outcomes; the more scatter there is in the model-data 

relationship the more IP and IN conditions will occur and the worse the model performance. 

Because we are interested in model performance we want to assess how well the model 

resolves the data across the whole range of data. By allowing TD to co-vary with TM, we 
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obtain a non-parametric measure of the model’s ability to simulate a given variable, which 

can be compared directly with other simulated variables. The decision process can be further 

assessed by calculating the correct negative fraction (CNF) and the correct positive fraction 

(CPF).

(a)

(b)

CNF and CPF are independent of the actual numbers of positive and negative events in the 

trials and express the fraction of negative and positive events, which are correctly 

determined. A curve which illustrates model performance can then be calculated by plotting 

CPFi on the vertical axis and 1-CNFi on the horizontal axis for i=1, k threshold values 

(Figure 4b). These values are sometimes referred to as the sensitivity and specificity, where 

the sensitivity (CPF) is the probability that case X classified correctly as above the threshold 

and the specificity (1-CNF) is the probability that X classified correctly as below the 

threshold. The perfect model corresponds to a point in the top left hand corner of the Y axis 

(i.e. CNF = 1 and CPF = 1), the top right (CPF=1, CNF=0) and bottom left (CPF = 0 and 

CNF = 1) of the diagram correspond to the extremes of the decision process where every 

trial is always deemed either positive or negative. A completely random predictor (by 

definition CP = IP and CN = IN) gives a straight line at an angle of 45° from the horizontal. 

This is because as the threshold rises equal numbers of true and false positives occur. Results 

below this line suggest the model gives consistently incorrect results.

Decisions based on CPF and CNF are estimators of probabilities of decisions contingent on 

events: if a positive event has occurred what is the probability I will make the correct 

decision. While these probabilities are useful they do not address the fundamental question, 

if I make a positive decision what’s the probability that the decision is correct. The positive 

predictive value (PPV) and negative predictive value (NPV) can be expressed as (see Brown 

and Davis (2006) for the theoretical background and derivation).

(c)

(d)
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Values of PPV and NPV can range between 0 and 1, reflecting the intrinsic power of the 

decision; high values indicating a decision can be trusted, low values suggesting the decision 

should be regarded with skepticism.

As an illustration some examples are shown in Figure 5. Employing the ROC technique, 

Figure 5 indicates that the model has some predictive skill for both temperature and 

chlorophyll. Unsurprisingly temperature (Figure 5, top) shows a very high skill level while 

chlorophyll-a, has limited skill at low concentrations. These are confirmed by the respective 

pearson correlation scores for each data set (T, r = 0.96, Chl r = 0.24, Allen et al 2007b). 

Figure 5c,d shows the probabilities that a positive or negative decision is correct at a 

particular threshold for temperature and chlorophyll. Temperature (Figure 5c) is clearly the 

most reliable variable, with a greater than 90% probability that both positive and negative 

decisions are correct over the range 8–16 °C. For chlorophyll the negative predictive values 

are in excess of 0.9 over substantial ranges of the data range, but the ability to discriminate a 

positive event is poor, if the chlorophyll concentration is above 1mg m−3, effectively 

indicating this simulation is poor at predicting bloom events. Following from this, if we have 

a large spatio-temporal data set (e.g. satellite ocean color chlorophyll) we can plot of map of 

the model skill at predicting algal blooms (Allen et al in press).

6. Comparison of Spatial Maps

Evaluation of many hydrodynamic and biogeochemical models involves comparison of 

model-generated and data-derived spatial maps of key variables (e.g., water velocities, 

chlorophyll-a). The spatial maps are often presented on the x and y (latitude and longitude) 

dimensions with the continuous variable of interest as the height (z-variable), or the variable 

of interest categorized into intervals that are color-coded (e.g., Hashioka and Yamanaka 

2007; Wiggert et al. 2006). Three-dimensional models (i.e., include a vertical dimension) are 

reduced into the x and y dimensions of a map by taking a slice in the vertical dimension 

(e.g., fixed depth interval) or by integrating over the water column. The presentation of these 

side-by-side spatial maps are often accompanied by statements such as “the model captures 

the major features” and other visually-oriented qualitative statements. With the increasing 

use and application of coupled biophysical models, there is a clear need to formalize the 

comparison between model and data spatial maps.

Fortunately, quantifying the patterns in spatial maps, and the question of how to compare 

two or more spatial maps, have been long-term problems inherent in the fields of image 

analysis (Foody 2002), pattern recognition (Duda et al. 2001), and landscape ecology 

(Gustafson 1998); however, the bad news is that, despite the great interest and effort, the 

problem has not been completely solved. Typically, the focus of comparisons in marine 

ecosystem modeling is the appearance of specific features or patterns in the model and data 

maps, such as areas of high mixing, nutrient gradients, and patches of high phytoplankton 

concentrations. The major difficulty is that the model map may resemble the data map but 

with the features of interest offset slightly in the x or y directions, rotated, or compressed or 

dilated. The challenge for skill assessment is determining at what point does one say the two 

maps are similar or different, and how does one quantify how similar the two maps are in an 

objective manner?
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Approaches for comparing two spatial maps can be broadly grouped into those that compare 

composition only (e.g., frequency histogram of cells binned by their magnitude), and those 

that also include the degree of agreement in configuration (i.e., include agreement of the 

spatial arrangement). Approaches in the later broad category that include configuration can 

be divided into those that are based on a pure cell-by-cell comparison, those that allow for 

some fuzziness or relaxation of the strict cell-by-cell comparison (i.e., looks at nearest 

neighbors or moving windows of cells to see how well the maps agree), and those that 

compare higher-order properties (e.g., fractal dimension) between the maps.

We highlight a few of the many possible approaches for comparing spatial maps in order to 

raise awareness in the oceanographic community that quantitative methods exist for 

comparing spatial maps. One commonly used approach is to compute measures of misfit or 

residuals between predicted and observed values cell-by-cell, and then display the misfit on 

the same spatial grid as a misfit or difference map. An example of a statistical approach is 

the Kappa statistic that uses the classification error (or confusion) matrix to determine the 

percent improvement in the agreement between the two maps on a cell-by-cell basis over 

that would be expected by randomness (Lillesand et al. 2004). There exists a fuzzy variation 

of the Kappa test statistic that allows for the information in neighboring cells and for 

differences in the similarities between adjacent categories in the map’s legend to count 

towards the fit of the model map to the data map (Hagen-Zanker et al. 2005). Methods for 

map comparison can become quite complicated, such as the approach of Fewster and 

Buckland (2001) who use a windowing approach and compute the switches needed 

(mutations) of the variable of interest between cells within each widow on one map to get it 

to agree as close as possible with the other map. Higher-order properties try to capture 

features of the spatial heterogeneity (composition and configuration), such as the fractal 

dimension, lacunarity (Gustafson 1998), and the state probability function that is a 

categorical variable version of a variogram (Phillips 2002). Rose et al. (this issue) compare 

several of these approaches using maps generated with known features. Rose et al. (this 

issue) include a variation on the cell-by-cell comparison borrowed from multivariate 

statistics (procrustes analysis, Krzanowski 1990) that allows for the model-generated map to 

be rotated, dilated, and shifted relative to the data map to determine what adjustments are 

needed to get the model map as close as possible to the data map.

7. Conclusions

The continuing development of deployed observing systems such as moored arrays and 

autonomous underwater vehicles will provide scientists with a new wealth of data that may 

potentially be used to constrain and evaluate model performance. These advances in 

observing systems, computational power, and the now frequent practice of coupling three-

dimensional hydrodynamic models with complex ecosystem models will also provide new 

opportunities to test hypotheses regarding the structure and function aquatic ecosystems. 

Simultaneously, these complex and potentially powerful modeling tools will likely continue 

to seduce management agencies and decision-makers into requesting prognostic model 

products that transition from the realm of scientific experiment into part of a policy-making 

matrix of probabilities and consequences.
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Accordingly, assessment of a model’s prognostic skill should specify whether the model is 

being evaluated against calibration or verification data. Calibration data refers to the data set 

used to estimate or optimize model parameter values, while verification data (variously 

referred to as validation, confirmation, or corroboration data) are independent of model 

calibration. Calibration-based metrics are likely to indicate the best possible model 

performance, particularly if the metrics were used as criteria for parameter estimation 

(Friedrichs et al. 2006). However, using calibration-independent data for skill assessment 

provides a much more rigorous test of prognostic model capabilities; ideally the verification 

data should represent conditions different from those represented in the calibration data set.

It is inevitable that complex models of marine systems will increasingly be used to forecast 

future conditions. To the extent that such models contain an ecosystem component (or 

alternately referred to as a biogeochemical component) they presume to quantitatively 

describe the totality of the interactions between organisms and their environment and, 

moreover, how these interactions ultimately manifest in time and space as emergent 

properties that we may observe. Given the overwhelming complexity of this task, it is 

reasonable to assume that all of the models are severely handicapped by deficiencies in our 

knowledge of how ecosystems function.

Thus quantitative metrics that assess model performance are required on both scientific and 

policy-making fronts. First, model improvement, and ultimately, knowledge of how 

emergent properties arise in complex systems, is aided by incorporating quantitative metrics 

into a hypothesis testing cycle that involves both model results and observations. Second, a 

record of model data misfits should not be used to boast of predictive power, but should 

instead be used to remind the scientist, decision-maker, and the public that the equations 

within the model represent hypotheses about how the system works, and by omission, 

hypotheses about which processes are likely to be unimportant–and as is true for any 

hypothesis, they may be wrong. This harkens us back to the prophetic words of Hedgpeth 

(1977) who presciently warned against overconfidence in our computations.
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Figure 1. 
Schematic diagram of the relationships between model prediction (P), observations (O) and 

the true state of the system (T). Both P and O are assumed to have a halo of uncertainty. Fig 

1a) shows the case for a model with no skill and b) shows the case for the ideal model, with 

inner circle representing model uncertainty and outer circle representing observational 

uncertainty.
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Figure 2. 
Observed (points) and predicted (line) variables versus time (top left), the model misfit 

versus time (top right), the predicted versus observed values (bottom left), and the model 

misfit versus observed values (bottom right). The linear regression for the model versus 

predicted value is plotted as a solid line in the bottom left panel relative to the 1:1 line 

(dashed line).
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Figure 3. 
Observed (points) and predicted (line) variables versus time (top left), the model misfit 

versus time (top right), the predicted versus observed values (bottom left), and the model 

misfit versus observed values (bottom right). The linear regression for the model versus 

predicted value is plotted as a solid line in the bottom left panel relative to the 1:1 line 

(dashed line).
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Figure 4. 
Schematic diagrams of a) the discrimination analysis and b) the binary discrimination skill 

assessment curves.
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Figure 5. 
Binary discrimination analysis plots of model performance, a) temperature, b) chlorophyll. 

Dots indicate threshold point calculated lowest threshold is top right, highest bottom left. 

The probability that a positive or negative decision is correct as the discrimination threshold 

is varied, c) temperature, d) chlorophyll. Positive predictive value = solid line, Negative 

predictive value = dashed line. Figures are taken from Allen et al 2007b.
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Table 1

Sea Surface Temperature (C) Mixed Layer Depth (m)

n 951 940

r 0.94 0.67

RMSE 1.10 55.4

RI 1.03 1.93

AE −0.30 9.86

AAE 0.55 30.12

MEF 0.88 0.062

Intercept / S.E. 3.2 / 0.23 18.26 / 2.46

Slope / S.E. 0.85 / 0.0097 0.85 / 0.031
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